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Abstract  Meteorologists actually use a combination of several different mathematical methods to come up with their 
periodical weather forecasts for phenomena such as average temperature, rainfall, humidity and other atmospheric conditions. 
Using Seasonal Autoregressive Integrated Moving Average (SARIMA) model, the study determined an adequate forecasting 
model for the mean temperature of Ashanti Region with data from the Department of Meteorology and Climatology from the 
period of 1980 to 2013. The following SARIMA: SARIMA(2,0,2)(2,1,1)(12), SARIMA(2,1,1)(1,1,2)(12) and 
SARIMA(1,1,1) (1,1,1)(12) with BIC of 502.36, 522.44, 492.73 and 495.92 respectively were obtained and compared. 
SARIMA (2,1,1)(1,1,2)(12) had the least BIC and was considered the adequate model for prediction. They however recorded 
a ME, RMSE, MAE, MPE, MAPE, MASE of 0.012, 0.516, 0.382, 0.006, 1.408 and 0.419 respectively. The residuals of the 
model were white noise of passing Ljung-Box at 5 percent with p-values (0.7809).  
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1. Introduction 
This study investigated the general pattern of mean 

temperatures recorded in Ashanti Region from 1980 to 2013 
and developed Seasonal Autoregressive Integrated Moving 
Average (SARIMA) forecast model for predicting 2014 
mean monthly temperature. Temperature is a physical 
quantity that is a measure of hotness and coldness on a 
numerical scale. It is a measure of the thermal energy per 
particle of matter or radiation and it is measured by a 
thermometer, which may be calibrated in any of various 
temperature scales [6]. Temperature is an intensive property, 
which is independent of the amount of material present and 
in contrast to energy, an extensive property, which is 
proportional to the amount of material in the system.  

Time series analysis of mean temperature based on air 
temperature data obtained from State Meteorological Service 
in Turkey between 1950-1994 was investigated by [2]. 
Regional changes were observed in the mean temperatures in 
Turkey from 1950-1994. Also the study observed a 
statistically significant cooling trend in 21 stations as well as 
warming trend in one station and no trend in 36 stations. 

[4] applied SARIMA on hourly bicycle count and 
temperature data and modeled Vancouver Bicycle Traffic  

 
* Corresponding author: 
asboaheng@yahoo.com (Michael Asamoah-Boaheng) 
Published online at http://journal.sapub.org/statistics 
Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved 

using weather variables. Complex serial correlation patterns 
in the error terms and model tests against actual bicycle 
traffic counts were accounted by the ARIMA model. [5] 
investigated into weather variability and the incidence of 
cryptosporidiosis; comparison of time series poisson 
regression and SARIMA models. They performed time 
series Poisson regression and (SARIMA) models in 
examining the potential impact of weather variability on the 
transmission of cryptosporidiosis. Model assessment showed 
SARIMA model having better predictive ability than the 
Poisson regression model (SARIMA: root mean square error 
(RMSE): 0.40, Akaike information criterion (AIC): -12.53; 
Poisson regression: RMSE: 0.54, AIC: -2.84). 

[7] researched into the relationship between Weather 
Temperature and Mortality; A Time Series Analysis 
Approach in Barcelona. They estimated several transfer 
function (ARIMA) models for the entire period and for both 
winters and summers separately. At least three consecutive 
days of increased weather temperature resulted in an increase 
in mortality and the discovery of an independently V-shaped 
relationship. [8] conducted a comparative study of statistical 
and neuro-fuzzy network models for forecasting the weather 
of Goztepe, Istanbul, Turkey using ANFIS and 
Autoregressive Integrated Moving Average (ARIMA) 
models. A nine year data (2000-2008) was used comprising 
daily average temperature, air pollution and wind speed. The 
performance of ANFIS and ARIMA after comparison was 
evaluated due to MAE, RMSE, R2 criteria with ANFIS 
giving better results.  
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2. Materials and Methods 
Time series is a time dependent sequence Yt, where t 

belongs to the set of integers and denotes the time steps. If a 
time series can be expressed as a known function, Yt= f (t), 
then it is said to be a deterministic time series. If it is 
however expressed as Yt= X (t), where X is a random variable 
then {Yt} is a stochastic time series. 

