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Abstract  Comparative studies of five varieties of Central Composite design (SCCD, RCCD, OCCD, Slope-R, FCC) in 
Response Surface Methodology (RSM) were evaluated using the D, A, G and IV-optimality criteria. The fraction of design 
space plot of these designs was also displayed. The basis of variation in these designs is distance of the axial points from the 
center of the design. These axial portions of these designs were also replicated. The results show that replicating the star 
points tends to reduce the D and G-optimality criteria of the CCDs (SCCD, RCCD, OCCD, Slope-R, and FCC) in all the 
factors that were considered while it is not so for A-optimality criterion. In IV-optimality, the CCDs are relatively the same 
both when the center points and axial portion are increased. The FDS plots indicates that the CCDs maintain relatively low 
and stable SPV when the star points are replicated with increased center points. 
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1. Introduction 
Experiments are performed by researchers in every fields 

of inquiry so as to study and model the effects of several 
design variables on the responses of interest. The foundation 
for response surface methodology (RSM) was laid by [5]. 
Response surface methodology consists of statistical and 
mathematical techniques for empirical model building and 
model exploitation. It seeks to relate a response or output 
variable to the levels of a number of predictors or input 
variables that affect it. The form of such a relationship is 
usually unknown, but can be approximated by a low-order 
polynomial such as the second-order response surface model  
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Where y is the measured response, β’s are parameter 
coefficients; xi’s are the input variables and ε  is an error 
term. Most second order designs especially the Central 
composite design utilize this stated model. However, the 
Central Composite Design (CCD) is the most popular of the 
many classes of RSM. It is widely used for estimating second 
order response surfaces. Since introduced by [5], the CCD 
has been studied and used by many researchers. [24], 
suggested several criteria which can be used in the selection 
of design. [22] studied the duplication of the cube and star 
points of the CCDs (RCCD and OCCD) for factors k = 2, 3… 
8. The results showed that duplicating the star portion has  
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better potential for improved precision of prediction than 
duplicating the cube portion. [23], evaluated optimum 
composite design under in different region of interest. [25], 
suggested optimal CCDs under several design criteria. [19], 
evaluated and compared three CCDs -Central Composite 
Circumscribed design (CCC),Central Composite Inscribed 
design (CCI) and Central Composite Face Centered design 
(CCF) from the view of region of interest and robustness 
with simulation. [7] did a comparison of prediction variance 
performance of some central composite designs in a 
spherical region. The designs considered were central 
composite design (CCD), small composite design (SCD) and 
minimum resolution v design (Min Res). [8] used the 
D-optimality criterion to compare partially replicated cube 
and star portions of the rotatable and orthogonal CCD. Their 
results indicate that replicating the cube portion enhances the 
D-optimal performance of the CCD more than replicating the 
star portion. [21] did a graphical evaluation of prediction 
capabilities of partially replicated orthogonal CCD. They 
pointed out that replicating the star portions of the CCD 
considerably reduces the prediction variance, thereby 
improving the G-efficiency in the spherical region. 

In this paper, five varieties of central composite design 
(SCCD, RCCD, OCCD, Slope-R and FCC) will be evaluated 
and compared using the D, G, A and IV optimality criteria 
for factors k = 3, 4, 5 and 6. For factors k = 3 and 4 
considered in this paper, full factorial portion of the CCDs 
are employed while half replicate of the factorial portion of 
the CCDs are employed for factors k = 5 and 6. The 
performance of these designs will be considered when the 
axial portions are replicated and center points increased one 
and three times. However, because a design may be superior 
by one optimality criterion but may perform poorly when 
evaluated by another optimality criterion, fraction of design 
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space (FDS) plot will also be used to evaluate the prediction 
capabilities of these designs. The findings of this study have 
wide applications in industrial processes especially in the 
chemical industry. For example, data resulting from an 
investigation into the effect of three variables, reaction 
temperature (x1), reactant concentration (x2) and reaction 
pressure (x3) on the percentage conversion of a chemical 
process (y). Other areas of data applications of CCDs can be 
seen in [14]. 

