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A Note on Estimability in Linear Models
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Abstract Estimable functions of the parameters are characterized in terms of generalized inverses. The concept of
estimability is applied to data from a designed experiment on varietal trials. We demonstrate in this note that this technique of
solving the normal equations is equivalent to the nearest neighbour method for the analysis of unbalanced randomized design.
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1. Introduction

Linear models are generally of the form

y=Xf+e (1)

(where y is an nx1 observation vector, X is an #X p
design matrix of fixed constants having rank r (r < k) , B

isan px1 vector of unknown parameters, £ isan nx1
vector of unknown random errors having zero means) and
E (y) = X[ . The Ordinary Least Square (OLS) solution of

(Dis B = (X’)()_l X', a unique solution.

In practice, not all linear models of the form in (1) are of
full rank. When X is not of full rank, then XX is singular
and the normal equations (X X )b = X do not have a

unique solution. However, there are various approaches of
obtaining the inverse of singular matrices, for which the row
echelon form given by Elswick et al (1991), Moore Penrose
and the generalized inverse, Searle (1977) are popular in the
literature. The generalized inverse is the approach we apply
in this paper.

2. Form of Estimability

With X less than full rank and XX singular, i.e.7 <k,

there is an infinite number of solutions of # to the normal

equations. Attention is therefore directed not to the solutions
themselves but to linear functions of their elements.

Consider a linear function ¢’/ of the parameters in [3
where ¢ is a known vector. This linear function is defined
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as being an estimable function if there exists some linear
combinations of the observations ),,),,...,), whose
expected value is ¢'f3, i.e. if there exists a vector f such
that the expected value of ¢y is ¢'f, then q'f is said

to be estimable. Consider the following theorem given in
Graybill, 1976:

Theorem 1. (Graybill, 1976)

Assuming a linear model in (1), q'f is an estimable

Sfunction if and only if there exist an nx1 vector tsuch

that q' = t’)(
Proof. If there exist a vector t such that q' =t'X, then,
E(ty)=tE(y)=tXB=q'B.
Only if: Conversely, if q'ﬂ is estimable, then,
E(ty)=q'B
Thus
tXp=q'f=>tX=4q
In addition, Elswick et al (1991) argues that if X is of full

1 .
rank, (X X ) exists and the rows of P X7 matrix

-1
(X X ) X' serve as the necessary set of vectors because

{(X’X)1 X'}Xﬂ - 5.

3. Illustration

We demonstrate this discussion by considering the data
from a study to compare classical and nearest neighbour
methods in the analysis of varietal trials (See, e.g. Nwobi,
2000). In the experiment, nine (9) different varieties of
cassava crop were tried, six at a time over a maximum of five
years in such a way that these varieties were not replicated
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equally. The model (without interaction) is given by yv=Xp+e¢. “)

Yy =HTTHE; 1= 1.2,..9; j= hi 3) Based on the model in (2), the parameter vector [ is

iven b
where V;; s the yield from the j" trial of the i" variety, H g Y
r
is the general mean, 7, is the effect of the i" variety, & is = G88885855 5885
the random error associated with Vij - SIHT T T Tt Ty Tty )

Equation (3) is written in matrix form as The components of the model (4) are

366) (1 1.0 0 000 0 0 0 e
379 /110 0 00000 0 el
2149 [1 1.0 0 0 0 0 0 0 0 e
238 | |1 01 0000000 e
8.0 1010000000 e
029 (101 00000 O0 0 e
419 {1 0 0100000 0 e
316 | |1 001 000000 e
1768 {1 0 0 1 0 0 0 0 0 O ey
2905 [1 001 0 0 0 0 0 0 ey
2833 [1 0 0 1 0 0 0 0 0 O ) |ess
316 | {10 001 0000 0ff]| e
151 [1 0001 0000 06| |en
15131 |1 0 0 0 1 0 0 0 0 Of[s| |eus
337 | |1 00001000 0|4 |e
9.4 100001000 0] |es
707 | [1 0 00 01 00 0 0| |es
20410 |1 0 00 0 1 0 0 0 0/z;] |es
2952 [1 0 0 0 0 1 0 0 0 Oz |es
2.8 100000T1 00 0\t |eq
127 1 00 000T1000 6
622 /1000001 00 0 Cos
4410 |10 00001000 Cos
299 |1 000001000 €6s
1342 [1 0 00 00 01 00 e
984 | |10 00 00 010 0 e
1985 (1 0 0 0 0 0 0 0 1 0 e
1581 [1 0 0 0 0 0 0 0 1 0 e
1.1 10000O0GO0O0 O I eo;
2088) (1 0 0 00 00 0 0 1 e,

