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Abstract  This paper proposed a hyperbolic exponential nonlinear growth model. Introducing a hyperbolic sine function 
into the Malthusian growth equation developed this. The solution, which is now a three-parameter model, was used in the 
modeling of height/diameter growth of PINE. Its ability in model prediction was compared the source model i.e. Malthusian 
growth model, an approach which mimicked the natural variability of heights/diameter increment with respect to age and 
therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute 
Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov Smirnov test and Shapiro-Wilk test was also used to 
test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models 
under study predicted closely the observed values of top height/Dbh in the hyperbolic exponential nonlinear growth models 
better than the ordinary exponential growth model. 
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1. Introduction 
In this paper, an alternative nonlinear growth model called 

the hyperbolic exponential growth model was introduced and 
compared with the existing classical exponential model built 
by Malthus. Growth is one of the well-known features in 
biological creatures (Burkhart and Strub, 1974). Growth 
models describe the changing size of something over time. 
Forest growth models are very useful for forest managers 
and forestry researchers in many respects. A forest growth 
model aims to describe the dynamics of the forest closely and 
precisely enough to meet the needs of the forester or forestry 
researcher. 

The process of developing a mathematical model is 
termed mathematical modeling. A model may help to 
explain a system and to study the effects of different 
components, and also to make predictions about behavior. A 
model may be deterministic or stochastic. A deterministic 
growth model gives an estimate of the expected growth of a 
system. Given the same initial conditions, a deterministic 
model will always predict the same result. A stochastic 
model attempts to illustrate natural variation by providing 
different predictions, each with a specific probability of 
occurrence.  

Deterministic and stochastic models serve complementary 
purposes. In forestry, deterministic models are effective for  
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determining the expected yield, and may be used to indicate 
the optimum stand condition. Stochastic models may 
indicate the reliability of these predictions, and the risks 
associated with any particular regime. Both deterministic 
and stochastic predictions can be obtained from some models. 
Although stochastic models can provide some useful 
information not available from deterministic models, most of 
the information needed for forest planning and managements 
can be provided efficiently also with the use of deterministic 
models. 

Forest managers rely on growth and yield models to assess 
whether their short-term plans will meet long-term 
sustainability goals. Growth models assist forest researchers 
and managers in many ways. Some important uses include 
the ability to predict future yields and to help consider 
alternative cultivation practices. Models provide an efficient 
way to prepare resource forecasts, but a more important role 
may be their ability to explore management options and 
silvicultural alternatives EK, A.R., E.T. Birdsall, and 
R.J.Spear (1984). Growth models provide a reliable way to 
examine silvicultural and harvesting options, to determine 
the sustainable timber yield, and examine the impacts of 
forest management and harvesting on other values of the 
forest. Forest managers may require information on the 
present status of the resource (e.g. numbers of trees by 
species and sizes for selected strata), forecasts of the nature 
and timing of future harvests, and estimates of the maximum 
sustainable harvest. Forest simulation models or forest 
growth models are very useful for forest managers and 
forestry researchers in many respects. A forest growth model 
aims to describe the dynamics of the forest closely and 
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precisely enough to meet the needs of the forester or forestry 
researcher.  

A mathematical description of a real world system is often 
referred to as a mathematical model. A system can be 
formally defined as a set of elements also called components. 
A set of trees in a forest stand, producers and consumers in 
an economic system are examples of components. The 
elements (components) have certain characteristics or 
attributes and these attributes have numerical or logical 
values. Among the elements, relationships exist and 
consequently the elements are interacting. The state of a 
system is determined by the numerical or logical values of 
the attributes of the system elements. Experimenting on the 
state of a system with a model over time is termed simulation 
(Kansal et al. 2000). Sustainable forest management relies to 
a large extent, measure on the predictions of the future 
conditions of individual stands which is achieved by 
predicting the increment from the current stand structure and 
updating the current values at each cycle of iteration using a 
functional growth model. Trees structural changes over time 
can be monitored and modeled under different cutting cycles, 
cutting intensities and optimal management policies can be 
arrived at based on the results of such simulation runs.  