2.1. Data Used 

Secondary data from the Department of Meteorology and 
Climatology in the Ashanti Region from the period of 1985 
to 2013 was used to develop a forecast model (SARIMA) in 
predicting future mean temperature values in Ashanti Region 
of Ghana. The data was used since it is a time series data and 
the observations were collected sequentially in time 
(monthly). Data was analysed with R-Console V. 2.15.1.  

2.2. Stationary and Non Stationary Series 

A time series is said to be strictly stationary if the joint 
distribution of Xt1, Xt2,… Xtn is the same as the joint 
distribution of Xt1+T, Xt2+T,…Xtn+T for all X1+T…Xn+T. Thus, 
shifting the time position by T periods has no effects on the 
joint distributions, which therefore depends on the interval 
between t1… tn. If a time series is not stationary then it is said 
to be non-stationary. A simple non-stationary time series 
model is given by     

t t tY eµ= +                   (1) 

Where the mean 𝜇𝜇𝑡𝑡  is a function of time and 𝑒𝑒𝑡𝑡  is a 
weakly stationary series. 

2.2.1. Unit Root Test 

Unit Root Test was derived in 1979 by Dickey and Fuller 
to test the presence of a unit root vs. a stationary process. The 
unit root process and a stationary process are given by 
equations 3.1 and 3.2 below; 

1 1t t teρ ϕ ρ −= +                 (2) 

0 1 1t t teρ ϕ ϕ ρ −= + +              (3) 

If Φ =1 then the series is said to have unit root and is not 
stationary.  

The Unit Root Test as proposed by 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS), test the 
hypothesis below:   

H0: Φ1=series is level or trend stationary 
HA: Φ1=series is level or trend non-stationary 
If test statistic value of the KPSS test is less than critical 

value, we accept the null hypothesis that the data is level or 
trend stationary. Similarly, the Unit Root Test as proposed 
by Dickey and Fuller (ADF), test the hypothesis below: 

H0: Φ1=series has unit root 
HA: Φ1=series has no unit root 
If test statistic of the ADF test is less than critical value we 

reject the null hypothesis that the data has a unit root.  

2.3. ARIMA Models 
The acronym ARIMA stands for "Auto-Regressive 

Integrated Moving Average." Lags of the differenced series 
appearing in the forecasting equation are called 
"auto-regressive" terms, lags of the forecast errors are called 
"moving average" terms, and a time series which needs to be 
differenced to be made stationary is said to be an "integrated" 
version of a stationary series. A non-seasonal ARIMA model 
is classified as an "ARIMA (p, d, q)" model, where p is the 
number of autoregressive terms, d is the number of 
non-seasonal differences, and q is the number of lagged 
forecast errors (moving average) in the prediction equation. 
A process,  Xt is said to be ARIMA (p, d, q) if 

(1 )d d
ttX B X∇ = −       (4) 

is ARMA (p, q). In other words the process should be 
stationary after differencing a non-seasonal process d times. 
In general, we will write the model as 

( )(1 ) ( )d
t tB B X Bϕ θ ω− =          (5) 

If we let ( )d
tE X µ∇ =      

We write the model as 

( )(1 ) ( )d
t tB B X Bϕ α θ ω− = +       (6) 

Where (1 ... )pα µ ϕ ϕ= − − −  

2.4. The Box-Jenkins ARIMA Model 

The Box-Jenkins methodology refers to the set of 
procedures for identifying, fitting, and checking ARIMA 
models with time series data. Forecasts follow directly from 
the form of the fitted model. By Box-Jenkins, a pth order 
autoregressive model: AR (p), has the general form 

1 1 2 2 ...t t t p t p tX X X Xα ϕ ϕ ϕ ω− − −= + + + + +  (7) 

Where Xt = Response (dependent) variable at time t, Xt-1 , 
Xt-2,… Xt-p = Response variable at time lags t−1,  
t−2,. . . t−p, respectively. 
Φ 1, Φ 1,…, Φ p = Coefficients to be estimated, and ωt = 

Error term at time t. Also, a qth- order moving average 
model: MA (q), has the general form 

1 1 2 2 ....t t t t q t qX µ ω θ ω θ ω θ ω− − −= + + + + +  (8) 

Where Xt= Response (dependent) variable at time t,  
µ= Constant mean of the process,  

Φ 1, Φ 1,…, Φp=Coefficients to be estimated, ωt =Error 
term at time t, and ωt-1, ωt-2, ωt-p=Errors in previous time 
periods that are incorporated in the response Xt. 

