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Abstract  Age- and year- specific rates are widely used in epidemiological modelling studies. As these rates are usually 
unstable due to small denominators, these require smoothing in both dimensions. We demonstrated the application of a two 
dimensional nearest neighbour method for smoothing age- and year- specific cardiac procedure and death rates. SAS macros 
were provided for smoothing two rates successively, however these can be adapted to smooth more than two rates or event 
counts, if required. We found that for the example data sets, the order of the moving average in both year and age dimensions 
was three and hence a nine point weighted moving average was justified. We demonstrated that in terms of better calibration 
and capturing important changes in data, the proposed smoother outperformed a similar smoother assigning maximum weight 
to the central cell but equal weights around it. The degree of smoothing increased with increase in the assigned central cell 
weight. In conclusion, because of its simplicity, the proposed nearest neighbour smoother provides a convenient alternative to 
the existing two dimensional smoothers and is useful in situations requiring smoothing a series of rates or counts in two 
dimensions. A robust version of the smoother is also available from the author. 
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1. Introduction 
Epidemiologic rates are often classified in two dimensions. 

For instance, mortality or cardiovascular disease rates or 
rates of certain cancers or of performing a surgery are often 
required to be estimated for both age group and calendar year. 
These rates are usually higher among the elderly population, 
and thus for younger age groups they may be unstable as they 
are likely to be based on small populations at risk. Thus, 
epidemiologic rates when estimated by age can be unstable. 
There may also be a systematic time trend in the rates and 
this may become blurred because of the ‘noise’ or random 
variation in the estimates. Thus, epidemiologic rates 
classified in two dimensions may have irregularities in both 
of them and therefore further use of these rates should 
require some smoothing in both dimensions. By smoothing 
we mean a mechanism by which ‘noise’ is reduced from 
observed data when there is random fluctuation or instability 
in them. 

In this paper, we provide an application and computer 
programs for a two dimensional method of smoothing rates 
and counts (eg., event numbers). Epidemiological modelling  
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studies often require smoothing a series of rates in both age 
and year dimensions before performing actual modelling. 
Although most existing two-dimensional smoothers are 
available in the statistical software R, to smooth a series of 
rates would require additional computer programming by the 
analyst. To facilitate smoothing a series of rates in two 
dimensions, we provide programming codes in SAS. It is 
noteworthy that our aim is to facilitate the practice of 
two-dimensional smoothing to real life applications. We 
emphasize on an important property that a smoother should 
be fairly simple to use [1]. We do not aim to compare the 
methodological performance of the proposed smoother 
against existing two dimensional smoothers. This is partly 
discussed elsewhere [2] and is the scope of another paper. 
The computer programs we provide are easy to follow and 
flexible to use. In the next section, we will discuss several 
epidemiological modelling studies in which a series of rates 
were required to be smoothed before performing actual 
modelling. We will use one of these as our case study to 
demonstrate the usefulness of the smoother. 

The two dimensional smoother is a nearest neighbour 
method based on weighted moving averages. Its estimation 
rule is straight forward and is computationally simple. It is 
nonparametric, therefore it avoids making arbitrary 
assumptions about the shape of the relationships or about 
their breakpoints. This is of particular importance for 
settings in which a series of rates or event numbers are 

 



32 Haider R. Mannan:  Application and Computer Programs for a Simple Adaptive Two  
Dimensional Smoother: A Case Study for Cardiac Procedure and Death Rates 

required to be smoothed because the shape of the 
relationships in such situations may not all be the same. 

2. Review of Some Modelling Studies 
Requiring Smoothing of Rates 

A number of Markov simulation modelling studies have 
been conducted for assessing the effectiveness of various 
CHD risk reduction strategies over time at the population 
level for different age-sex groups, separately for males and 
females [2-10]. As part of modelling, these studies required 
to smooth a series of transition probabilities by both age 
group and calendar year. Regression models were applied 
globally rather than locally (which should have been done) in 
some of these studies [3-10] to smooth all transition 
probabilities owing to practical convenience. The main 
problem with this approach is that there will be considerable 
misspecification bias in fitting certain observed (unsmoothed) 
age-group-specific and time-specific transition probabilities 
if their curvatures by age and year dimensions differ greatly. 
As a result, there would be over- or under- smoothing of 
these transition probabilities in both dimensions and hence 
some important features of the data would be lost. This 
distinction between global and local smoothers is discussed 
in the next section.  

Some Markov modelling studies have inappropriately 
ignored any instability of the observed transition 
probabilities by age dimension while smoothing even though 
both age and year dimensions were considered in the 
calculation of these probabilities. As a result, they only 
performed one-dimensional smoothing by smoothing the 
age-specific transition probabilities in the year dimension. 
These include the studies discussed above [3-10], a study 
from insurance in relation to chronic diseases [11] and a 
study examining the impact of an intervention on coronary 
heart disease [12]. 

3. Methods of Smoothing 
Methodologically, there are two general approaches to 

smoothing. One approach is the nonparametric local 
smoothing which avoids a formal global model and simply 
performs smoothing based on the local behaviour of the data. 
By local behavior we mean the behavior of data points 
required to smooth each data point. Since the data points 
required to smooth each data point varies, the local behavior 
of data also varies by the data point to be smoothed. These 
methods are particularly suitable when there is a series of 
data to be smoothed. The proposed smoother is suitable for 
smoothing a series of rates and event numbers. 

The other approach to smoothing is to assume a 
parametric model that is expected to adequately represent the 
relationships between the variables of interest. Such model 
based approaches require making arbitrary assumptions 
about the shape of the relationships or about their 

breakpoints. The shape of the relationships may not all be the 
same. This may create practical problems when there are 
multiple data sets to be smoothed. 

When there are several smoothing methods to be 
compared, the most commonly used approach is the visual 
comparison of these methods to assess their accuracy in 
smoothing the data and then choose among them [13]. In this 
approach, one must plot the observed values and the 
smoothed values obtained by different methods and examine 
how the smoothed values capture the trends found in the 
observed values including any peaks in values and sudden 
changes. 