 
Figure 1.  Components of forest growth and the analogous representation 
in a stand growth model 

Growth models assist forest researchers and managers in 
many ways. Some important uses include the ability to 
predict future yields and to explore silvicultural options. 
Models provide an efficient way to prepare resource 
forecasts, but a more important role may be their ability to 
explore management options and silvicultural alternatives. 
For example, foresters may wish to know the long-term 
effect on both the forest and on future harvests, of a 
particular silvicultural decision, such as changing the cutting 
limits for harvesting. With a growth model, they can 
examine the likely outcomes (Myers 1996); both with the 
intended and alternative cutting limits, and can make their 
decision objectively. The process of developing a growth 

model may also offer interesting new insights into stand 
dynamics.  

The total height (Ht) of a tree is important for computing 
and estimating tree volume, stand characteristics and 
features through site index, but accurate measurement of this 
variable is time consuming. As a result, foresters often 
choose to measure only a few trees’ heights and estimate the 
remaining heights with height-diameter equations. Foresters 
can also use height-diameter equations to indirectly estimate 
height growth by applying the equations to a sequence of 
diameters that were either measured directly in a continuous 
inventory or predicted indirectly by a diameter-growth 
equation (Zeide 1993). The diameter-growth prediction 
method is very useful in modeling growth and yield of trees 
due to lack of approximations in measuring the diameter of 
trees. Curtis (1967) investigated several equations for 
Douglas-fir that included tree diameter outside bark at breast 
height (DBH) as an explanatory variable. 

2. Materials and Methods 
Consider a nonlinear model  

𝐻𝐻𝑖𝑖 = 𝑓𝑓(𝐷𝐷𝑖𝑖, 𝑩𝑩) + 𝓔𝓔𝒊𝒊              (1) 
𝑖𝑖 = 1,2, … , 𝑛𝑛, Where 𝐻𝐻 is the response variable, 𝐷𝐷 is the 
independent variable, B is the vector of the parameters 𝛽𝛽𝑗𝑗  to 
be estimated (𝛽𝛽1, 𝛽𝛽2 … … . , 𝛽𝛽𝑝𝑝 ), ℰ𝑖𝑖  is a random error term, 𝑝𝑝 
is the number of unknown parameters, 𝑛𝑛 is the number of 
observation. The estimator of 𝛽𝛽𝑗𝑗 ’s are found by minimizing 
the sum of squares residual (𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅) function.  

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ [𝐻𝐻𝑖𝑖 − 𝑓𝑓(𝐷𝐷𝑖𝑖, 𝐵𝐵)]2𝑛𝑛
𝑖𝑖=1          (2) 

Under the assumption that the 𝓔𝓔𝒊𝒊  are normal and 
independent with mean zero and common variable 𝜎𝜎2. Since 
𝐻𝐻𝑖𝑖  and 𝐷𝐷𝒊𝒊  are fixed observations, the sum of squares 
residual is a function of B, these normal equations take the 
form of  

∑ {𝐻𝐻𝑖𝑖 − 𝑓𝑓(𝐷𝐷𝑖𝑖, 𝑩𝑩)} �𝜕𝜕𝜕𝜕(𝐷𝐷𝑖𝑖 ,𝐵𝐵)
𝜕𝜕𝛽𝛽𝑗𝑗

�𝑛𝑛
𝑖𝑖=1 = 0        (3) 

For 𝑗𝑗 = 1,2, … , 𝑝𝑝. When the model is nonlinear in the 
parameters so are the normal equations consequently, for the 
nonlinear model consider the table 2, it is impossible to 
obtain the closed solution of the least squares estimate of the 
parameter by solving the 𝑝𝑝 normal equations describe in Eq 
(3). Hence an iterative method must be employed to 
minimize the 𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅  (Draper and Smith 1981, Ratkowsky 
1983, Marquardt 1963, Seber & Wild 1989, Fekedulegn 
1996).   