1.1. Central Composite Design 
The central composite design (CCD) is a design widely 

used for estimating second order response surfaces. It is 
perhaps the most popular class of second order designs. 
Since introduced by [5], the CCD has been studied and used 
by many researchers. It consists of 2k full or 2k-1 half 
replicate (k is the number of independent variables) factorial 
points (±1,±1, …,±1); 2k axial or star points of the form (±α, 
0,…, 0), (0,±α,… , 0),and a center point (0,0,…,0). In this 
work, full factorial points will be used for factors k = 3 and 4 
while half replicate factorial points will be for factors k = 5 
and 6. The axial points will be replicated one and two times 
while the center points will be replicated one and three times. 
The center points provide information about the existence of 
curvature in the the addition of axial points allow for 
efficient estimation of the pure quadratic terms. The choice 
of the number of center runs provides flexibility to get a 
better estimate of the pure error and better power for test. 
Moreover, the choice of the number of center runs affects the 
distribution of the scaled prediction variance. The factorial 
points allow estimation of the first-order and interaction 
terms. Let N denote the total number of experimental runs in 
the CCD, 0(2 )N f r n= + Κ + . Here f is the number of 
factorial points, 2k is the axial points which is replicated r 
times and n0 the center points. The choice of axial distance α 
is based on the region of interest. Choosing the appropriate 
values of α specifies the type of CCD. To be able to make use 
of these varieties, the researcher must first understand the 
differences between these varieties in terms of the 
experimental region of interest and region operability, [17]. 
The region of operability for the CCDs considered in this 
paper is the spherical region except FCC which is employed 
if the primary region of interest is cuboidal. 

1.1.1. Spherical Central Composite Design (SCCD) 

Setting α = k , makes the CCD a spherical CCD. In 
spherical CCDs, all design points occur on the same 
geometric sphere. Spherical CCDs are not exactly rotatable, 
but they are near-rotatable. 

1.1.2. Rotatable Central Composite Designs (RCCD) 
In RSM, rotatability is considered as one of the desired 

properties of the second order designs. The concept of 
rotatability was first introduced by [4], in the rotatable design 
the variance of the predicted response ŷ(x) depends on the 
location of the point ( )f x  = ( 1 2, ,..., kx x x ) that is, it is a 

function only of distance from the point ( )f x = 

( 1 2, ,..., kx x x ) to the center of the design. By definition, a 
design is rotatable if is constant at all the points that are 
equidistant from the center of the design. Setting α = 4 f  
makes CCD rotatable. Where ƒ is the factorial points 

1.1.3. Orthogonal Central Composite Design (OCCD) 

A 2k factorial design and the fractional factorial 2k-1 design 
in which the main effects are not aliased with other main 
effects are orthogonal designs. Consider a second order 
model with pure quadratic terms corrected for their means. 
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least square estimators of 0 , , ,i ii ijβ β β β  respectively. In 
the CCD, all the covariances between estimated regression 
coefficient except cov( ,ii jjb b ) are zero. But if the inverse of 

the information matrix ( TΧ Χ )-1 is a diagonal matrix, then 
cov( ,ii jjb b ) also becomes zero. This property is called 
orthogonality. The condition for making a CCD orthogonal 

is by Setting 
1/2
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see [13]. Where

0(2 )N f r n= + Κ + , 2kf = . The orthogonal CCD 
provides ease in computations and uncorrelated estimates of 
the response model coefficients. 

1.1.4. Slope Rotatable Central Composite Design (Slope-R) 

Suppose that estimation of the first derivative of η(x) 
with respect to each of the independent variables. For the 
second order model,  

ˆ( ) 2i ii i ij i
i j i

dy x b b x b x
dx ≠

= + +∑        (3) 

The variance of this derivative is a function of the point x 
at which the derivative is estimated and also a function of 
the design through the relationship 

2 1( ) ( )TVar b X Xσ −=            (4) 

[20] proposed an analog of the Box-Hunter rotatability 

criterion, which requires that the variance of ˆ( )
i

dy x
dx  

be 

constant on circles (k=2), spheres (k=3), or hyperspheres 
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(k≥4) centered at the design origin. Estimates of the 
derivative over axial directions would then be equally 
reliable for all points x equidistant from the design origin. 
They referred to this property as slope rotatability, and 
showed that the condition for a CCD to be a slope –rotatable 
is as follows 
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From (5), the values of α for slope-rotatable central 
composite design are evaluated. See [20]. 

