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Abstract  The state of global pandemonium of the [1] report on climate change has necessitated much research interest on 
the issue. The application of statistical techniques is crucial in understanding phenomena and greatly influences decision 
making. ARIMA (1,0,0) (0,1,2)(12) with AIC = 0.07868287, AICc = 0.08430456, BIC = -0.8801646 and σ2 = 0.3898) has 
been identified as an appropriate model for predicting monthly average surface temperature for the Brong Ahafo (BA) 
Region of Ghana using 1975 to 2009 data from the Department of Meteorology and Climatology in the BA Region. The 
average surface temperature observed lies between 23°C and 32°C for the Brong Ahafo region all year. The month of 
February records the highest average surface temperature in the region, with July and August sharing spot as the months that 
usually record the lowest average surface temperature. The mean yearly surface temperature over the period was quite erratic 
however a decreasing trend was from 2007 to 2009. It is the hope that when adopted by the Ghana Metrological Agency and 
other relevant governmental organisations, it will in the long run help in accurate forecasting and education of the populace 
on surface temperature. 
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1. Introduction 
Studies on climatic conditions have increased 

significantly in the past decades as a result of advances in 
observational, analysis, and modelling capabilities. 
Moreover, [1] report on climate change has rekindled 
research interest. Various applicable techniques are being 
employed by researchers to help in understanding the 
phenomenon of climate change. [2] remarked that the use of 
the state-of-the-art statistical methods could substantially 
improve the quantification of uncertainty in assessments of 
climate change. [3] concluded that empirical-statistical 
downscaling can be viewed as part of an analysis that 
provide valuable diagnostics that can illuminate various 
aspects of Global Climate Models (GCMs) and complements 
nested modelling and provides a valuable independent 
approach for studying local climate. [4] In a comparative 
study of statistical and neuro-fuzzy network models for 
forecasting the weather of Goztepe, Istanbul using Adaptive 
Neuro-Fuzzy Inference System (ANFIS) and Autoregressive 
Integrated Moving Average (ARIMA) models, ANFIS 
performed slightly better than ARIMA evaluating the RMSE  
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and R2. [5] created a statistical model that is based on 
variables known to be important for deterministic models 
that can be used to forecast water temperature as a response 
to atmospheric conditions and reported a daily average 
model with R2 > 0.93 during verification periods. [6] used 
non-stationary multivariate geo-statistical techniques for the 
prediction of annual mean air temperature and precipitation 
data using kriging-based prediction. In comparison with 
linear regression-based prediction, the kriging-based 
performed better, yielding mean square error lower by 
53-75%.  

Literature study for Africa and Europe on climate 
parameters is skewed towards the analysis of rainfall ([7]; [8]; 
[9]; [10]; [11]). In Ghana, climate studies have been 
conducted and reported in literature. [12] in studying the 
effect of declining rainfall in the White and Oti Volta Basins 
on the Akosombo Dam, partially considered the mean 
monthly variation in air temperature and reported, prior to  
1% rise from 1945 to 1993, that there has been increase in 
evaporation as a result of this rise in temperature. 
Quantification of the increase was however not specified. 
[13] reported that Ghana’s average surface temperature as 
26°C but indicated that there had not been any significant 
change in trend over the period of 1963 to 1992. However, 
[14] reported a global increase by about 0.7°C and [1] 
reported pre-industrial temperatures rise by 0.8°C with ocean 
temperatures rising by 0.09°C, an evidence of global 

 



238 Afrifa-Yamoah E.:  Application of ARIMA Models in Forecasting Monthly  
Average Surface Temperature of Brong Ahafo Region of Ghana 

warming. [16] predicted a rising mean annual temperature 
change of 0.8°C in Ghana. A likely temperature rise of 4°C 
has been predicted by [1]. In a related study, [16] concluded 
on SARIMA (2,1,1)×(1,1,2)12 as the best model for 
forecasting the monthly mean surface temperature of the 
Ashanti Region of Ghana. This study focused on building a 
statistical model for forecasting the monthly average surface 
temperature in the BA region of Ghana to help in 
understanding the dynamics of events. The paper is 
organised into four sections, the first section introduces the 
subject by reviewing some relevant literature; the second 
section discusses the methods and materials used for the data 
analysis, the Box-Jenkins Algorithm, stationarity and 
nom-stationarity of time series data, model types are 
presented under section two; findings and discussions of 
results will be presented under section three; and the fourth 
section will conclude the paper by highlighting major 
findings. 