The hyperbolic functions have similar names to the 
trigonometric functions, but they are defined in terms of the 
exponential function. The three main types of hyperbolic 
functions, and the sketch of their graphs are giving below. 
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Figure 2.  Cosh Function, Sinh Function and Tanh Function 

Hence, the hyperbolic sine function and its inverse 
provide an alternative method for evaluating; 

�
1

√1 + 𝑥𝑥2
𝑑𝑑𝑑𝑑 

If we make the substitution, then; 

�1 + 𝑥𝑥2 = �1 + 𝑠𝑠𝑠𝑠𝑠𝑠ℎ2(𝑢𝑢) = �𝑐𝑐𝑐𝑐𝑐𝑐ℎ2(𝑢𝑢) = cosh  (𝑢𝑢) 

Where the second equality follows from the identity 
cosh2(u) − sinh2(u) = 1 and the last equality from the fact that 
cosh(u) > 0 for all u. Hence; 

�
1

√1 + 𝑥𝑥2
𝑑𝑑𝑑𝑑 = �

cosh(𝑢𝑢)
cosh(𝑢𝑢) 𝑑𝑑𝑑𝑑

= �𝑑𝑑𝑑𝑑 = 𝑢𝑢 + 𝑐𝑐 = 𝑠𝑠𝑠𝑠𝑠𝑠ℎ−1(𝑥𝑥) + 𝑐𝑐 

The following proposition is a consequence of the integral 
above i.e. 

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠ℎ−1(𝑥𝑥) =
1

√1 + 𝑥𝑥2
 

Also, using the substitution x = tan (u), −𝜋𝜋
2

< 𝑢𝑢 < 𝜋𝜋
2
 , 

that  

�
1

√1 + 𝑥𝑥2
𝑑𝑑𝑑𝑑 = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑥𝑥 + �1 + 𝑥𝑥2� + 𝑐𝑐 

Since two anti-derivatives of a function can differ at most 
by a constant, there must exist a constant k such that 

𝑠𝑠𝑠𝑠𝑠𝑠ℎ−1(𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑥𝑥 + �1 + 𝑥𝑥2� + 𝑘𝑘 

for all x. Evaluating both sides of this equality at x = 0, we 
have 

0 = 𝑠𝑠𝑠𝑠𝑠𝑠ℎ−1(0) = log(1) + 𝑘𝑘 = 𝑘𝑘 
Thus k = 0 and 

𝑠𝑠𝑠𝑠𝑠𝑠ℎ−1(𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑥𝑥 + �1 + 𝑥𝑥2� 

for all x. Since the hyperbolic sine function is defined in 
terms of the exponential function, we should not find it 
surprising that the inverse hyperbolic sine function may be 

expressed in terms of the natural logarithm function. 

3. Hyperbolastic Exponential Growth 
Model (Hegm) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐻𝐻 �𝑟𝑟 +
𝜃𝜃

√1 + 𝑡𝑡2
� 

Separating the variables we have that; 
𝜕𝜕𝜕𝜕
𝐻𝐻

= �𝑟𝑟 +
𝜃𝜃

√1 + 𝑡𝑡2
� 𝑑𝑑𝑑𝑑 

Integrating both sides we have that; 

ln𝐻𝐻 = 𝑟𝑟𝑟𝑟 + 𝜃𝜃 arcsinh(𝑡𝑡) + 𝐶𝐶1 

Hence,  

𝐻𝐻 = 𝐴𝐴𝑒𝑒𝑟𝑟𝑟𝑟+𝜃𝜃 arcsinh (𝑡𝑡) 

Therefore, we shall apply the two models below on 
Age-height and Age-Diameter of pines (pinus carean) 
growth; 

(1) 𝐻𝐻 = 𝐴𝐴𝑒𝑒𝑟𝑟𝑟𝑟+𝜃𝜃 arcsinh (𝑡𝑡) + 𝜀𝜀, and  

    𝐷𝐷 = 𝐴𝐴𝑒𝑒𝑟𝑟𝑟𝑟+𝜃𝜃 arcsinh (𝑡𝑡) + 𝜀𝜀 

(2) 𝐻𝐻 = 𝐴𝐴𝑒𝑒𝑟𝑟𝑟𝑟 + 𝜀𝜀, and  
    𝐷𝐷 = 𝐴𝐴𝑒𝑒𝑟𝑟𝑟𝑟 + 𝜀𝜀 

4. Results and Discussion  
The tables 1-4 below show the estimated parameter for 

exponential and hyperbolic exponential growth model with 
their respective coefficient of determination (R2), MAE and 
MSE for age-height/age-diameter models. Also, tables 5 – 8 
below show the ANOVA table of the two models compared 
and establish the significance of the models with the 
calculated F greater than the tabulated. Also, the mean 
square error computed from the ANOVA table shows that 
the proposed model is better compared to its source i.e 
Malthusian growth model.  
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Table 1.  Height Parameter Estimates using Exponential growth model 