4. Nearest Neighbour Weighted Moving 
Average Smoothing Methods 

Nearest neighbour smoothing is a group of smoothers 
which performs smoothing based on the cells which are 
identified by the analyst to be nearest to the cell which is to 
be smoothed. The two dimensional nearest neighbour 
smoother based on weighted moving averages is a type of 
nonparametric smoother. In the two dimensional nearest 
neighbour approach, for each cell, a weighted moving 
average is calculated based on that cell and its nearest 
neighbouring cells. Weights are assigned to each cell 
because of the relative importance of the cells with regard to 
proximity to the central cell. Suppose for each value of the 
variable X, say x0, and some fixed value k, the k nearest cells 
to x0 are identified and assigned a weight according to their 
distance from x0. The smoothed value is equal to the 
weighted mean of these k neighbours. The smoothness of the 
resulting curve depends on the value chosen for k and the 
distribution of weights across the cells. A small value of k 
will give a rough curve which follows the data points closely, 
while a large value of k will give a smoother curve. 

Since nearest neighbour smoothing outputs a ‘weighted 
average’ of each cell’s neighbourhood, with the average 
weighted more towards the value of the central cell, it 
provides gentler smoothing and preserves the corner points 
better than a similarly sized equally weighted moving 
average. By equally weighted moving average we mean a 
weighted moving average based on equal weights assigned 
to each cell. This is equivalent to simple or unweighted 
moving average. 

The nearest neighbour smoothers are not greatly 
influenced (although there is some degree of influence) by 
any data points which are very far away from the norm or the 
outliers, since by definition they are locally weighted 
smoothing techniques using a set of nearest neighbours of 
each point. A set of weights for which the nearest neighbour 
smoothing method fits the data best in terms of minimizing 
the deviance can be considered to be the optimal set of 
weights for nearest neighbour smoothing. 

The theory behind a weighted moving average is that the 
closer data are more relevant than data further away. When 
selecting weights for a two-dimensional moving average a 
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logical approach therefore is to give the central cell 
maximum weight followed by nearest neighbouring cells. 
However, consideration should be given to whether the same 
or different weights are to be used around the central cell 
given that maximum weight has been assigned to the central 
cell apriori. The simplest approach to choosing weights 
around the central cell is to give equal weights to these cells. 
But this may not work well in most situations. The decision 
to give equal or unequal weights around the central cell 
should depend on the degree of variability in the data by the 
two dimensions. For example, while smoothing across age 
groups and calendar years, if there is more variability by age 
groups than by calendar years, then more weights should be 
assigned to cells which belong to the same calendar year but 
different age groups rather than to cells which belong to the 
same age group but different calendar years. 

One approach to finding such unequal weights around the 
central cell for nearest neighbour smoothing is to perform a 
grid search of these weights in two stages. First, the central 
weight is fixed and the remaining eight weights are 
generated each taking values starting from 0.05 in a step of 
0.05 so that all the nine weights add up to one. Then, the set 
of weights which fits the data best in terms of reduced   
-2log (likelihood function) or in abbreviated form -2logLF, 
are searched. This set of weights are further refined by 
incrementing each weight by 0.01 within 0.05. Among all 
such sets of weights the one for which -2logLF is minimum 
is the optimal or best set of weights. 

The mathematical theory for constructing -2logLF is 
described as follows. Let Pij denote a particular observed 
transition probability corresponding to ith age group and jth 
calendar year. If pij denotes the nearest neighbour estimate 
of Pij, rij denotes the count of events on which this 
probability is based and nij the population at risk or the 
denominator of this probability, then the likelihood function 
assuming that the count of an event (rij) follows a binomial 
distribution with parameters nij and pij is 

LF ∞π pij
rij (1- pij)nij – rij                 (i) 

                 cells 

Taking logarithm on both sides we get, 

logLF = constant + ∑ rij logpij + ∑ (nij-rij) log(1-pij) 
                      cells        cells 

where,  

pij = w1Pij+w2Pi(j-1)+w3Pi(j+1)+w4P(i-1)j+w5P(i+1)j 
+w6P(i-1)(j-1)+w7P(i-1)(j+1)+w8P(i+1)(j+1)+w9P(i+1)(j-1) 

When a binary (event or non-event) experiment is 
repeated a fixed number of times, say n times, then the count 
of an event and also the probability of an event both follow 
binomial distribution. Hence, the use of binomial 
distribution for constructing the likelihood function above is 
justifiable. The weighted moving averages defined above are 
based on the assumption that there is only one lag and one 
lead in both dimensions (when smoothing the rates) resulting 

in nine cells in the smoothing bandwidth. If higher lags and 
leads are to be considered in both dimensions, the bandwidth 
would increase, for example, 25 cells would be required to 
smooth the rates if two lags and two leads are considered in 
both dimensions. 

In our case, the term -2logLF based on the set of weights 
around the central cell which minimizes it is the deviance. 
Based on large sample theory, it should have an asymptotic 
chi-squared distribution with error degrees of freedom [14]. 
The use of chi-squared distribution in this context is to assess 
the goodness of fit. In our examples for smoothing rates to be 
shown in the next section, we fix the central cell weight to 
0.35. The value of 0.35 is arbitrary. The only criteria is that it 
should be the maximum of all the weights. Fixing the central 
cell weight to 0.35 gives a maximum of 0.3 for any of the 
other weights. Thus, the criteria of assigning maximum 
weight to the central cell is satisfied. Values higher than 0.35 
(but less than 1) could also have been used to fix the central 
cell weight. However, it should not be too large because of 
concerns for over-smoothing. A weight of around 0.35 to the 
central cell is expected to provide gentler smoothing. 