2. Method and Materials 
2.1. Box Jenkins Algorithm 

Table 1.  Box-Jenkins Modelling Algorithm 

1. Plot series. 
2. Is variance stable? 

2a. No, Apply Transformation, go to 1. 
2b. Yes, continue. 
3. Obtain ACFs and PACFs. 

4. Is mean stationary? 
4a. No, Apply Regular and Seasonal differencing. 
4b. Yes, continue. 

5. Model Selection. 
6. Estimate Parameter Values. 
7. Are Residuals Uncorrelated? 

7a. No, Modify Model, go to 5. 
7b. Yes, continue. 
8. Are Parameters Significant and Uncorrelated? 

8a. No, Modify Model, go to 5. 
8b. Yes, continue. 
9. Forecast. 

Source: [17] 

The approach is to use data in the past to provide forecasts. 
Using the ARIMA self-projecting time series forecasting 
model, we hope to find a mathematical formula that will 
approximately generate the historical patterns in a time series. 
The self-projecting time series uses only the time series data 
of the activity to be used to generate forecasts. This approach 
is typically useful for short to medium-term forecasting [17]. 
The underlying goal of the Box-Jenkins Forecasting Method 
is to find an appropriate formula so that the residuals are as 
small as possible and exhibit no pattern. The model-building 
process involves four steps, repeated as necessary, to end up 
with a specific formula that replicates the patterns in the 

series as closely as possible and also produces accurate 
forecasts. This process is outlined in Table 1. 

2.2. Stationarity and Non-Stationarity of Time Series 
Data 

The stationarity of the n-th order time series is established 
if 

𝐹𝑍𝑡1 ,𝑍𝑡2 ,…,𝑍𝑡𝑛
(𝑥1, 𝑥2, … , 𝑥𝑛) 

= 𝐹𝑍𝑡1+𝑘,𝑍𝑡2+𝑘,…,𝑍𝑡𝑛+𝑘
(𝑥1, 𝑥2, … , 𝑥𝑛)  (1.1) 

for all 𝑡1, 𝑡2, … , 𝑡𝑛,𝑘 ∈ {0, ±1, ±2, … } and all 
𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ. This implies that the joint distribution is 
invariant to time shift by k for all n= 1,2,.... (1.1) depicts a 
time series as strictly stationary. The converse is true for 
non-stationary. If (1.1) is true for 𝑛 = 𝑚, it is also true for 
𝑛 ≤ 𝑚  because the m-th order distribution function 
determines all distribution functions of lower, hence a high 
order of stationarity always implies a lower order of 
stationarity [18]. Mostly, a weaker sense of stationarity is 
defined in theory and practice. A process is said to be n-th 
order weakly stationary if all its joint moments up to order n 
exist and are time invariant.  

Stationarity plays a crucial role in time series analysis. 
One can test the stationarity or otherwise of a time series data 
using the unit root test proposed by Dickey and Fuller in 
1979, for testing the hypothesis below; 

𝐻0: Series has unit root 𝑣𝑟𝑠 𝐻1: Series has no unit root 

If the ADF test statistic is less than the critical value, we 
fail to accept H0. The test is based on the fact that for 
stationarity to exist, the roots of the characteristics 
polynomial of the time series must lie outside a unit circle. 

2.3. Model Types 

2.3.1. Autoregressive Models of order p [AR(p)] 

The p-th order autoregressive process is given by; 

�1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯− 𝜃𝑝𝐵𝑝�(𝑍𝑡 − 𝜇) = 𝑎𝑡  (2) 

with auto-covariance function, 

  𝛾𝑘 = 𝜃1𝛾𝑘−1 + ⋯+ 𝜃𝑝𝛾𝑘−𝑝,   𝑘 > 0     (3) 

and a recursive relation for the autocorrelation function, 

  𝜌𝑘 = 𝜃1𝜌𝑘−1 + ⋯+ 𝜃𝑝𝜌𝑘−𝑝,   𝑘 > 0     (4) 

The process is stationary if the roots of 1 − 𝜃1𝐵 −
𝜃2𝐵2 −⋯− 𝜃𝑝𝐵𝑝 = 0,  lie outside a unit circle. The pacf 
vanishes after lag p. 

2.3.2. Moving Average Process of Order q [MA(q)] 

The q-th order moving average process is 
(𝑍𝑡 − 𝜇) = �1 − 𝛼1𝐵 − 𝛼2𝐵2 −⋯− 𝛼𝑞𝐵𝑞�𝑎𝑡  (5) 

The MA(q) process is always stationary because 1 +
𝛼12 + ⋯+ 𝛼𝑞2 < ∞. The process is invertible if the roots of 
1 − 𝛼1𝐵 − 𝛼2𝐵2 −⋯− 𝛼𝑞𝐵𝑞 = 0, lie outside a unit circle. 

