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Abstract  Modeling dependence between financial returns is regarded as a difficult task. It has been shown that, gold and 
oil prices and exchange rate are skewed and leptokurtic which illustrate tail dependence and asymmetric distributional 
properties. In this study a new methodology based on copula functions and application of GARCH models with focus on 
fitting these models to mention financial time series during 2001 to 2008, is used, to show their co-movement. This 
co-movement is very important in economic policies. 
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1. Introduction 
Oil and gold have the vital role in economics. 

Sharpincrease in these prices are followed by high inflation, 
high risk for investment and economics problems. Analysis 
of financial time series co-movement is very important in 
monetary policies. In these time series, linear correlation 
may fail for showing dependence structure between oil and 
gold and exchange rate. However there would be no 
cynicism over the non-normality and skewness of many 
financial variables. This empirical fact often rules out the use 
of the multivariate normal distribution. 

Most financial data exhibit skewness and are often 
modeled with GARCH models; see Christian Francq and 
Jean-Micheal Zakoian (2010). In these models the 
conditional distribution is normal or student-t. To overcome 
the distributional constraint, copula – GARCH models are 
used; see Jondeau and Rockinger (2006), Fortin and 
Kuzmics (2002), and Patton (2006). Copula provides 
grounding to join different margins in a dependence 
structure. 

The aim of this survey is to examine how oil and gold 
prices and exchange rate move together during8 years from 
2001 to 2008 in Iran. We examine data for two periods 
before and after 2007, when prices started to fluctuate 
noticeably after asignificant upward trend. To illustrate this 
co-movement, copula GARCH models are used. 

The copula has an appealing feature which is called tail 
dependence. Tail dependence is a measure of probability that 
two variables are in lower or upper joint tails of bivariate 
distribution. In modeling co-movement, tail dependence  
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shows how variables go up and down with each other. 

Copula-GARCH model requires the marginal distribution 
for the residuals of fitted time series models. Since the 
residuals of some autoregressive moving-average (ARMA) 
models are dependent, generalized autoregressive 
conditional heteroscedasticity (GARCH) model introduced 
by Angel (1982), is considered. 

In section 2, we note GARCH model, correlation and 
copula. In section 3, descriptive statistics for pre-2007 and 
post-2007 and also correlation coefficients are showed. In 
section 4, appropriate time series models are fitted. 

In section 5, marginal distribution for residuals will be 
found. In the last section, the best copula for residuals is 
fitted. 

2. The Model Specification 
2.1. GARCH Model 

If an autoregressive moving average model (ARMA) be 
assumed for the variance of error, the model is called 
generalized autoregressive conditional heteroscedasticity 
(GARCH). In that case, the GARCH (𝑝𝑝, 𝑞𝑞) (where 𝑝𝑝 is the 
order of GARCH terms, 𝑞𝑞 is the order of arch terms) is 
given by 
𝜀𝜀𝑡𝑡 = 𝛿𝛿𝑡𝑡 × 𝜂𝜂𝑡𝑡  
𝜎𝜎𝑡𝑡2 = 𝛼𝛼0 + 𝛼𝛼1𝜀𝜀𝑡𝑡−1

2 + ⋯+ 𝛼𝛼𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞2 + 𝛽𝛽1𝜎𝜎𝑡𝑡−1
2 + ⋯+ 𝛽𝛽𝑝𝑝𝜎𝜎𝑡𝑡−𝑝𝑝2  

= 𝛼𝛼0 + �𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2

𝑞𝑞
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𝑝𝑝
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Where 𝜎𝜎𝑡𝑡2 is the variance of error at time 𝑡𝑡 and 𝜀𝜀𝑡𝑡  is a 
white noise process and 𝜂𝜂𝑡𝑡  is a sequence of (i.i.d) variables 
with unit variance and 𝛼𝛼𝑖𝑖  (𝑖𝑖 = 1, … , 𝑞𝑞) , 𝛽𝛽𝑖𝑖  (𝑖𝑖 = 1, … ,𝑝𝑝) 
are nonnegative constants and 𝛼𝛼0 is a positive constant.  
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ARMA(𝑷𝑷,𝑸𝑸)- GARCH (𝒑𝒑,𝒒𝒒) model: 
When residuals of an ARMA model are correlated, 

ARMA GARCH would be beneficial which leads to 
uncorrelated residuals. In this model, 

⎩
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Where 𝑋𝑋𝑡𝑡  is an ARMA process and 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖  are ARMA 
coefficients. 