5. A Case Study for Smoothing Rates of 
Cardiac Procedures and Deaths 

There are many studies requiring smoothing a series of 
rates. This is particularly common for modelling studies of 
health services and chronic diseases involving Markov 
simulation [2-10]. In this paper, we provide an example of 
the study by Mannan [2] which predicted from 1990 to 2000 
the requirements of coronary artery bypass graft (CABG) 
and percutaneous coronary intervention (PCI), known 
together as coronary artery revascularization procedures 
(CARPs), CHD incidence and deaths in the Western 
Australian population. In short, the components of the 
Markov simulation model were initial probabilities of 
experiencing in a particular year a CARP, CHD admission 
without a CARP and no CHD admission, all based on 
hospital admission history, and annual estimates of transition 
probabilities of moving between these states. The study 
defined history as any admission to hospital since 1980 for 
CHD, CABG or PCI. If people experienced more than one 
coronary artery revascularization procedure (CARP) during 
this period, we used the most recent of these to define their 
history. Markov simulation models were developed for every 
age and sex group separately for males and females. A 
detailed description of this model is provided elsewhere [2, 
15]. The component transition probabilities were classified 
by age group and calendar year, separately for males and 
females, therefore there were irregularities in these values in 
both dimensions. For instance, for younger age groups many 
of the transition probability estimates were unstable because 
they were based on small number of observations. Also, 
there was a systematic trend by calendar year in some of the 
transition probabilities which became blurred because of the 
‘noise’ or random variation in the estimates. Hence a 
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two-dimensional smoother was used to reduce ‘noise’ before 
performing Markov simulation modelling. The smoothing 
was done separately for males and females.  

This study used a subset of the Western Australian Health 
Data Linkage System that had electronic records of all 
hospital admissions and deaths from any form of 
cardiovascular disease occurring in the period from 1979 to 
2001 inclusive. For obtaining the population estimates of 
Western Australia from 1989 to 2001 the study used 
Australian Bureau of Statistics (ABS) population data. 

6. Smoothing of Transition Probabilities 
The smoothing examples we provide here are for CABG 

and coronary death rates classified by calendar years 1990 
through 2000 and age groups 35-39 through 75-79. For 
smoothing the two rates belonging to the 11 calendar years 
(1990 through 2000) and 9 age groups (35-39 through 75-79), 
there were 11X9X2 or 198 cells to be smoothed. 

For smoothing the transition probabilities, the optimal set 
of weights are likely to vary by sex and transition probability. 
For example, if there are 100 transition probabilities to be 
smoothed belonging to both the sexes, there will be 100X2 or 
200 sets of optimal weights. 

For each cell corresponding to a particular age group and 
calendar year, the 9 cells used for smoothing are based on the 
central cell and its eight nearest neighbouring cells. By 
central cell we mean the cell to be smoothed. For smoothing 
every cell, we used the current cell and immediately 
preceeding and subsequent cells by both the dimensions-age 
group and calendar year. This results in five cells. While 
smoothing each cell the rationale for selecting the 
immediately preceeding and subsequent cells is that the 
order of the moving average is three. In addition, we used 
four more cells which are the corner cells. Table 1 clearly 

shows the cells which are used for smoothing, for example, 
for the cell belonging to age group 35-39 and calendar year 
1990: 

Table 1.  The Cells Used for Smoothing a Rate Belonging to Age Group 
35-39 and Year 1990 

Age group 
Calendar Year 

1989 1990 1991 

30-34 corner cell preceding age corner cell 

35-39 preceding year central cell subsequent year 

40-44 corner cell subsequent age corner cell 

Since unweighted or equally weighted moving averages 
tend to lag the unequally weighted moving averages during 
large changes in data, we expect that there may also be a 
similar lag when equal weights are assigned around the 
central cell with maximum weight assigned to it in 
comparison to a smooth that also uses maximum weight to 
the central cell but unequal weights to all cells around it. By 
lag we mean delay in effect while by lead we mean early 
occurrence of the effect. For example, if the peak for a rate 
actually occurred in year 1995 but the ‘noisy’ observed data 
showed the peak occurring in 1994 then there is a lag of one 
year in capturing the peak. On the contrary, if the peak 
occurred in 1996 due to ‘noise’ in the data, then there is a 
lead of one year in capturing the peak.  

To investigate this we use a probability estimate from our 
study. Figure 1 representing unsmoothed Pr(a CABG|history 
of CHD) for males by age group shows that for calendar year 
1993, these probabilities reach the peak in age group 55-59. 
This is captured well by nearest neighbour smoothing using 
unequal weights around the central cell (Figure 2a) while the 
equal weighting scheme around the central cell shows that 
this peak occurred in age group 60-64, that is, there is a lag of 
one age group (Figure 2b). 

 

Figure 1.  Observed estimates of the probability of a CABG given history of CHD, by age group for males 
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Figure 2a.  Estimates of probability of a CABG given history of CHD, by age group for males, smoothed by nearest neighbour method using unequal 
weights around the central cell with its weight fixed at 0.35 

 

Figure 2b.  Estimates of probability of a CABG given history of CHD, by age group for males, smoothed by nearest neighbour method using equal weights 
around the central cell with its weight fixed at 0.35 

Using equally weighted moving average to smooth them 
also sometimes tends to capture earlier the large changes in 
the values for Pr(a CABG|history of CHD) as compared to 
the unequally weighted moving average during. For example, 
Figure 3 shows the observed or unsmoothed estimates of 
Pr(a CABG|history of CHD) for males by calendar year. 
Figure 4b shows that using equally weighted moving average 
around the central cell with its weight fixed at 0.35 captures 
the large changes in the estimates for Pr(a CABG|history of 
CHD) earlier compared to the unequally weighted moving 
average around the central cell with its weight fixed at 0.35, 
as shown in Figure 4a. The observed probabilities (Figure 3) 
suddenly increase in 1993 and reach a peak for age group 
50-54.  