The auto-covariance function is given by 
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𝛾𝑘 = �
𝜎𝑎2(−𝛼𝑘 + 𝛼𝑘𝛼𝑘+1 + ⋯+ 𝛼𝑞−𝑘𝛼𝑞),   𝑘 = 1,2, … , 𝑞

          0                                   ,        𝑘 > 𝑞
� (6) 

Therefore, the autocorrelation function becomes 

𝜌𝑘 = �
−𝛼𝑘+𝛼𝑘𝛼𝑘+1+⋯+𝛼𝑞−𝑘𝛼𝑞

1+𝛼12+⋯+𝛼𝑞2
,         𝑘 = 1,2, … , 𝑞

      0                  ,         𝑘 > 𝑞
�   (7) 

The autocorrelation function of an MA(q) process cuts off 
after lag q.  

2.3.3. Autoregressive Moving Average (p,q) Process   

Let 
𝜃𝑝(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯− 𝜃𝑝𝐵𝑝, where 𝜃𝑝 ≠ 0 

𝛼𝑞(𝐵) = 1 − 𝛼1𝐵 − 𝛼2𝐵2 − ⋯− 𝛼𝑞𝐵𝑞 ,      where 𝛼𝑞 ≠ 0  

A zero-mean ARMA(p,q) process is then defined as 
𝜃𝑝(𝐵)𝑍𝑡 = 𝛼𝑞(𝐵)𝑎𝑡            (8) 

The process is invertible and stationary if the roots of 
𝛼𝑞(𝐵) = 0 and θp(B) = 0 respectively lie outside the unit 
circle. 

For 𝑘 > 𝑝, we get an auto-covariance function of 
  𝛾𝑘 = 𝜃1𝛾𝑘−1 + ⋯+ 𝜃𝑝𝛾𝑘−𝑝          (9) 

and an autocorrelation function of  
  𝜌𝑘 = 𝜃1𝜌𝑘−1 + ⋯+ 𝜃𝑝𝜌𝑘−𝑝         (10) 

2.3.4. Autoregressive Integrated Moving Average (p,d,q) 
Process 

A time seires 𝑍𝑡  is said to be homogeneous 
non-stationarity if (1 − 𝐵)𝑑𝑍𝑡 is stationary for some value 
of 𝑑 ≥ 1. A stationary ARMA(p,q) model for (1 − 𝐵)𝑑𝑍𝑡 
is given by 

𝜃𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝛼𝑞(𝐵)𝑎𝑡        (11) 

Equation (11) is called autoregressive integrated moving 
average model, ARIMA(p,d,q).  

2.3.5. Seasonal ARIMA (SARIMA) Models 

SARIMA models are an adaptation of autoregressive 
integrated moving average (ARIMA) models to specifically 
fit seasonal time series. That is, their construction takes into 
consideration the underlying seasonal nature of the series to 
be modelled. Many authors have written on SARIMA 
models extensively. A few amongst them are [18] who 
proposed them, [19], [20], [21] and [22]. 

SARIMA model is written as follows: 

 
where m = number of periods per season, the uppercase 
notation for the seasonal parameters of the model, and 
lowercase notation for the non-seasonal parameters of the 
model. The seasonal part of the model consists of terms that 
are very similar to the non-seasonal components of the 
model, but they involve backshifts of the seasonal period.  

A multiplicative seasonal ARIMA model is given by; 
Φ𝑃(𝐵𝑠)𝜙𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷(𝑦𝑡 − 𝜇) 

= 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝑎𝑡 ,             (12) 

where Φ𝑃(𝐵𝑠), 𝜙𝑝(𝐵), Θ𝑄(𝐵𝑠) and 𝜃𝑞(𝐵) are defined as; 