1.1.5. Face Center Cube (FCC) 
Setting α = 1 makes the CCD, a Face-centered CCD and 

also a three level design. The axial and the factorial points of 
face-centre CCD fall onto the surface of the cube. The 
face-centered cube CCD does not require center points 
because of the existence of ( TΧ Χ )-1. But center points are 
included for testing for lack of fit. 

1.2. Optimality Criteria 

Optimal designs are experimental designs that are 
generated based on a particular optimality criterion and are 
generally optimal only for a specific statistical model. 
Optimal design methods use a single criterion in order to 
construct designs for RSM; this is especially relevant when 
fitting second order models. [12] detailed the theory behind 
optimum designs. 

An optimality criterion is a criterion which summarizes 
how good a design is, and it is maximized or minimized by 
an optimal design. Design optimality is often called the 
alphabetical optimality criteria because they are named by 
some of the letters of the alphabet. 

1.2.1. D-optimality 
When considered historically, D-optimality by [18] was 

the first alphabetical optimality criterion developed. It is the 
most well studied problem which is seen in the literature by 
[12], [15], [1], [16] and [10]. It is also still among the most 
popular because of its simple computation, and many 
available algorithms.The D-optimality focuses on the 
estimation of model parameters through good attributes of 

the moment matrix which is defined as M =
TΧ Χ

Ν

 
 
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, where 

TΧ Χ  is the information matrix and N, the total number of 
runs, is used as a penalty for the larger design. D-optimality 
seeks to maximize the determinant of the information matrix 

TΧ Χ  or equivalently seeks to minimize the inverse of the 

information matrix. That is ( ) 1
max minT Tor

−
Χ Χ Χ Χ . 

The D-efficiency

1
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 where p is the number of 

model parameters             
1.2.2. A-optimality 

This criterion introduced by [6] seeks to minimize the 
trace of the inverse of the information matrix (X’X). This 
criterion results in minimizing the average variance of the 
estimates of the regression coefficients. Unlike D-optimality, 
it does not make use of covariance among coefficients. 

The A-efficiency = ( ) 1

100
T

p

trace N
−
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1.2.3. G-optimality 

This criterion is concern with prediction variance. It may 
be that the aim of the practitioner is to have good prediction 
at a particular location in the design space. To attain this, [4] 
defined a variance function, i.e., the scaled prediction 
variance (SPV). The SPV is defined as  
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where ( )f x is the vector of coordinates of point in the 
region of interest expanded to model form. That is

2 2
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k k k kf x x x x x x x x x−=      , N is 

the total sample size penalizing the larger designs, X is the 

design matrix and 2σ is the process variance which is 
assumed to be 1. The SPV provides a measure of the 
precision of the estimated response at any point in the design 
space. A G-optimal design is one that minimizes the 
maximum SPV over the experimental design region. 
Symbolically, it is written as    
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1.2.4. IV-optimality 

IV-optimality, also called I-optimality and V-optimality in 
the literature, is based on properties of the scaled prediction 
variance. Instead of finding maximum prediction variance in 
the region of interest, it makes use of the average of 
prediction variance (throughout the region of interest). 
Hence this gives a measure of the overall distribution of 
prediction variance. A design is said to be IV-optimal if it 
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minimizes the normalized average integrated prediction 
variance. 

IV = 2
ˆvar ( ) ( )

R

n y x u x
α

∂∫            (8) 

Where ˆvar ( )y x  is the prediction variance, R is the 
region of interest and u is uniform measure on R with total 
measure 1. This integral was simplified by [3] as  

IV = ( ){ }1Ttrace S n
−

Χ Χ             (9) 

where S is the moment matrix of region of interest (see also 
[11]) 

1.3. Fractions of Design Space (FDS) Plots 

Single-number criteria such as D, A and G-efficiency or 
IV criterion do not completely reflect the prediction variance 
characteristics of the design in question. However, a design 
that is superior by one optimality criterion may perform 
poorly when evaluated by another optimality criterion. 
According to [2], by condensing the properties of a design to 
a single value, much information is lost as regards the 
design’s potential performance.  