This rapid increase in 1993 is captured well when a nearest 
neighbour approach with unequal weights has been used to 

smooth the data while this peak occurs one year earlier in 
1992 (Figure 4b) when equal weights are used. Similarly, for 
age group 60-64 there is a rapid increase in 1994 according 
to the unsmoothed probabilities shown in Figure 3. This peak 
is captured well by smoothing using unequal weights around 
the central cell (Figure 4a) while the weighting scheme 
which assigns equal weights to all cells around the central 
cell shows that this peak occurred earlier in 1992 (Figure 4b). 

Both the weighting schemes for nearest neighbour 
smoothing reasonably smooth the observed conditional 
probabilities as can be seen from the figures. However, the 
nearest neighbour smooth that allows unequal weights to 
cells around the central cell captures rapid changes in rates 
by both calendar year and age group much better than a 
nearest neighbour smooth that uses equal weights for all cells 
around the central cell. 
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Figure 3.  Observed estimates of probability of a CABG given history of CHD by calendar year, males 

 

Figure 4a.  Estimates of probability of a CABG given history of CHD by calendar year for males, smoothed by nearest neighbour method using unequal 
weights around the central cell with its weight fixed at 0.35 

 

Figure 4b.  Estimates of probability of a CABG given history of CHD by calendar year for males, smoothed by nearest neighbour methodusing equal 
weights around the central cell with its weight fixed at 0.35 
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Table 2.  Deviance for the Nearest Neighbour Smoother with Unequal and Equal Distribution of Weights Around the Central Cell Based on Some Selected 
Transition Probabilities 

Transition prob Sex 

-2logLF for the unequal distribution    
of weights around the central cell   

Central cell weight 

-2logLF for the equal distribution      
of weights around the central cell   

Central cell weight 

.30 .35 .40 .30 .35 .40 

Pr(a CABG| CHD history) Male 32743.19 32735.84 32730.71 32747.22 32740.25 32732.77 

Pr(a CABG| CHD history) Female 12326.24 12334.48 12325.11 12349.29 12338.60 12328.11 

Pr(a PCI| CHD history) Male 19226.96 19219.58 19212.73 19229.13 19221.48 19214.38 

Pr(a PCI| CHD history) Female 7695.63 7690.48 7685.57 7703.33 7695.33 768 9.78 

Pr(CHD death| CHD & no CHD history) Male 12250.63 12241.56 12233.04 12253.91 12244.58 12235.89 

Pr(CHD death| CHD & no CHD history) Female 8250.04 8242.05 8236.29 8255.65 8247.31 8239.54 

Pr(CHD death| no CHD & no CHD history) Male 58678.23 58674.41 58670.54 58713.27 58699.51 58686.62 

Pr(CHD death| no CHD & no CHD history) Female 32529.21 32524.55 32519.33 32584.24 32569.64 32555.89 

Note: The value of -2logLF does not include the constant term. When the calibration of two methods are compared using -2logLF it makes no difference 
whether the constant term is included in the calculation of -2logLF because this constant term actually cancels out. 

 

7. Sensitivity Analysis 
A sensitivity analysis was performed using some selected 

transition probabilities to evaluate the calibration of nearest 
neighbour smoothing using unequal weights around the 
central cell against the same smoother which used equal 
weights around the central cell. The results are summarised 
in Table 2. The results demonstrated that calibration was 
better in terms of reduced deviance when our smoother was 
used. As expected, the results of this sensitivity analysis 
suggest that the fit of the transition probabilities improve in 
terms of reduced deviance with increase in the weight given 
to the central cell. 

8. Computer Codes for the Proposed 
Smoother 

Appendices 1 through 7 provide SAS programming codes 
including Macros for smoothing the two rates, namely, Pr(a 
CABG|CHD history), for males and Pr(CHD death|CHD 
history), for females. It is included in a web site. The 
example is provided for the central cell weight fixed at 0.35. 
With this condition the maximum weight for any other cell 
can be 0.30 so that all weights add up to 1. For other central 
cell weights the SAS codes can be modified accordingly. 
However, the codes are flexible to smooth more than two 
rates by stacking these rates in a sequence and by increasing 
the number of matrices to more than two as required. In our 
codes x[11, 13, 2] is used to input the observed data and p[9, 
11, 2] is used to output the weighted moving averages. The 
last dimension of these arrays, that is 2, indicates the number 
of rates to be smoothed. For smoothing more than two rates, 
this number should be altered accordingly. The other 
changes needed to apply the given codes to nearest 
neighbour smoothing of 3 or more sets of probability 
estimates or rates are as follows. 

The number of elements defined under the array (for the 

smoothed estimates) p[ ] should also be increased to 297, 396 
and so on at the increment of 99 each time a new set of 
observed probabilities with 99 values required to be 
smoothed are appended to the dataset. Similarly, the 
dimensions for the arrays r[ ] and n[ ] should be increased to 
297, 396 and so on at the increment of 99. 

9. Available Programs for Other Two 
Dimensional Methods for Smoothing 
Rates 

To our knowledge, there are several computer packages 
and built-in functions in R implementing two dimensional 
smoothers which could be used for smoothing a series of 
rates in two dimensions. The R package ‘Smoothie’ uses Fast 
Fourier transform which is useful for smoothing a series of 
rates classified in two dimensions. Multivariate adaptive 
regression spline (MARS) is available in R through several 
packages (eg., earth, mda, polspline) and the more recently 
developed Fast adaptive penalized spline [16] which is 
computationally faster than MARS is available in the R 
package ‘AdaptFit’. Both these smoothers are fairly complex 
mathematically but are accurate and flexible in capturing 
varying shaped curvatures and are therefore suitable for 
smoothing a series of rates classified in two dimensions. The 
well-known Loess smoother, although originally developed 
for one dimensional smoothing, can perform two 
dimensional smoothing and has been built into R and all 
major statistical packages. However, for smoothing a series 
of rates in two dimensions using either Loess or MARS or 
Fast adaptive penalized spline or Fast Fourier transform, 
would require some additional programming using R or any 
other statistical package in which the smoother has been 
implemented. 