from where we obtain
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(98]
(=]

548.59
95.99
32.09

148.56
61.83
100.1
29.12
23.26
35.66
21.98

XX =

S O O OO N OO O O W
S O O L O O O O O Wn
S O O O O O O O N
S N OO O O O O O N
N O O ©O O O O O O N
M
I

S O O O OO OO W W
S O O O O O O W o W
S OO O OO N OO W
S O O OO WO OO W

[\O I \O I \O BV Y VS BV VS B S |

A generalized inverse of XX writtenas G~ suchthat X ' XG ' XX = XX see, e.g. Searle (1977) is

0.0310  0.0023  0.0023 -0.0110 0.0023 -0.0110 -0.0110 0.0190 0.0190  0.0190
0.0023  0.2977 -0.0357 -0.0223 -0.0357 -0.0223 -0.0223 -0.0523 -0.0523 -0.0523
0.0023 -0.0357 0.2977 -0.0223 -0.0357 -0.0223 -0.0223 -0.0523 -0.0523 -0.0523
-0.0110 0.0023 -0.0223 0.1910 -0.0023 -0.0090 -0.0090 -0.0390 -0.0390 —0.0390
0.0023 -0.0357 -0.0357 -0.0223 0.2977 -0.0223 -0.0223 -0.0523 -0.0523 -0.0523
-0.0110 0.0023 -0.0223 -0.0090 -0.0023 0.1910 -0.0090 -0.0390 -0.0390 -0.0390
0.0110 -0.0023 -0.0223 -0.0090 -0.0023 -0.0090 0.1910 -0.0390 -0.0390 -0.0390
0.0190 -0.0523 -0.0523 -0.0390 -0.0523 -0.0390 -0.0390 0.4310 -0.0690 -0.0690
0.0190 -0.0523 -0.0523 -0.0390 -0.0523 -0.0390 -0.0390 -0.0690 0.4310 -0.0690
0.0190 -0.0523 -0.0523 -0.0390 -0.0523 -0.0390 -0.0390 -0.0690 -0.0690 0.4310

with

09 01 01 01 01 01 01 01 01 01
0.1 09 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
0.1 -01 09 -01 -01 -0.1 -0. -0.1 -0.1 -0.1
0.1 -01 -0.1 09 -01 -0.1 -0. -0.1 -0.1 -0.1
0.1 -0.1 -0.1 -0.1 09 -0.1 -0.1 -0.1 -0.1 -0.1
0.1 -01 -0.1 -0.1 -0.1 09 -0.1 -0.1 -0.1 -0.1
08 0 0 0 0 0 I -0.1 -0.1 -0.1
0.1 -01 -0.1 -0.1 -0.1 -0.1 -0.1 09 -0.1 -0.1
01 -01 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1
01 -01 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9

H=G XX =

and W=(wp woow, wow, W W oW W W),
. ! !
The function §'b =W HB = (W, + W, +W; +...4 Wy + W, ) L+ Wty + Wyt + ...+ Wl + Wyl

is estimable for any given values to the W's .
With this we obtain the solution to the normal equation as

Z;:G‘Xj/:(15.9 16.1 -52 13.8 47 41 20 -43 1.9 —4.9)’
Therefore, the Best Linear Unbiased Estimator (BLUE) of q'b is

q'b=wby =159w, +16.1w, —5.2w, +13 8w, +4.7w, +4.1w, +2.0w, — 43w, +1.9w, —4.9w,
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To see if B, where i=0,1,2,3,...,9 is estimable, we

write the parameter as 3, =t ' where, in this case, we

ret ! . ro.