  Φ𝑃(𝐵𝑠) = 1 −Φ1𝐵𝑠 − Φ2𝐵2𝑠 − ⋯−Φ𝑃𝐵𝑃𝑠  (13) 
  ϕ𝑝(𝐵) = 1 −ϕ1𝐵 − ϕ2𝐵2 −⋯−ϕ𝑝𝐵𝑝      (14) 

where 𝜙𝑝 ≠ 0, 

θ𝑞(𝐵) = 1 − θ1𝐵 − θ2𝐵2 −⋯− θ𝑞𝐵𝑞 ,     (15) 

where 𝜃𝑝 ≠ 0, 

Θ𝑄(𝐵𝑠) = 1 − Θ1𝐵𝑠 − Θ2𝐵2𝑠 − ⋯− Θ𝑄𝐵𝑄𝑠  (16) 
where s is an integer strictly larger than one (the period), 
𝑑 ≥ 0, and 𝐷 ≥ 0. Note that 𝜇 = 0 if 𝑑 > 0 𝑜𝑟 𝐷 > 0. For 
example, an ARIMA(1,1,1) × (1,1,1)4 model (without a 
constant) is for quarterly data (m=4) and can be written as; 

 

The additional seasonal terms are simply multiplied with the non-seasonal terms. 
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3. Findings and Discussions 
In this section, outputs from data exploration and 

employing the Box-Jenkins Algorithm in building a model 
are presented and discussed. The data employed in this 
study were collected from the Department of Meteorology 
and Climatology in the BA Region, and represent the 
monthly rainfall figures from January 1975 through 
December 2009. The data was used since it is a time series 
data and the observations were collected sequentially in time 
(monthly). Data was analysed with RStudios 0.98.1062. The 
420 data points for the time period observed are presented in 
Figure 3.  

3.1. Preliminary Data Analysis 

An exploratory routine was employed to reveal some 
important features in the data set. Figure 1 presents the 
yearly mean surface temperature from 1975 to 2009. From 
Figure 1 no pattern to trend can be concluded on, however 
average surface temperature has experienced some rise and 
fall in figure over the years. The average surface temperature 
observed lies between 23°C and 32°C. The least yearly 
average surface temperature of 23.7°C within the period was 
observed in 1976, and the highest figure of 31.5°C was 
observed in 1999. There seems to be a downward trend from 
2007. 

The average monthly surface temperature for the period 
was examined. Figure 2 presents the descriptive indicators 
worthy of examining in a boxplot. 

The data considered on monthly basis has many outliers, 
with exception of the months of January, November and 

December. This requires some smoothening to be performed 
to remove the effort of the outliers. The month of February 
recorded the highest average surface temperature, followed 
closely by March, which had the highest upper quartile value 
as well as the largest outlier value. The high values could be 
associated to the severe dry weather experience during those 
times of the year. The months of July and August recorded 
the least average surface temperature values. This may be 
associated to the numerous downpour experienced during 
those times of the year. It can be observed from chart that the 
average figure start increasing from September through to 
February and then it starts dropping from March through to 
August. 

The time series plot for the monthly average surface 
temperature for the Brong Ahafo from January 1975 to 
December, 2009 is presented in Figure 3. The data look 
stationary by observation from Figure 3. However, the 
regular pattern of up and down in Figure 1 is an indication of 
seasonality. Figure 3 was further investigated by 
decomposing it into the various components. The 
decomposed plots of the various components of the time 
series plot in Figure 1 is as presented in Figure 4. 

From Figure 4, the data has seasonal effect, with a usual 
rise and fall pattern being experienced yearly over the period. 
This implies that regular average surface temperature 
recorded each year was influenced by the rise and fall pattern 
of the seasonality component. However, the trend seems to 
be very constant over time, although there are a few ups and 
downs over some periods. The random effect is very stable 
over the time period, although one could be interest in its 
erratic nature between 2007 and 2009. 

 

Figure 1.  Distribution of the yearly average surface temperature from 1975 to 2009 

 

Figure 2.  Boxplot of the monthly average surface temperature from Jan. 1975 to Dec. 2009 
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Figure 3.  Time Series plot for Monthly Average Temperature from Jan. 1975 to Dec. 2009 

  

Figure 4.  Decomposed Time Series plot for Monthly Average Temperature from Jan. 1975 to Dec. 2009 

 

Figure 5.  ACF and PACF plots for Monthly Average Temperature from Jan. 1975 to Dec. 2009 

3.2. Stationarity Test 

A formal statistical test is performed at this stage to 
ascertain the stationarity or otherwise of the data. The 
hypotheses under consideration are; 

H0: The data is stationary vrs H1: The data is explosive 
The Augmented Dickey-Fuller test reported a test value of 

-3.493 and a p-value of 0.9567. This result presents evidence 
in favour of the null hypothesis, postulating that the data is 
stationary.  
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3.3. ARIMA Model Fit to the Data 

The Box-Jenkins Algorithm is an iterative scheme which 
mainly involves model identification, model estimation, 
models’ goodness of fit and model forecasting.  