There are a number of smoothers which are suitable for 
smoothing a series of rates in two dimensions but their use is 
restricted because of their unavailability in statistical 
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softwares. These include, among others, head banging [17] 
and the more recently developed ASMOOTH [18] which 
uses adaptive kernel smoother based on Poisson error. The 
latter is more suitable for smoothing of small counts and 
rates/risks. 

The R package ‘MortSmooth’ uses P-spline for two 
dimensional smoothing. This method has fixed knots and is 
non-adaptive to the varying curvature of the data and is 
cumbersome to smooth a series of rates in two dimensions. 
Although Kriging [19] has been implemented in R and can 
perform two dimensional smoothing and has an adaptive 
version, its use is restricted to smoothing geospatial data. 

10. Findings 
Using some selected transition probabilities we showed 

that our smoother eliminates any lag in changes in data, 
captures the large changes and time trends well and also 
reduces overall noise. We also performed a sensitivity 
analysis using several selected transition probabilities to 
evaluate the calibration of our smoother against a similar 
smoother which used equal weights around the central cell. 
The results demonstrated that calibration was better in terms 
of reduced deviance when our smoother was used. The 
calibration of the data improved in terms of reduced 
deviance with increase in the weight given to the central cell 
demonstrating that the central cell weight operates as an 
indicator of the degree of smoothing, with the degree of 
smoothing increasing with the assigned central cell weight. 
Thus, it is easy to control the degree of smoothing for our 
smoother.  

For our two example datasets, we noted that when the 
PACF plot was performed for the year-specific rates against 
their lags, it showed a significant spike only at lag 1 
indicating that all the higher-order autocorrelations were 
effectively explained by the lag-1 autocorrelation (results not 
shown). The partial autocorrelation function (PACF) plot [20] 
plots the partial correlation coefficients between the time 
series and their lags, and is typically the best approach to 
determine the order of moving averages. Thus, we used a 
width of 3 cells in both dimensions with one lag and one lead 
around the central cell in each dimension resulting in nine 
point weighted moving averages which included the central 
cell and all cells surrounding the central cell belonging to the 
immediately preceding and subsequent age group or calendar 
year, respectively.  

We noted that a number of epidemiological modelling 
studies [3-12] inappropriately used global smoothers to 
smooth rates or risks which were classified in two 
dimensions. Also, they ignored any instability of rates/risks 
by age and simply considered instability by year even though 
these rates/risks were classified by both age and year 
dimensions. Our smoother is an appropriate and convenient 
approach in such contexts as we have provided SAS codes in 
this paper (see Appendices 1-7). 

11. Discussion 
In this paper we have demonstrated the usefulness of a 

two-dimensional nearest neighbour smoother based on 
weighted moving averages by providing its associated 
computer programs in the form of SAS macros. The 
smoother generally requires no iteration for estimation and 
involves no computational difficulties. It is a type of box 
kernel smoother which is a weighted moving average with a 
fixed width but a variable bin. The difference between our 
smoother and a typical box kernel smoother lies in the 
method for estimating the weights. To estimate weights the 
proposed smoother minimizes the local deviance based on 
the local likelihood while for estimating weights the box 
kernel uses the bandwidth and the distance between each cell 
within the bandwidth and the central cell to be smoothed. 
The SAS programming examples being provided were for 
smoothing successively two rates-one for a CABG procedure 
and another for CHD death, both conditional on having a 
history of CHD. However, the computer programs can be 
adapted to smooth successively more than two rates or event 
counts as needed.  

It may be noted that there is a trade-off between variance 
and bias when more points are used for smoothing because 
this reduces variance in the data but increases bias. So, there 
is always a risk of over-smoothing if too many points are 
used for smoothing. Hence, using simulated data we showed 
in another study [21] that our smoother avoids 
over-smoothing and outperforms in terms of reduced 
deviance a similar nearest neighbour smoother which uses 
equal weights around the central cell. In practical 
applications it is preferable to use a smoother that is simple 
and appropriately reduces lag and yet smoothes enough to 
reduce noise. Our smoother achieves these objectives. 

In our examples, the central cell weight was fixed at 0.35. 
In most situations, a central cell weight of around 0.35 can 
perform gentler smoothing. However, if there is still some 
under- or over-smoothing in our smoothed transition 
probabilities, it cannot be quantified from our analysis 
because we used real datasets and hence do not know the 
distribution of noise in the observed transition probabilities. 
As has been discussed above, using simulated data we have 
examined this in another study [21]. 

The weights for our smoother were selected as such they 
minimized the error or deviance. This deviance was 
estimated by a local binomial likelihood which can be 
approximated well by a local Poisson or Negative Binomial 
likelihood if there are many zero values for a rate or event 
count in both dimensions. SAS codes for the latter are 
available in request from the author. 

For finding the optimal weights, we used a two-step 
procedure. First, after fixing the central cell weight to 0.35, 
the remaining eight set of weights were selected at multiples 
of 0.05 with a maximum of 0.30 for any of these cells so that 
all weights added up to one. The set of weights which 
minimized -2logLF were selected. In the second step, these 
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weights were incremented by 0.01 so that the final set of 
weights became more accurate. For even greater accuracy, 
the weights selected in the second step can be further refined 
by incrementing them by 0.001 and continuing this process 
until there is minimal improvement in -2LogLF. This would 
then become an iterative process for selecting the optimal 
weights for smoothing. As an alternative approach to finding 
the optimal weights, we can perform non-linear 
programming using SAS PROC NLP or maximum 
likelihood estimation using SAS PROC NLIN. SAS codes 
using these approaches are available from the author upon 
request. However, we did not observe any noticeable 
difference in the results for these approaches compared with 
our approach. 