define 7' =\t (,t,...,Lq|, a PXDP matrix; ¢ is
-1

of dimension 1x p , so that

1 0000 0OO0OOO
010 0O0O0O0O0OTO0ODO0
001 00 O0O0O0OTO0TDO0
0001 O0O0O0OO0TO0TO0
T 000 01O0O0O0TO0DPO0
000 0O0OT1TTUO0OUO0OTO0ODO0
000 0O0OO0OT1TTUO0TUO0ODO0
000 0O0O0OO0OTTGODO
000 0O0O0OO0OO0OT1FO0
000 0O0O0O0OTO0OTO0O]1
and
1 00 00O0O0O0OTO0O 1
0100 0O0O0OO0OO0 -1
001 00O0O0O0O0 -1
0001 0O0O0O0O0 -1
T’G(X’X): 00001 0O0O0O0 -1
0000 O0OT1TUO0OOO0O -1
000 0O0O0OT1TTUO0OO0O -1
0000 O0O0OO0OT1O0 -1
000 0O0O0O0OO0OT1 -1
0000 O0O0OO0OTO0OUO0OTO0

is not estimable. However,

Since T'G(XX)iT', B
considering 3, — B, i <i', this function may be written
B-B=T8
T’:[OI—IOOOOOOO] S0 that
T'G'(X'X)z(O 1 -100000O0O0 0)=T'. This
implies that ﬂl — ,32 is estimable.

Similarly, since there are 9 (nine) parameters, taking two

for i=1 and {'=2 as where

(contrast) at a time gives 9C2 =36 estimable functions

215

o1 -1 o O O O O o0 O
o1 o -1 0 0 O O o0 O
o1 o0 o0 -1 0 O O o0 O
o1 o o0 o -1 0 0 o0 o0
o1 o o0 o o -1 0 o0 o0
o1 o o o0 o o -1 0 O
o1 o o o0 O o O -1 o
o1 o o O O o o0 o0 -1
oo 1 -1 0o 0 O O O O
0 0 1 o -1 0 0 O 0 O
0 0 1 o o0 -1 0 o0 0 O
0 0 1 o o o0 -1 0 0 O
0 0 1 o o0 o0 o -1 o0 O
0 0 1 o o0 o0 o o0 -1 o
0 0 1 o o o0 o0 o o0 -1
0O 0 O 1 -1 0 0 0 0 O
0 0 O 1 o -1 0 0 O O
T _ 0 0 O 1 o o0 -1 0 O O
0 0 O 1 o o0 o0 -1 0 O
0O 0 O 1 o o0 o0 o0 -1 O
0 0 O 1 o 0O o0 o o0 -1
o 0 0 O 1 -1 0 0 O O
0 0 0 O 1 0O -1 0 0 O
0O 0 0 O 1 o 0 -1 0 O
0O 0 0 O 1 o o0 o0 -1 O
0O 0 0 O 1 o 0 o0 0 -1
00 0 o0 O 1 -1 0 0 O
00 0 o0 O 1 o -1 0 O
0O 0 0 o0 O 1 0O 0 -1 O
0O 0 0 o O 1 o 0 0 -1
o0 o0 o o o0 1 -1 0 o
o0 o o o0 o0 1 o0 -1 o0
oo o o0 o o 1 o0 o0 -1
00 0 O O o0 o0 1 -1 0
o0 0 o O o0 o0 1 0o -1
o0 0 o O O o0 o0 1 -1

Therefore, T'G~ (X X ) =T'. Thus, we can say that a

linear combination of estimable functions is estimable.

4. Conclusions

We have shown that for any arbitrary vector w ,
g'b=wHb is estimable with BLUE ¢'b=w'b, . The

solution of the normal equation, b , confirms that this
approach is equivalent to the Nearest Neighbour method of
analysis of designed experiments. Both methods agree on the
selection of varieties though the value of these estimates are
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