FDS plot introduced by [9], as alternative to single-value 
criteria, overcome this shortfall by displaying the 
characteristics of the prediction variance throughout the 
entire design space. The plot also displays characteristics of 
scaled prediction variance (SPV) throughout a 
multidimensional region on a single two- dimensional graph, 
this time with a single curve. The FDS plot shows the 
fraction of the design space at or below any SPV value. It is 
constructed by sampling a large number of values, say n, 
from throughout the design space and obtaining all of the 
corresponding SPV values which are then ordered and 
plotted against the quantiles (1/n, 2/n …). The x-axis gives 
the quantiles of the design space ranging from 0 to 1, while 
the y-axis shows the SPV values. 

2. Design Comparison 
In this section, the D, A, G and IV optimality criteria for 

the full second order model comparisons of the 5 varieties of 
CCD (RCCD, SCCD, OCCD, FCC, and Slope-R) for factors 
k = 3, 4, 5 and 6 are summarized in tables 1, 2, 3 and 4 
respectively. For the optimality criteria; larger values imply 
a better design (on a per point basis). Let rs indicate the 
replication of star points of the design and N the number of 
design runs. 

2.1. Three-Factor Design 

Table 1 shows that replicating the star points or axial 
portion (increasing rs) tends to reduce the D and G-optimality 
criteria for the CCDs (RCCD, SCCD, Slope-R, OCCD and 
FCC). In A-optimality criterion, replicating the star points 
tends to reduce the SCCD, RCCD and OCCD but in vice 

versa for Slope-R and FCC. Increasing the center points 
tends to reduce the D- optimality criterion of SCCD, RCCD, 
FCC and Slope-R except the OCCD. But if the star points are 
replicated, increasing the center points tend to increase the 
D-optimality criterion of the CCDs. In G-optimality criterion, 
increasing the center points tends to reduce the performance 
of the RCCD, OCCD, FCC, and Slope-R except SCCD. 

Table 1.  Summary Statistics for Varieties of Central Composite Design for 
factor k = 3 

Design no rs N D-eff G-eff A-eff IV- opt 

SCCD 1 1 15 71.13 66.67 44.53 10.005 

 3 1 17 70.04 89.20 43.35 9.9994 

 1 2 21 67.31 47.61 23.11 10.0002 

 3 2 23 68.59 76.48 37.11 10.0004 

        

RCCD 1 1 15 87.67 85.71 29.22 10.005 

 3 1 17 60.52 70.80 42.30 9.9994 

 1 2 21 59.27 62.12 22.82 10.0002 

 3 2 23 60.34 56.88 36.34 10.0004 

        

OCCD 1 1 15 52.04 87.09 31.08 10.005 

 3 1 17 53.88 80.01 35.88 9.9994 

 1 2 21 44.63 58.44 23.47 10.0002 

 3 2 23 42.65 56.60 36.15 10.0004 

        

Slope-R 1 1 15 111.69 82.80 54.16 10.005 

 3 1 17 93.83 75.27 56.66 9.9994 

 1 2 21 98.60 80.33 54.50 10.0002 

 3 2 23 83.72 79.90 59.33 10.0004 

        

FCC 1 1 15 38.12 67.41 25.99 10.005 

 3 1 17 35.25 60.06 24.60 9.9994 

 1 2 21 35.69 48.23 27.11 10.0002 

 3 2 23 33.65 47.71 26.10 10.0004 

Increasing the center points also tends to reduce the 
A-optimality criterion for SCCD and FCC but it is vice versa 
for RCCD, OCCD and Slope-R portion replicated. In 
IV-optimality criterion, the CCDs are relatively the same 
both when the center points and axial portion are increased. 

Figure 1 and 2 displays fraction of design space plot for 
varieties of CCD with 1 and 3 center points respectively. 