Autoregressive Moving Average Model: ARMA (p, q), 
which has the general form  

1 1 2 2

1 2

....

...
t t t q t p

t t q t q

X X X Xα ϕ ϕ ϕ

ω θ ω θ ω
− − −

− −

= + + + +

+ + + +
  (9) 

(We can use the graph of the sample autocorrelation 
function (ACF) and the sample partial autocorrelation 
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function (PACF) to determine the model which processes 
are summarized as follows: 

Table 1.  How to determine the model by using ACF and PACF patterns 

MODEL ACF PACF 

AR (p) Dies down Cut off after lag q 

MA (q) Cut off after lag p Dies down 

ARMA (p, q) Dies down Dies down 

Box-Jenkins forecasting models consist of a four-step 
iterative procedure as follows; Model Identification, Model 
Estimation, Model Checking (Goodness of fit) and Model 
Forecasting.  

2.5. The Box Jenkins Seasonal (SARIMA) Model 

[1] have generalized the ARIMA model to deal with 
seasonality and define a general multiplicative seasonal 
ARIMA model (abbreviated SARIMA model) as   

( ) ( ) ( ) ( )s S
p P t q Q tB B W B B Zϕ θΦ = Θ       (10) 

Where B denotes the backward shift operator,
, , ,p P q Qϕ θΦ Θ  are polynomials of p,P,q,Q 

respectively, Zt denotes a purely random process, and  

 d D
t s tW X= ∇ ∇        (11) 

This model looks rather complicated at first sight, 
however if P=1, then the term ( )s

P BΦ  will be 
(1-constant x Bs), which simply means Wt will depend on Wt-s, 
since  

Bs Wt= Wt-s. The variable {Wt} are formed from the 
original series {Xt} not only by simple differencing but also 
by seasonal differencing, s∇  to remove seasonality. For 
example if d=D=1 and s=12, then  

12 12 12 1t t t tW X X X −= ∇∇ = ∇ −∇  

12 1 13( ) ( )t t t tX X X X− − −= − − −  

The model in equations 10 and 11 is said to be a SARIMA 
model of order (p,d,q) X (P,D,Q). The model values of d and 
D do not usually need to exceed one. [3]. For instance, 
considering a SARIMA model of order (1,0,0) x (0,1,1)12 
then equations 10 and 11 can be rewritten as  

12(1 ) (1 )t tB W B Zα θ− = +  Where 12t tW X= ∇  
then we find 

12 1 13 12( )t t t t t tX X X X Z Zα θ− − − −= + − + +     

3. Results and Discussion 
3.1. Pattern of the Mean Temperature Recorded from 

January 1980 to December 2013 

This section discusses the analyses of the results following 
the Box-Jenkins Approach in model building. Figure 1 
below shows the mean temperatures recorded over the years 
from January 1980 to December 2013.The series shows no 
particular trend, hence appears stationary since the series is 
constant in size over time. The series shows generally the 
rise and fall of mean temperatures over the years. But by 
critical observations year by year, it is clear that, there 
existed a sharp rise and fall in the mean temperatures 
recorded. However the highest mean temperature was 
recorded in the year 1984 (i.e. above 300C) and the least 
recorded around 1983. 

Figure 1 below was further decomposed to observe the 
various components in the series. Figure 2 below shows the 
decomposed mean temperature with respect to the various 
years recorded. 

 

Figure 1.  Time series Plot of Mean temperature recorded from Jan. 1980-Dec. 2014 
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Figure 2.  Decomposed time series plot of mean temperatures 

From Figure 2 we observed existence of seasonal 
variation in the series which is constant over time, the 
random effect also constant over time and the pattern (trend) 
of the series which seems stationary and also constant over 
time. Also from observation, seasonal effect/variation 
occurred every year or every twelve month period from 1980 
through to 2013. In other words, regular mean temperatures 
are recorded each year due to the rise and fall of mean 
temperatures in each year at regular times. 