For practical purposes using a longer width for smoothing 
would require more data. When there are many levels in both 
dimensions similar to the examples provided in this paper, 
such high amount of data may not always be available for all 
the variables to be smoothed. Thus, using a longer width for 
smoothing may not always be practical from the requirement 
of data availability. The well-known Loess smoother can 
also perform two-dimensional smoothing but requires fairly 
large, densely sampled data sets in order to produce good 
models. This is because it needs good empirical information 
on the local structure of the process in order to perform the 
local fitting. Since our smoother is based on a weighted 
moving average rather than local fitting in a small 
neighbourhood for each subset of a dataset to be smoothed, it 
would generally require less data than Loess for smoothing. 
The data requirement for a conventional adaptive box kernel 
is similar to our smoother. There is a package in R for this 
smoother. However, for smoothing a series of rates one has 
to write computer programs in R with the use of this package. 

One limitation of our approach is that a local weighted 
moving average may not always approximate the underlying 
relationship well enough. For smoothing irregularities like 
sudden shocks and large bumps, it will not perform well. In 
such situations, weighted moving medians are expected to 
perform better. Our smoother is also not completely resistant 
to outliers. In case of our examples, we did not observe 
outliers. In situations having outliers when the observed rate 

is classified in two dimensions, the weighted moving median 
or robust Loess [22] is more accurate to smooth rates. While 
the weighted moving median is quite robust to outliers too 
many outliers even can overcome the robust Loess. The SAS 
codes for weighted moving median are available from the 
author. 

Finally, in our SAS programming example, we used a 
fixed dimension for the data matrix based on observed 
transition probabilities. The example we used was for 11 by 
13 dimension for the two transition probabilities we 
smoothed. However, this dimension does not necessarily 
have to be the same for all the data (rates or counts) to be 
smoothed. The SAS codes can be modified to incorporate 
these changes. 

12. Conclusions 
In this paper we have demonstrated an application of a 

nearest neighbour smoother from chronic disease and health 
services research, for smoothing rates in two dimensions. 
This method provides a simple alternative to a number of two 
dimensional smoothers available in the literature which can 
be used for smoothing rates. We have provided SAS 
programs including macros for smoothing two rates 
successively which can be adapted to smooth more than two 
rates or event numbers if required. The smoother is localized 
and nonparametric and is flexible for smoothing varying 
degrees of curvatures. It can capture important changes in 
data quite well and outperforms a similar nearest neighbour 
smoother based on equally weighted moving averages 
around the central cell. A limited comparison of our 
smoother with some existing smoothers was performed in 
another study [2]. A detailed comparison of our smoother 
with some existing adaptive two dimensional smoothers 
would be the scope of another study. 

Supplemental Materials 
The supplemental materials can be downloaded from the 

journal website along with the article. 
 

Appendix 1: SAS Codes for Finding All Possible Combinations of Weights around the Central Cell with Its Weight 
Fixed at .35 

data a (keep=w1 w2 w3 w4 w5 w6 w7 w8 w9); 
 do i1=1 to 6; 
  do i2=1 to 6; 
   do i3=1 to 6; 
    do i4=1 to 6; 
     do i5=7 to 7; /*fixing the central weight to 0.35*/  
      do i6=1 to 6; 
       do i7=1 to 6; 
        do i8=1 to 6; 
         do i9=1 to 6; 
if i1+i2+i3+i4+i5+i6+i7+i8+i9=20 then do; 
  w1=i1*.05; 
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  w2=i2*.05; 
  w3=i3*.05; 
  w4=i4*.05; 
  w5=i5*.05; 
  w6=i6*.05; 
  w7=i7*.05; 
  w8=i8*.05; 
  w9=i9*.05; 
  output; 
  end; 
        end; 
       end; 
      end; 
     end; 
    end; 
   end; 
  end; 
 end; 
end; 
run; 
/* Adjustment for corner cell weights so that they cannot exceed the other weights */ 
data b; 
set a; 
if w1<=w2; 
if w1<=w4; 
if w1<=w6; 
if w1<=w8; 
if w3<=w2; 
if w3<=w4; 
if w3<=w6; 
if w3<=w8; 
if w7<=w2; 
if w7<=w4; 
if w7<=w6; 
if w7<=w8; 
if w9<=w2; 
if w9<=w4; 
if w9<=w6; 
if w9<=w8; 
run; 

Appendix 2: SAS Codes for Finding -2logLF for the Two Rates Using Different Weight Sets Defined in Appendix 1  

data c; 
set b; 
array logp{198} logp1-logp198; 
array z{198} p1-p198; 
do i=1 to 198; 
if z{i}>0 then do; 
logp{i}=log(z{i}); 
end; 
if z{i}=0 then do; 
logp{i}=0; 
end; 
  end; 
/* Defining an array for observed counts of the two events*/ 
Array r[198] 
(2  3 3 1 5 3 0 1 1 1 0 
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12  10 13 15 5 10 5 4 6 5 7 
20  22 27 19 13 19 13 10 7 12 10 
24  28 29 51 27 28 24 20 27 18 16 
44  47 54 65 58 38 48 35 31 39 25 
54  73 62 63 59 65 59 50 43 49 43 
60  74 86 78 78 71 65 67 45 47 41 
46  54 61 74 59 66 51 54 44 41 51 
13  16 31 42 30 23 26 27 29 31 33 
1  1 0 2 2 0 0 0 0 0 0 
2  2 0 0 2 0 0 3 1 0 0 
2  3 2 5 2 0 0 4 0 0 0 
6  3 3 4 2 1 1 4 0 1 1 
9  9 7 7 3 5 5 6 3 5 3 
21  20 17 23 11 11 11 6 8 11 7 
33  19 20 25 14 19 19 19 10 19 10 
38  37 32 28 29 17 17 31 20 17 24 
51  64 35 35 36 38 38 34 27 38 29); 
/* Defining an array for the populations at risk*/ 
array n[198] 