The design with three center runs (Figure 2) has much 
smaller prediction variance throughout the design space. In 
both FDS plot, Slope-R clearly shows a better stable 
prediction variance over other varieties of CCD. RCCD and 
SCCD have similar high SPV distribution while FCC has a 
lower SPV for a small portion of the design space plot but 
highly unstable. 
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Figure 1.  FDS Plot of CCD for k =3 with 1 center point 

 

Figure 2.  FDS Plot of CCD for k =3 with 3 center points 

Figure 3 and Figure 4 also shows FDS plot of varieties of 
CCD when the axial portion is replicated, with 1 and 3 center 
points respectively. From the plot, the CCDs maintain 
relatively a stable and low SPV throughout the design space 
when the axial portions of the CCDs are replicated with 3 
center points. Replicating the axial portions does have no 
much effect on FCC and OCCD as the still have low SPV 
with both 1 and 3 center points.  

 

Figure 3.  FDS Plot of CCD with replicated axial 

 
Figure 4.  FDS Plot of CCD with replicated axial portion for k = 3 with 3 
center points 

2.2. Four-Factor Design 

Table 2 shows that replicating the star points or axial 
portion (increasing rs) tends to reduce the D and G- 
optimality criteria for the CCDs. But for A-optimality 
criterion, SCCD, RCCD and Slope-R tends to reduce with an 
increase in axial portion but in vice versa for OCCD and 
FCC. 

Increasing the center points also tends to reduce the 
D-optimality criterion for the CCDs. But for G and 
A-optimality criteria, OCCD, Slope-R and FCC tends reduce 
with an increase in center points except SCCD and RCCD.  

In IV-optimality criterion, the CCDs are relatively the 
same both when the center points are increased and axial 
portion replicated. 
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Table 2.  Summary Statistics for Varieties of Central Composite Designs 
for factor k = 4 

Design no rs N D-eff G-eff A-eff IV-Opt 

SCCD 1 1 25 75.08 60.00 31.20 15.0000 

 3 1 27 74.80 95.24 50.98 15.0012 

 1 2 33 73.49 45.45 25.19 14.9985 

 3 2 35 74.56 80.66 44.12 15.0010 

        

RCCD 1 1 25 75.08 60.00 31.20 15.0000 

 3 1 27 74.80 95.24 50.98 15.0012 

 1 2 33 62.83 79.31 34.52 14.9985 

 3 2 35 62.13 75.45 44.47 15.0010 

        

OCCD 1 1 25 58.17 94.49 41.81 15.0000 

 3 1 27 55.84 89.17 44.88 15.0012 

 1 2 33 55.01 75.61 42.66 14.9985 

 3 2 35 53.23 71.66 44.59 15.0010 

        

Slope-R 1 1 25 122.88 81.61 70.75 15.0000 

 3 1 27 109.96 78.63 71.84 15.0012 

 1 2 33 109.72 88.24 52.17 14.9985 

 3 2 35 97.45 84.48 55.04 15.0010 

        

FCC 1 1 25 44.19 90.00 24.86 15.0000 

 3 1 27 41.81 83.33 23.70 15.0012 

 1 2 33 41.47 71.35 30.67 14.9985 

 3 2 35 39.60 67.33 29.41 15.0010 

 
Figure 5.  FDS Plot of CCD for k =4 with 1 center point 

The FDS plot of figure 5 and figure 6 shows that RCCD 
has a high SPV over the design space with 1 center point 
(figure 5) though it reduced with an increase in center points 
(figure 6), but it is unstable. Slope-R and OCCD relatively 
maintained a stable SPV over the design space but with an 
increase in center points, they are slightly unstable. FCC 
with an increase in center points has a low SPV over a small 
fraction of design space. When the axial portion is replicated, 
the FDS plot of figure 8 shows that SCCD has high and 
unstable scaled prediction variance. RCCD, Slope-R and 
OCCD maintained relatively a low SPV over the design 
space. 