2.2. Correlation and Copula 
Correlation measures are used to measure dependence of 

variables, such as Pearson correlation coefficient, Spearman 
and Kendal. Pearson correlation coefficient is based on 
linear association between two variables which has some 
disadvantages. For instance the relationship may be 
nonlinear and also may be asymmetric during co-movements 
hence this correlation would not be beneficial. Spearman 
correlation coefficient is a nonlinear measure associated with 
dependence of ranks and is useful with analyzing data in 
extreme observation. Kendal correlation coefficient 
measures dependence between ranked data. Left or right tail 
dependence measures tendency of variables to go up and 
down at the same time, which would be beneficial in 
economics and risk management. These types of correlations 
have association with copula functions.  

By Sklar’stheorem, it can be possible to construct joint 
distribution, 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦), for two continuous random variable 
(𝑋𝑋,𝑌𝑌), with marginal distributions  𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑌𝑌(𝑦𝑦) through 
copula function C by 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = 𝐶𝐶(𝐹𝐹𝑋𝑋(𝑥𝑥),𝐹𝐹𝑌𝑌(𝑦𝑦)). 

A copula is a cumulative distribution function with 
uniform marginal distributions 𝑈𝑈  and 𝑉𝑉 , 𝐶𝐶(𝑢𝑢, 𝑣𝑣) =
Pr⁡[𝑈𝑈 ≤ 𝑢𝑢,𝑉𝑉 ≤ 𝑣𝑣]  where 𝑢𝑢 = 𝐹𝐹𝑋𝑋(𝑥𝑥)  and 𝑣𝑣 = 𝐹𝐹𝑌𝑌(𝑦𝑦) . 
Note that the copula connects margins to a multivariate 
distribution function without any constrains on marginal 
distributions.  

The most striking feature of copula could be regarded as 
tail dependence by defining 

𝜆𝜆𝑈𝑈 = lim𝑢𝑢→1 Pr[𝑋𝑋 ≥ 𝐹𝐹𝑋𝑋−1(𝑢𝑢)|𝑌𝑌 ≥ 𝐹𝐹𝑌𝑌−1(𝑢𝑢)]

= lim⁡𝑢𝑢→1
1 − 2𝑢𝑢 + 𝐶𝐶(𝑢𝑢,𝑢𝑢)

1 − 𝑢𝑢
 

𝜆𝜆𝐿𝐿 = lim𝑢𝑢→0 Pr[𝑋𝑋 ≤ 𝐹𝐹𝑋𝑋−1(𝑢𝑢)|𝑌𝑌 ≤ 𝐹𝐹𝑌𝑌−1(𝑢𝑢)]
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𝐶𝐶(𝑢𝑢,𝑢𝑢)
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If 𝜆𝜆𝑈𝑈 ∈ (0,1], Chas uppertail dependence, and if 𝜆𝜆𝑈𝑈 = 0 
then C has not. 

There are some advantages in analyzing dependence 
structures via copula functions. First; copulas are more 
flexible in modeling and estimating marginal distribution 
using parametric multivariate distribution function. Second; 
copulas are invariant under monotone transformation. Third; 
copulas provide information not only about the strength of 
dependence but also about the dependence structure. 

Here we mention two types of most applied copulas in 
finance. 
Normal copula 

If (𝑋𝑋,𝑌𝑌)  have bivariate standard normal distribution 
with correlation 𝜃𝜃, then the copula for 𝑈𝑈1 = 𝐹𝐹1(𝑋𝑋) and 
𝑈𝑈2 = 𝐹𝐹2(𝑌𝑌) is: 

     𝐶𝐶𝜃𝜃(𝑢𝑢1,𝑢𝑢2) = 𝜙𝜙2(𝜙𝜙−1(𝑢𝑢1),𝜙𝜙−1(𝑢𝑢2);𝜃𝜃) 

= � �
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In which 𝜙𝜙 is the normal standard distribution function 
and 𝜙𝜙2 is the bivariate normal distribution function with 
correlation parameter 𝜃𝜃. 
T-student copula 

Let (𝑋𝑋,𝑌𝑌) are bivariate t-distributed withparameter 𝜃𝜃1 
as the degree of freedom and 𝜃𝜃2 as correlation parameter. 
Then the copula for 𝑈𝑈1 = 𝐹𝐹1(𝑋𝑋) and 𝑈𝑈2 = 𝐹𝐹2(𝑌𝑌) is: 
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In which 𝑡𝑡𝜃𝜃2
−1(𝑢𝑢1) is the inverse of t-student distribution 

with degree of freedom 𝜃𝜃2.  

3. Data Description 
Data are considered in two periods, before and after 2007 

when a noticeable fluctuation is occurred. 
Descriptive statistics are presented in Table 1 for two 

periods. 
All returns showed excess kurtosis. Kurtosis was 

generally greater inpre-2007 than post-2007, it can be 
interpreted as heaviness of tails in this period. For gold prices, 
skewness increased. Normal assumption was rejected for all 
the series by Jarque-Bra test. 