3.3.1. Model Identification 

A closely examination was conducted on the 
Autocorrelation Functions (ACF) and Partial 
Autocorrelation Functions (PACF) plots in Figure 5. The 
ACF plot depicts a sine wave with very slow tailing off 
property. The spikes at lags 1, 12 and 24 are highly 
significant supporting the earlier evidence of seasonality in 
the data. Therefore the need for seasonal differencing with 
period of 12 is required to remove the effect of seasonality. 
The time series, ACF and PACF plots for the seasonally 
differenced data are presented in Figure 6. 

From Figure 6, the ACF at lags 1 and 2 are significant 
since the spikes passes out of the confidence limits. Hence 
the order of the non-seasonal MA term is 2. The seasonal 
MA terms occurs at lags which are multiples of 12. Only lag 
12 spike is significant. Hence the order of seasonal MA term 
is 1. Similarly, a significant spike at lag 1 in the PACF 

indicates possible non-seasonal AR terms. The order of the 
non-seasonal AR part is 1 and 2 lags at multiples of 12 the 
seasonal part of the AR are significant, and that the seasonal 
AR is 2. Therefore the initial suggestion of an ARIMA (1, 0, 
2) (2, 1, 1) (12) is proposed. However, studies of neighbouring 
models to the proposed model suggest an ARIMA (1, 0, 0) (0, 
1, 2) (12) as the best alternative. Comparing the various 
selection criteria indicators, ARIMA (1,0,0) (0,1,2)(12) 
recorded the least value among all indicators considered 
(AIC = 0.07868287, AICc = 0.08430456, BIC =
−0.8801646 and σ2 = 0.3898). Table 2 presents summary 
of the results. 

In fitting the model, the dataset was divided into training 
and test set. Observations from January 1975 to December, 
2007 were used as the training set and were use to model a fit 
for the phenomenon under study. Data from January 2008 to 
December 2009 were designated as the test set and was used 
to assess the predictability accuracy of the fit. The result of 
the fit is as presented in Table 3. 

Model parameters are all significant at 5% level of 
significance, with an MSE of 0.3898, as can be found in 
Table 3.  

 

 

Figure 6.  Time Series, ACF and PACF plots for the Seasonally Differenced Monthly Average Temperature from January 1975 to December 2009 
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Table 2.  Summary of model identification 

Neighbouring models 
ARIMA (1,0,2)×(2,1,1)12 

ARIMA (0,0,2)×(2,1,1)12 

ARIMA (0,0,1)×(1,1,2)12 

ARIMA (0,0,0)×(2,1,1)12 

ARIMA (1,0,0)×(0,1,2)12 

ARIMA (0,0,0)×(1,1,1)12 

ARIMA (1,0,1)×(2,1,1)12 

ARIMA (1,0,1)×(1,1,1)12 

ARIMA (1,0,1)×(0,1,1)12 

ARIMA (1,0,2)×(1,1,1)12 

AIC 
0.2084534 

0.2181038 
0.2398249 
0.3032431 

0.0786829 
0.3589507 
0.2041651 

0.2558463 
0.4640388 
0.2605722 

AICc 
0.2146618 

0.2240878 
0.2456134 
0.3088647 

0.0843046 
0.3644339 
0.2101492 

0.2616349 
0.4696604 
0.2665563 

BIC 
-0.719596 

-0.720167 
-0.708735 
-0.655604 

-0.880165 
-0.6101849 
-0.7341061 

-0.6927130 
-0.4948087 
-0.6776990 

𝝈𝟐 
0.4369 
0.4435 

0.4556 
0.4879 
0.3898 

0.5186 
0.4373 
0.4629 

0.5730 
0.4627 

Table 3.  Parameter estimation of ARIMA (1,0,0)×(0,1,2)12 

 
AR, Non-seasonal 

MA, Seasonal 
MA, Seasonal 

 
Lag 1 
Lag 1 
Lag 2 

Seasonal difference 

Estimate 
0.3154 
-1.7609 
0.7609 

1 

SE 
0.0503 
0.0888 
0.0842 

 

t 
6.27038 
-19.83 
9.0368 

 

p-value 
< 0.00001 
<0.00001 
<0.00001 

 

 

Figure 7.  Time Series, ACF and PACF plots for the Residuals of the Seasonally Differenced Monthly Average Temperature from January 1975 to 
December 2007 
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Figure 8.  Distribution of the residuals of ARIMA (1,0,0)×(0,1,2)12 