3.2. Fitting an ARIMA Model of the Series Using the 
Box-Jenkins Approach 

Box-Jenkins forecasting models consist of a four-step 
iterative procedure as follows; Model Identification, Model 
Estimation, Model Checking (Goodness of fit) and Model 
Forecasting. 

3.2.1. Model Identification 

The model development process begins by studying the 
original plot, ACF, PACF and objective test of the raw data 
to be sure that it is stationary. To ensure that the series 
plotted in Figure 1 was stationary, ACF and PACF were 
plotted after observing a constant variance in the mean 
temperature. Figure 3 shows the sample ACF and PACF of 
the mean temperature series with 95% confidence limits. 
From the correlogram, most of the spikes in both the ACF 
and the PACF were observed to be outside the confidence 

limits. Also the ACF shows a cyclic or seasonal 
movement/variation of the correlations, hence shows 
sinusoidal waves and oscillation movements. Also both the 
ACF and the PACF shows slow decay of the spikes 
indicating that the series has no trend and hence stationary. 

Also, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and 
Augmented Dickey- Fuller (ADF) test from Table 2 were 
performed. From Table 2, the KPSS test with p-value of 0.1 
and ADF test with p-value of 0.01 proved the stationarity of 
the temperature series in Figure 1. 

Table 2.  Objective test (unit root test) for drift and trend stationarity of 
mean temperature 

TEST TYPE  Test statistic P-value 

ADF -11.3867 0.01 

KPSS 0.2038 0.1 

KPSS Test for Level Stationarity 
Ho: There is level Stationarity   H1: There is no level 

Stationarity 
ADF test  
Ho: There is no Stationarity   H1: The series is stationary. 

Next is to difference the series to remove the seasonal 
components in the series in order to determine the 
orders/values of the non-seasonal and the seasonal AR and 
MA parts. Figure 4 gives the ACF and the PACF of the one 
regular differenced seasonal series. 
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Figure 3.  Figure: 1.3: Sample ACF and PACF of the series (mean temperatures) 

 

Figure 4.  ACF and PACF of one seasonal differencing 

From Figure 4 above, the ACF (at low lags) i.e. at lags 1 
and 2 are significantly different from zero since the spikes 
passes out of the confidence limits. Hence the order of the 
non-seasonal MA term is 2 and that of the seasonal MA 
terms occurs at lags which are multiples of 12. Only one 
spike is significant at lag 12. Hence the order of seasonal MA 
term is 1. Similarly, significant spikes in the PACF (at low 
lags) indicated possible non-seasonal AR terms. The order of 
the non-seasonal AR part is 2 and that of the seasonal AR is 
2.This therefore suggests an arima model in the form 
SARIMA (2, 0, 2) (2, 1, 1) (12). 

3.2.2. Model Estimation and Evaluation 

The procedure for choosing these models relies on 
choosing the model with the minimum AIC, AICc and BIC. 
The models are presented in Table 3 below with their 

corresponding values of AIC, AICc and BIC.  

Table 3.  AIC, AICc and BIC for the Suggested ARIMA Models 

MODEL AIC AICc BIC 

SARIMA (2,0,2)(2,1,1)(12) 471.54 471.97 502.36 

SARIMA (1,1,2)(1,0,1)(12) 499.14 499.37 522.44 

SARIMA (2,1,1)(1,1,2)(12) 465.78 466.11 492.73 

SARIMA (2,0,1)(2,0,0)(12) 576.07 576.39 603.27 

SARIMA (1,1,1)(1,1,1)(12) 476.67 476.85 495.92 

SARIMA (2,0,0)(2,0,0)(12) 575.13 575.37 598.45 

From Table 3, the model with the least AIC, AICc and 
BIC is SARIMA (2,1,1)(1,1,2)(12) indicating that SARIMA 
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(2,1,1)(1,1,2)(12) is the best model for predicting the mean 
temperature of Ashanti Region. 

3.2.3. Goodness of fit/Model Verification/Model Diagnostics 

In time series modeling, the selection of a best model fit to 
the data is directly related to whether residual analysis is 
performed well. One of the assumptions of SARIMA model 
is that, for a good model, the residuals must follow a white 
noise process. That is, the residuals have zero mean, constant 
variance and also uncorrelated. 