Table 1(a).  Descriptive statistics (pre-2007) 

 Oil Gold Exchange-rate 

Mean 47.24 122571.9 8793.7 

Max 99.35 262927 9437 

Min 22.24 64628 7989 

Skewness 0.57 0.72 -0.40 

Kurtosis 2.43 2.91 1.68 

Jarque-Bra statistics 5.048 6.47 7.20 
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Table 1(b).  Descriptive statistics (post-2007) 

 Oil Gold Exchange-rate 
Mean 76.95 231348.8 9750.7 
Max 128.19 262927 10174 
Min 40.03 216391 9195 

Skewness 0.43 1.0464 -0.55 
Kurtosis 1.85 3.25 1.8832 

Jarque-Bra statistics 1.71 3.87 2.0698 

Table 2 summarizes correlation estimates for oil and gold 
and ex-change rate for pre and post 2007. The positive linear 
correlation coefficient values between oil and gold prices 
and exchange rate indicate that these three series moved 
together in a same direction, in both periods. This high 
correlation for overall sample, pointing to great sensitivity of 
these variables. Kendall’s tau and Spearman’s rho presented 
similar evidence. The co-movements between these prices 
were in general negative in post-2007 exception between oil 
and gold prices. 

Table 2(a).  Correlation coefficient estimates (oil and gold) 

 Pearson Kendall Spearman 
Overallsample 0.81 0.72 0.87 

Pre-2007 0.946 0.81 0.941 
Post-2007 0.584 0.442 0.654 

Table 2(b).  Correlation coefficient estimates (oil and exchange rate) 

 Pearson Kendall Spearman 
Overall sample 0.660 0.661 0.816 

Pre-2007 0.920 0.830 0.955 
Post-2007 0.87 - 0.515 -0.71 

Table 2(c).  Correlation coefficient estimates (gold and exchange rate) 

 Pearson Kendall Spearman 
Overall sample 0.8171 0.833 0.945 

Pre-2007 0.886 0.881 0.97 
Post-2007 -0.60 - 0.315 -0.485 

4. Modeling Oil-gold Prices and 
Exchange Rate Co-movements 

The best ARMA (𝑃𝑃,𝑄𝑄) -GARCH (𝑝𝑝, 𝑞𝑞)  models were 
estimated for the periods before and after 2007 by 
identifying the orders and using AIC values. As we know, 
after fitting ARMA models, the residuals and their squares 
should be uncorrelated. 

We examine serial correlation via Portmanteau (L-jung 
statistic) or Box-Peirce test; see Box, G.E.P. and Pierce, D.A. 
(1970). If the correlation between residuals and their squares 
is remained, a suitable GARCH model should be examined. 
In this case, the residuals became uncorrelated. 

In this survey, as these tables show for first period, 
ARIMA (1,1,1) for oil prices, ARIMA (1,1,2) for gold prices 
and GARCH (1,1) for exchange rate were suitable with the 
least AIC (Table 3). 

Results for second period were; ARIMA (1,2,1) for gold 

prices, ARIMA (1,1,1) for oil prices and GARCH (1,0) for 
exchange rate. The relative test results are presented in table 
(4). 

Table 3(a).  Standardized Residuals Tests (oil-pre 2007) 

  statistic p-value 
Port Test R(Lag =  5) 5.396 0.21 
Port Test R(Lag = 10) 11.975 0.09 
Port Test R(Lag = 15) 19.356 0.03 
Port Test 𝑅𝑅2(Lag = 5) 5.031 0.258 
Port Test 𝑅𝑅2(Lag = 10) 10.091 0.192 
Port Test 𝑅𝑅2(Lag = 15) 13.83 0.192 

Table 3(b).  Standardized Residuals Tests (gold-pre 2007) 

  statistic p-value 
Port Test R(Lag =  5) 0.735 0.95 
Port Test R(Lag = 10) 7.85 0.94 
Port Test R(Lag = 15) 11.16 0.79 
Port Test 𝑅𝑅2(Lag = 5) 6.880 0.115 
Port Test 𝑅𝑅2(Lag = 10) 8.01 0.348 
Port Test 𝑅𝑅2(Lag = 15) 10.12 0.470 

Table 3(c).  Standardized Residuals Tests (exchange rate-pre 2007) 

  statistic p-value 
Jurque-Bra Test R 7.122 0.028 
Ljung-Box Test R(Lag = 10) 14.026 0.1717 
Ljung-Box Test R(Lag = 15) 19.17 0.205 
Ljung-Box Test 𝑅𝑅2(Lag = 10) 6.54 0.76 
Ljung-Box Test 𝑅𝑅2(Lag = 15) 7.783 0.93 
Lm Arch Test 𝑅𝑅 0.487 0.745 