 

Figure 6.  FDS Plot of CCD for k = 4 with 3 center points 

 

Figure 7.  FDS Plot of CCD with replicated axial portion for k = 4 with 1 
center point 
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Figure 8.  FDS Plot of CCD with replicated axial portion for k = 4 with 3 
center points 

Table 3.  Summary Statistics for Varieties of Central Composite Designs 
for factor k = 5 

Design no rs N D-eff G-eff A-eff IV-Opt 

SCCD 1 1 27 69.81 77.78 30.03 21.0006 

 3 1 29 68.49 97.80 40.46 20.9989 

 1 2 37 67.72 80.13 25.50 21.0012 

 3 2 39 67.72 76.02 37.76 21.0015 

        

RCCD 1 1 27 61.94 100.00 30.52 21.0006 

 3 1 29 60.30 95.98 36.82 20.9989 

 1 2 37 59.56 77.66 28.45 21.0012 

 3 2 39 58.90 74.19 36.04 21.0015 

        

OCCD 1 1 27 48.41 99.54 28.73 21.0006 

 3 1 29 49.67 93.57 30.93 20.9989 

 1 2 37 46.61 74.39 32.16 21.0012 

 3 2 39 48.43 71.56 33.63 21.0015 

        

Slope-R 1 1 27 99.32 78.91 51.22 21.0006 

 3 1 29 87.09 99.80 50.32 20.9989 

 1 2 37 88.74 79.87 39.94 21.0012 

 3 2 39 76.61 76.89 41.46 21.0015 

        

FCC 1 1 27 31.19 78.84 13.14 21.0006 

 3 1 29 29.38 74.78 12.31 20.9989 

 1 2 37 29.84 72.09 17.02 21.0012 

 3 2 39 28.50 68.43 16.21 21.0015 

2.3. Five-Factor Design 

Table 3 shows that replicating the axial portion tends to 
reduce the D and G- optimality criteria for the CCDs. Also 
for A-optimality criterion, replicating the axial portion tends 
to reduce the performance of RCCD, SCCD and Slope-R but 
in vice versa with OCCD and FCC. 

Increasing the center points tends to reduce the 
D-optimality criterion for SCCD, RCCD, FCC and Slope-R. 
But for OCCD, increasing the center points tends to reduce 
the D-optimality for the design only when the star points are 
replicated. Increasing the center points also tends to reduce 
the G-optimality criterion for RCCD, OCCD and FCC.   

Increasing the center points also tends to reduce the 
G-optimality criterion for RCCD, OCCD and FCC. 

But for SCCD and Slope-R, increasing the center points 
only tends to increase the G-optimality criterion for these 
designs when the axial portions are replicated. Also 
increasing the center points tends to increase the 
A-optimality of SCCD, RCCD and OCCD but in vice versa 
for Slope-R and FCC. In IV-optimality criterion, the CCDs 
are relatively the same both when the center points are 
increased and axial portion replicated. 

Figure 9 and Figure 10 displays the FDS plot of the CCDs 
for k = 5. From the plots, Slope-R and OCCD maintain a 
relatively stable SPV. But when the center point is increased 
(Figure 10), SCCD and RCCD had a reduced SPV and also 
relatively stable. FCC in both FDS plot has low and unstable 
SPV. Figure 11 and 12 displays the FDS plot of the CCDs 
when the axial portions are replicated. OCCD, RCCD and 
Slope-R maintain a stable SPV with 1 center but when the 
center point is increase (Figure 12), RCCD still maintained a 
stable and low SPV. With an increase in center points, SCCD, 
Slope-R and OCCD becomes unstable in spite of relatively 
having low SPV.    

 
Figure 9.  FDS Plot of CCD for k =5 with 1 center point 
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Figure 10.  FDS Plot of CCD for k =5 with 3 center points 

 
Figure 11.  FDS Plot of CCD with replicated axial portion for k = 5 with 1 
center point  
2.4. Six-Factor Design 

Table 4 shows that replicating the star points tend to 
reduce the D and G-optimality criteria for the CCDs. Also 
replicating the star points tend to reduce the A-optimality 
criterion for the CCDs except the FCC. 

Increasing the center points tends to reduce the 
D-optimality criterion for FCC and Slope-R but for SCCD 
and RCCD, increasing the center points tends to reduce the 
D-optimality criterion of the design if the star points are not 
replicated, while increasing the center points tends to 
increase the D-optimality criterion for the OCCD. Also 

increasing the center points tends to reduce the G-optimality 
criterion for the CCDs while also the CCDs tend to increase 
with increase in center points for A-optimality criterion. 