From Figure 5 below, the standardized residual shows 
that the residuals of the model have zero mean and constant 
variance since the residuals are concentrated around -2 to 2. 
Also the ACF of the residuals of the model shows that the 
autocorrelation of the residuals are all zero, that is to say they 
are uncorrelated, hence the residuals assume mean of zero 
and constant variance, hence they are uncorrelated. Finally, 

the p-value (0.7809) for the Ljung-Box statistic in the third 
panel in Figure 5 all clearly exceed 5% for all lag orders, 
indicating that there are no significant departure from white 
noise for the residuals. Thus, the selected model “SARIMA 
(2, 1, 1) (1, 1, 2) [12]” satisfies all the model assumptions. 

3.2.4. Normality Test for Residuals 

Figure 6 shows the normality test plots of the model 
residuals. From the Q-Q plot, it can be observed that, most of 
the points passes through the straight line with few of the 
points very closed to the straight line. This shows that the 
residuals in the model are normal. From the histogram plot of 
residuals on the left of Figure 6, the distribution of the 
residuals can be clearly seen as normal having a bell shape 
distribution. Therefore SARIMA (2,1,1)(1,1,2)(12) satisfies 
all the model assumptions indicating that the model is very 
good for forecasting. 

Table 4.  Parameter estimation of the appropriate model (SARIMA (2, 1, 1) (1,1,2)(12)) 

 ar1 ar2 ma1 sar1 sma1 sma2 

Coefficients 0.3033 0.1726 -0.9904 -0.586 -0.344 -0.551 

SE 0.0508 0.0507 0.0168    

 

ME RMSE MAE MPE MAPE MASE  

0.0119 0.5157 0.3818 0.0060 1.4076 0.4189  

 

Figure 5.  Plots of model residuals of mean temperatures recorded from 1980 to 2013 
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Figure 6.  Plots of normality test for model residuals 

 
3.2.5. Forecasting using SARIMA (2,1,1)(1,1,2) [12] 

Using the derived model, the following forecast were 
made for the year 2014 as shown in Table 5 with lower and 
upper limit forecast. 

Table 5.  Forecasted values for 12 months mean temperatures for 2014 

   Confidence Limits 

Year Month Forecast lower Upper 

2014 January 27.02 26.16 27.87 

 February 28.56 27.66 29.46 

 March 28.56 27.63 29.49 

 April 28.60 27.66 28.54 

 May 27.45 26.51 28.39 

 June 26.43 25.48 27.37 

 July 26.94 26.01 27.89 

 August 25.07 24.12 26.02 

 September 26.01 25.07 26.96 

 October 26.64 25.69 27.59 

 November 27.42 26.47 28.36 

 December 27.03 26.08 27.98 

4. Conclusions 
The pattern of mean temperatures in Ashanti Region from 

1980 to 2013 was observed to be stationary, hence does not 
follow any particular pattern (neither increasing nor 
decreasing). The stationarity of the mean temperature series 
was verified by the plot of the sample ACF and PACF’s as 
well as the use of KPSS and ADF tests. The highest mean 

temperature (i.e. above 30oC) was recorded in 1984. 
However regular mean temperature values were recorded 
every year, hence the presence of seasonal components were 
observed through the decomposition of the series. 

The seasonal component of the series was removed 
through one regular differencing. Following the procedures 
of the Box Jenkin’s SARIMA model building, several 
suggested models were developed. However based on the 
computed AIC, AICc, BIC values for each of the suggested 
models, the best model was derived as SARIMA 
(2,1,1)(1,1,2)(12). However, model diagnostics were 
performed through careful performance of the model 
residuals. The model residuals were found to be following a 
white noise process with a mean of zero and a constant 
variance, hence uncorrelated. Also the model residuals were 
found to be near normality through the plots of histograms 
and Q-Q plot. Based on the model diagnostics performed, the 
identified model was found to be very adequate and good for 
predicting future mean temperatures in Ashanti Region. The 
forecasted mean temperature values showed similar pattern 
of previous recordings. 
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