Table 4(a).  Standardized Residuals Tests (oil-post 2007)  

  statistic p-value 
Box-Peirce Test R(Lag =  5) 0.1522 0.696 
Box-Peirce Test R(Lag = 10) 4.5474 0.919 
Box-Peirce Test R(Lag = 15) 5.259 0.989 
Box-Peirce Test 𝑅𝑅2(Lag = 5) 0.0249 0.874 
Box-Peirce Test 𝑅𝑅2(Lag = 10) 4.081 0.9435 
Box-Peirce Test 𝑅𝑅2(Lag = 15) 5.791 0.963 

Table 4(b).  Standardized Residuals Tests (gold-post 2007)  

  statistic p-value 
Box-Peirce Test R(Lag =  5) 1.062 0.302 
Box-Peirce Test R(Lag = 10) 9.48 0.486 
Box-Peirce Test R(Lag = 15) 11.41 0.721 
Box-Peirce Test 𝑅𝑅2(Lag = 5) 2.4675 0.7814 
Box-Peirce Test 𝑅𝑅2(Lag = 10) 5.403 0.862 
Box-Peirce Test 𝑅𝑅2(Lag = 15) 3.284 0.999 

Table 4(c).  Standardized Residuals Tests (exchange rate-post 2007) 

  statistic p-value 
Jurque-Bra Test R 0.279 0.8696 
Ljung-Box Test R(Lag = 10) 6.170 0.800 
Ljung-Box Test R(Lag = 15) 8.71 0.892 
Ljung-Box Test 𝑅𝑅2(Lag = 10) 9.28 0.505 
Ljung-Box Test 𝑅𝑅2(Lag = 15) 11.50 0.715 
Lm Arch Test R 7 0.85 
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5. Marginal Distributions of Residuals 
In this section, marginal distribution of residuals will be 

found. The goodness of fit for the margins were done by 
Kolmogorov-Smirnov test. The conditional normal 
distribution for the selected GARCH models for exchange 
rate was not rejected by Jurque-Bra test at the level for pre 
and p-value: 0.8 for post 2007. The margins for fitted ARMA 
models were t-student. The results are presented in Table (5).  

Table 5.  Marginal Distributions 

 Marginal 
Distribution Statistic Df P-value 

Oil (pre) T-student 2.52 9 0.013 
Gold (pre) T-student 2.27 2 0.025 
Oil (post) T-student 0.152 3 0.79 

Gold (post) T-student 0.134 4 0.68 
Exchange rate (pre) Normal   0.05 
Exchange rate (post) Normal   0.8 

6. Copula Models for Describing 
Co-movements 

In this section, several copula function are considered to 
capture different patterns of dependence: tail dependence, 
symmetric and asymmetric tail dependence. The 
performance of the different copula models were evaluated 
by AIC and Cramer –Von statistic for goodness of fit. The 
results for oil and gold prices and exchange rate dependence 
are presented in Tables 6. 

Table 6(a).  Fitted copula (pre-2007) 

Copula Parameter Cramer-Von p-value 
Frank 0.1826 0.1469 0.023(AIC=1.08) 

Gumbel 0.1088 0.108 0.023(AIC=-298) 
Gausian 0.1250 0.125 0.023(AIC=-284) 

Table 6(b).  Fitted copula (post-2007) 

Copula Parameter Cramer-
Von p-value 

Frank -0.552 0.598 0.023(AIC=1.16) 
Gumbel -0.49 0.635 0.023(AIC=-283) 
Gaussian 1.12 1.045 0.00491(AIC=-231) 

All the fitted distributions were not rejected for pre-2007. 
The best copula model, selected by the least AIC, was 
Gumbel copula. For post-2007, Gumbeland Frank were not 
rejected, and Gumbel copula is selected. For pre-2007, as 
table shows the dependence structure was positive and for 
post-2007 was negative. The estimated parameters indicated 
weak dependence for pre-2007. 

7. Conclusions 
Looking at the marginal distributions of the residuals of 

fitted time series to exchange rate and oil and gold prices we 
conclude that exchange rate is well described by normal and 
oil and gold prices are well described by t-student 
distribution. 

To model dependency, comparing different copula model, 
Gumbel copula for the first period and Normal copula for the 
second period were the best.  

We found a considerable decrease in oil-gold and 
exchange rate after 2007. 

Looking at asymmetric tail dependence, the parameter 
estimate for Gumbel copula in pre-2007 is not very high 
which shows that the upper and lower tail dependence are not 
significant. 
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