(481  470  465  440  439  461  456  451  493  508  489 
838  830  802  842  820  818  786  773  756  745  806 
1127  1175  1290  1278  1298  1290  1319  1313  1296  1302  1268 
1482  1501  1520   1625  1639  1689  1711  1846  1902  1955  1974 
1949  1938  1995  2025  2081  2048  2061  2084  2127  2238  2297 
2579  2470  2498  2521  2467  2522  2574  2587  2608  2648  2673 
2928  2947  2922  2902  2886  2930  2903  2939  2978  2935  2956 
2495  2565  2686  2841  2979  3097  3132  3090  3054  3149  3195 
2419  2480  2485  2508  2390  2345  2407  2536  2674  2805  2927 
31   30  32  31  25  37  37  25      31  37    33 
51   63  54  49  60  60    60  62  56  60  49 
61   86  73      101     86  89  89  83  79  89  82  
100     108      117      108     108    113     113     101  120  113  113  
137      148      164    161     156  166  166  146  139  166  134  
198  239  197  201  198  219  219  198  184       219  197 
234  217  239  252  239  265  265      238  260  265  239 
257  262  285  252  256      293  293  314  314  293  321 
258  280  249   266  241  311  311  259  293  311  298) ; 
array p{198} p1-p198; 
array logl{198} logl1-logl198; 
array w{9} w1-w9; 
do i=1 to 198; 
if p{i}=0 then do; 
logl{i}=0; /* indicates zero contribution to the likelihood when the rates are zero*/  
  end; 
if p{i}>0 then do; 
 logl{i}=-2*(r{i}*logp{i}+(n{i}-r{i})*log(1-p{i})); 
    end; 
   end; 
run; 

Appendix 3: A SAS Macro for Finding the Deviance and the Initial Optimal Weight Sets for Smoothing the Two 
Rates 

%macro fit(num); 
%do i=1 %to &num %by 99; 
data final&i; 
set c; 
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Array logl{99} logl&i-logl%eval(&i+98); 
loglf&i=sum(of logl{*}); 
run; 
proc sort data=final&i  out=sorted&i; 
by loglf&i; *sorting by loglf will help to find the weights for which -2logLF is minimum*  
run; 
libname prob1 '.'; 
data prob1.result&i; 
set sorted&i; 
if _n_=1; 
run; 
proc print; 
var w1-w9 loglf&i; 
run; 
 %end; 
%mend fit; 
%fit (num=100) 
Note: The initial optimal weights for 1st dataset are found as .1,.1,.05,.1,.35,.1,.05,.1 and .05 & for the 2nd dataset 

as .05,.05,.05,.3,.35,.05,.05,.05 and .05. 

Appendix 4: SAS Codes for Refining  the Initial Optimal Weights by an Increment of .01 Given the Initial Optimal 
Weights for Smoothing the First Rate are .10,.05,.05,. 15, .35,.10,.05,.05,.10 & for the Second Rate 
are .05,.05,.05,.3,.35,.05,.05,.05 and .05 

/* defining weights for smoothing the 1st & 2nd rates*/ 
data file1 file2; 
  do i1=6 to 14; 
  do i2=6 to 14; 
   do i3=1 to 9; 
    do i4=6 to 14; 
     do i5=35 to 35;  
      do i6=6 to 14; 
       do i7=1 to 9; 
        do i8=6 to 14; 
         do i9=1 to 9; 
if i1+i2+i3+i4+i5+i6+i7+i8+i9=100 then do; 
  w1=i1*.01; /* ranging from .01 to .09 */ 
  w2=i2*.01; 
  w3=i3*.01; 
  w4=i4*.01; 
  w5=i5*.01; /* fixed at .35 */ 
  w6=i6*.01; 
  w7=i7*.01; 
  w8=i8*.01; 
  w9=i9*.01; 
  output file1; 
  end; 
        end; 
       end; 
      end; 
     end; 
    end; 
   end; 
  end; 
 end; 
end; 
do i1=1 to 9; 
  do i2=1 to 9; 
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   do i3=1 to 9; 
    do i4=26 to 34; 
     do i5=35 to 35; 
      do i6=1 to 9; 
       do i7=1 to 9; 
        do i8=1 to 9; 
         do i9=1 to 9; 
if i1+i2+i3+i4+i5+i6+i7+i8+i9=100 then do; 
  w1=i1*.01; /* ranging from .01 to .09 */ 
  w2=i2*.01; 
  w3=i3*.01; 
  w4=i4*.01; 
  w5=i5*.01; /* fixed at .35 */ 
  w6=i6*.01; 
  w7=i7*.01; 
  w8=i8*.01; 
  w9=i9*.01; 
  output file2; 
  end; 
        end; 
       end; 
      end; 
     end; 
    end; 
   end; 
  end; 
 end; 
end; 
run; 
/* Adjustment for corner cell weights so that they cannot exceed the other weights */ 
data d; 
set file1-file2; 
if w1<=w2; 
if w1<=w4; 
if w1<=w6; 
if w1<=w8; 
if w3<=w2; 
if w3<=w4; 
if w3<=w6; 
if w3<=w8; 
if w7<=w2; 
if w7<=w4; 
if w7<=w6; 
if w7<=w8; 
if w9<=w2; 
if w9<=w4; 
if w9<=w6; 
if w9<=w8; 
run; 

Appendix 5:  SAS Codes for Finding -2logLF for the Two Rates Using Different Weight Sets Defined in Appendix 3 

These codes are not shown here as they are the same for Appendix 2 except that the SAS file to be read is d and the output 
SAS dataset saved is e.  

Appendix 6:  A SAS Macro for Finding the Deviance and the Final Optimal Weight Sets for Smoothing the Two 
Rates 

These codes are not shown here as they are identical to Appendix 3 except that the SAS file to be read is e.  
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Note: After running this macro the optimal weights for the first rate are found as .09,.09,.01,.14,.35,.13,.01,.09,.09 & for 
the second rate as 05,.05,.01,.34,.35,.09,.05,.05 and .01. 