Table 4.  Summary Statistics for Varieties of Central Composite Designs 
for factor k = 6 

Design no rs N D-eff G-eff A-eff IV-Opt 

SCCD 1 1 45 83.84 99.11 33.72 27.9990 

 3 1 47 83.48 94.89 55.82 27.9979 

 1 2 57 79.56 82.74 27.59 27.9984 

 3 2 59 79.94 79.94 47.34 28.0014 

        

RCCD 1 1 45 81.80 98.61 34.05 27.9990 

 3 1 47 81.40 94.44 55.36 27.9979 

 1 2 57 77.48 82.16 28.15 27.9984 

 3 2 59 77.76 79.41 47.16 28.0014 

        

OCCD 1 1 45 66.70 94.81 50.68 27.9990 

 3 1 47 68.16 91.50 55.39 27.9979 

 1 2 57 62.78 77.46 51.50 27.9984 

 3 2 59 64.53 75.73 52.77 28.0014 

        

Slope-R 1 1 45 114.90 90.03 72.36 27.9990 

 3 1 47 107.44 88.97 73.47 27.9979 

 1 2 57 102.49 84.45 54.73 27.9984 

 3 2 59 95.96 81.95 57.64 28.0014 

        

FCC 1 1 45 44.80 91.99 18.98 27.9990 

 3 1 47 43.19 88.08 18.30 27.9979 

 1 2 57 41.45 73.69 25.06 27.9984 

 3 2 59 40.21 71.19 24.30 28.0014 

In IV-optimality criterion, the CCDs are relatively the 
same both when the center points are increased and axial 
portion replicated. 

The Figure 13 and Figure 14 displays the FDS plot of the 
CCDs for k = 6 with 1 and 3 center points respectively. 
Figure 13 shows that RCCD and SCCD have high and 
unstable SPV compared to OCCD and Slope-R that have low 
and relatively stable SPV. With an increase in center points 
(figure 14), RCCD and SCCD have a reduced SPV though 
still high when compared with OCCD and Slope-R. When 
the axial portion is replicated with 1 center point (Figure 15), 
the FDS plot shows that OCCD has the most stable SPV 
compared to RCCD and Slope-R which are competing. 
SCCD has a high and unstable SPV unlike FCC which has a 
low and unstable SPV. With an increase in center points 
(Figure 16), OCCD still maintain the most stable SPV. 
RCCD performs better than Slope-R with lower SPV. SCCD 
has a reduced SPV though still high and unstable. FCC 
covers most of design space but it is still unstable. 
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Figure 12.  FDS Plot of CCD with replicated axial portion for k = 5 with 3 
center points 

 

Figure 13.  FDS Plot of CCD for k =6 with 1 center point 

 

Figure 14.  FDS Plot of CCD for k =6 with 3 center points 

 

Figure 15.  FDS Plot of CCD with replicated axial portion for k = 6 with 1 
center point 

 

Figure 16.  FDS Plot of CCD with replicated axial portion for   k = 6 with 
3 center points 

3. Conclusions 
Replicating the star points tends to reduce the D and 

G-optimality criteria for the CCDs. Slope-R performs better 
than all the designs when D and A –optimality criteria are 
employed for all the factors considered. OCCD is a better 
design when G-optimality criterion is employed especially 
when the star points are not replicated for factors k = 3 and 4. 
But when the star points are replicated, Slope-R is a better 
design when G-optimality is employed for factors k = 3 and 4. 
For factor k = 5, RCCD is a better design when G-optimality 
is employed and SCCD a better design when G-optimality 
criterion is employed for factor k = 6. The FDS plots 
indicates that the CCDs maintain relatively low and stable 
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SPV when the star points are replicated with increased center 
points. In all the factors considered, the OCCD maintained a 
better, low and stable SPV when the star points are replicated. 
The Slope-R has a better low and stable SPV at factor k = 6 
when the star points are not replicated. 
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