Table 4.  A Twelve step forecast values with Standard Errors 

Date Forecast 
95% CI 

  Lower          Upper 
Actual data 

Jan 2008 
Feb 2008 
Mar 2008 

April 2008 
May 2008 
June 2008 

July 2008 
Aug 2008 
Sept 2008 

Oct 2008 
Nov 2008 
Dec 2008 

Jan 2009 
Feb 2009 
Mar 2009 

April 2009 
May 2009 
June 2009 

July 2009 
Aug 2009 
Sept 2009 

Oct 2009 
Nov 2009 
Dec 2009 

27.23522 
28.87822 
29.00916 

27.95476 
27.07620 
26.02207 

25.16781 
24.98705 
25.49537 

26.05436 
26.44714 
26.38310 

27.24306 
28.87915 
28.95629 

28.01485 
27.16434 
26.07060 

25.15187 
25.06886 
25.54771 

26.07533 
26.55237 
26.42745 

26.0701 
27.6456 
27.7687 

26.7134 
25.8347 
24.7806 

23-9263 
23.7456 
24.2539 

24.8129 
25.2056 
25.1416 

25.9736 
27.6064 
27.6832 

26.7417 
25.8912 
24.7974 

23.8787 
23.7957 
24.2745 

24.8022 
25.2792 
25.1543 

28.4004 
30.1109 
30.3496 

29.1961 
28.3177 
27.2636 

26.4093 
26.2285 
26.7369 

27.2959 
27.6886 
27.6246 

28.5125 
30.1519 
30.2294 

29.2888 
28.4375 
27.3438 

26.4250 
26.3420 
26.8209 

27.3485 
27.8255 
27.7006 

27.1 
28.4 
27.6 

25.9 
27 

26.7 

24.6 
26.1 
27.1 

27.9 
26 
25 

26.4 
27.4 
27.3 

26.6 
27.1 
26.7 

25.6 
25 

25.7 

25 
26.3 
26 

 

Residuals 

Freq 

-2 -1 0 1 2 

0 

20 

40 

60 

80 

100 

120 

Histogram of residuals of ARIMA (1,0,0)×(0,1,2)12 
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Figure 9.  The plot of the SARIMA (1,0,0)×(0,1,2)12  forecasted values and the actual figures observed 

3.4. Model Diagnostics 

From theory, it is expected that 𝑁
4

= 420
4

= 105 
autocorrelation functions of the residuals out of which less 
than 5% spikes should be noticed for the residuals to be 
accepted as a white noise. However, from Figure 7, almost 
all the spikes of the ACF and PACF plots all lie within the 
confidence bounds suggesting that the residuals are white 
noise. The normal q-q plot seems ok, because most of the 
dataset lie on the straight line. Much conviction of normality 
of the residuals of the fitted model is established by 
observing the histogram of the residuals of the fit presented 
in Figure 8. The bell-shape feature is clearly noticed in 
Figure 8, indicating that the residuals are normally 
distributed. A further analysis was conducted to ascertain the 
certainty of the residuals being white noise. A Box-Ljung 
test was reported a 𝜒2  =  8.7759 (df = 12) with a large 
p-value = 0.7219, suggesting that the residuals are white 
noise.  

3.5. Forecasting 

From Table 4, the predicted values are compared with the 
test data.  

From Table 4, the forecasted figures from SARIMA 
(1,0,0)×(0,1,2)12 tends to be very close to the actual data, 
used as test data. The actual figures lied within the 95% 
confidence interval in most cases, over 85% of them lied 
within the forecasted interval. Visualization can be made by 
observing Figure 9. The model predicts well.  

4. Conclusions 
The average surface temperature observed lies between 

23°C and 32°C for the Brong Ahafo region all year. The 
month of February records the highest average surface 
temperature in the region, with July and August sharing spot 
as the months that usually record the lowest average surface 
temperature. The mean yearly surface temperature over the 
period was quite erratic however a decreasing trend was 
from 2007 to 2009. SARIMA (1,0,0)×(0,1,2)12 has been 
identified as an appropriate model for predicting monthly 
average temperature for the Brong Ahafo Region of Ghana. 

A monthly average surface temperature of 30°C is 
experienced by the Brong Ahafo Region of Ghana and the 
technocrats can estimate the amount of solar irradiance that 
can be generated and the amount of kilowatts of energy 
feasible. It is the hope that when the findings are adopted by 
the Ghana Metrological Agency and other relevant 
organisations, it will in the long run help in accurate 
forecasting and education of the populace on surface 
temperature. 
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