Appendix 7: SAS Codes for Estimating the Smoothed Values of the Rates 

data final; 
/* We define an array for entering the data for two conditional probabilities, the examples given here are for 

Pr(CABG|CHD history, males) and Pr(CHD death|CHD history, females), both for years 1989 through 2001, and age groups 
30-34 through 80-84*/ 

array x[2,11,13]    
(0.007434944 0.003846154 0        0.007407407 0        0.003636364 0        0        0 
0     0       0            0.003571429 0        0.004158004 0.006382979 0.006451613 0.002272727 
0.011389522   0.006507592   0  0.002217295  0.002028398  0.001968504  0      0.001972387 
0.012531328   0.014319809  0.012048192 0.016209476 0.017814728 0.006097561 0.012224939 

 0.006361323 0.005174644 0.007936508 0.006711409 0.008684863 0.00635324     
 0.009505703 0.017746229 0.018723404 0.020930232 0.01486698 0.010015409 0.014728682  
 0.009855951 0.007616146 0.005401235 0.00921659 0.007886435 0.006264683        
0.020093771 0.016194332 0.018654231 0.019078948 0.031384617 0.016473459     
 0.016577857 0.014026885 0.010834237 0.014195584 0.009207161 0.00810537    
 0.009364218     0.022088353 0.02257568   0.024251806 0.027067669 0.032098766    
 0.027871216 0.018554688 0.023289666 0.016794626 0.014574518 0.017426273    
 0.010883762 0.012149141     0.022118744 0.020938348 0.029554656 0.024819857   
 0.024990084 0.023915688 0.025773196 0.022921523 0.019327406 0.016487731    
 0.018504532 0.016086794 0.007493443 0.020664206 0.020491803 0.025110282    
 0.029431896 0.026878016 0.027027028 0.024232082 0.02239063       0.022796869   
 0.015110813 0.016013628 0.013870095 0.013157895 0.014607185 0.018436873    
 0.021052632 0.022710349 0.026047166 0.019805305 0.021310946 0.016283525        
 0.017475728 0.014407335 0.013020006 0.015962441 0.016247701     0.0061728              
0.005374121 0.006451613 0.012474849 0.016746411 0.012552301 0.009808103     
 0.010801828     0.010646688 0.010845176 0.011051693 0.011274342 0.009612083        
 0.002567394 0.003045067 0.00119976  0.001166861 0.005688282 0.005238345    
 0.005729167 0.003597122 0.001558442 0.006309148 0.00750268 0.006227296    
 0.003446578     0               0         0           0.083333333 0 0 0 0.066666667       
   0 0 0 0 0.086956522 0.032258065 0.033333333 0        0.064516129 0.08 0 0 0 0    0 0 0 
0.019230769  0.039215686  0.031746032 0 0 0.033333333 0 0 0.048387097 0.017857143 0 0 0 0.085714286 
0.032786885 0.034883721 0.02739726 0.04950495 0.023255814 0 0 0.048192771 0 0 0 0 0.00990099 0.06        
0.027777778 0.0256410260.037037037 0.018518519 0.008849558 0.008849558 0.03960396  0 0.008849558
 0.008849558 0           0.062937063 0.065693431 0.060810811 0.042682927 0.043478261  
 0.019230769 0.030120482 0.030120482 0.04109589  0.021582734 0.030120482 0.02238806    
 0   0.105263158  0.106060606 0.083682008 0.086294416 0.114427861 0.055555556 0.050228311 
0.050228311 0.03030303  0.043478261 0.050228311 0.035532995 0 0.163865546 0.141025641  
 0.087557604 0.083682008 0.099206349 0.058577406 0.071698113 0.071698113 0.079831933  
 0.038461538 0.071698113 0.041841004 0 0.15 0.147859922 0.141221374 0.112280702  
 0.111111111 0.11328125  0.058020478 0.058020478 0.098726115 0.063694268 0.058020478    
0.074766355 0 0.220149254 0.197674419 0.228571429 0.140562249 0.131578947 0.149377593   
0.122186495 0.122186495 0.131274131 0.092150171  0.122186495 0.097315436 0 0.268041237   
0.192307692 0.243386243 0.214912281 0.189320388 0.209876543 0.176923077 0.176923077  
 0.216216216 0.173076923 0.176923077 0.132231405 0 0); 

array p[2,9,11] p1-p198; 
array w{9} (.09 .09 .01 .14 .35 .13 .01 .09 .09); 
/* Calculate the nearest neighbour weighted moving averages for the two rates respectively for age group 35-39 and year 

1990, age group 35-39 and year 1991, and so on until age group 75-79 and year 2000.*/ 
     do k=1 to 1;  
do i=1 to 9; 
do j=1 to 11; 
p[k,i,j]=w{1}*x[k,i,j]+w{2}*x[k,i,j+1]+w{3}*x{k,i,j+2}+w{4}*x[k,i+1,j]+w{5}*x[k,i+1,j+1]+w{6}*x[k,i+1,j+2]+w{7

}*x[k,i+2,j]+w{8}*x[k,i+2,j+1]+w{9}*x[k,i+2,j+2]; 
  end; 
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end; 
  end; 
array h{9} (.05 .05 .01 .34 .35 .09 .05 .05 .01); 
 do k=2 to 2;  
do i=1 to 9; 
do j=1 to 11; 
p[k,i,j]=h{1}*x[k,i,j]+h{2}*x[k,i,j+1]+h{3}*x{k,i,j+2}+h{4}*x[k,i+1,j]+h{5}*x[k,i+1,j+1]+h{6}*x[k,i+1,j+2]+h{7}*x

[k,i+2,j]+h{8}*x[k,i+2,j+1]+h{9}*x[k,i+2,j+2]; 
  end; 
end; 
  end; 
run; 
proc print; 
var p1-p99; 
run; 
proc print; 
var p100-p198; 
run; 
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