Parameter Estimate Std. Error 

A 9.330 .559 
r .013 .001 

R-Square = 90.9%, MAE = 0.9353, MSE = 1.9636 

Table 2.  Height Parameter Estimates using Hyperbolic Exponential 
growth model 

Parameter Estimate Std. Error 

A 2.178 .992 
r .001 .003 
𝜃𝜃 .448 .138 

R-Square = 95.2%, MAE = 0.71412, MSE = 1.1160 

Table 3.  Diameter Parameter Estimates using Exponential growth model 

Parameter Estimate Std. Error 

A 10.945 .515 
r .013 .001 

R-Square = 94.5%, MAE = 1.10941, MSE = 1.6964 

Table 4.  Diameter Parameter Estimates using Hyperbolic Exponential 
growth model 

Parameter Estimate Std. Error 

A 2.503 .680 
r .002 .002 
𝜃𝜃 .452 .082 

R-Square = 98.3%, MAE = 0.5071, MSE = 0.5496 

Also, the predicted and observed height and diameter were plotted to show the relationship and how best the models 
predicted the observed data on height and diameter of pines. This is also shown in the figure below: 

 

Figure 3.  Observed Height against Predicted HEGM & EGM 

 

Figure 4.  Observed Diameter against Predicted HEGM & EGM 
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Table 5.  ANOVA Table for the Hyperbolic Exponen-tial Growth model 
(Height) 

Source Sum of Squares df Mean Squares 
Regression 4886.955 3 1628.985 
Residual 15.605 14 1.115 

Uncorrected Total 4902.560 17  
Corrected Total 323.678 16  

Table 6.  ANOVA Table for the Exponential Growth model (Height) 

Source Sum of Squares df Mean Squares 
Regression 4873.136 2 2436.568 
Residual 29.424 15 1.962 

Uncorrected Total 4902.560 17  
Corrected Total 323.678 16  

Table 7.  ANOVA Table for the Hyperbolic Exponen tial Growth model 
(Diameter) 

Source Sum of Squares df Mean Squares 
Regression 6928.553 3 2309.518 
Residual 7.697 14 .550 

Uncorrected Total 6936.250 17  
Corrected Total 464.198 16  

Table 8.  ANOVA Table for the Exponential Growth model (Diameter) 

Source Sum of Squares df Mean Squares 
Regression 6910.833 2 3455.417 
Residual 25.417 15 1.694 

Uncorrected Total 6936.250 17  
Corrected Total 464.198 16  

Testing for independence of errors (Run test) and 
Normality of Error (Shapiro-Wilk test) 

Two assumptions made in the models are: 
● Errors are independent 
● Errors are normally distributed. 

These assumptions were verified by examining the 
residuals. If the fitted models are correct, residuals should 
exhibit tendencies that tend to confirm or at least should not 
exhibit a denial of the assumptions. 

Hence, we tested the following hypotheses stated below; 
 H0: Errors are independent (Using Runs Test) 
 H1: Errors are not independent 

And 
H0: Errors are normally distributed (Using 

Shapiro-Wilk test) 
 H1: Errors are not normally distributed 

Let m be the number of pluses and n be the number of 
minuses in the series of residuals. The test is based on the 
number of runs(r), where a run is defined as a sequence of 
symbols of one kind separated by symbols of another kind. A 
good large sample approximation to the sampling 
distribution of the number of runs is the normal distribution 
with mean; 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
2𝑚𝑚𝑚𝑚
𝑚𝑚 + 𝑛𝑛

+ 1 

and,  

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎2) =
2𝑚𝑚𝑚𝑚(2𝑚𝑚𝑚𝑚 −𝑚𝑚 − 𝑛𝑛)

(𝑚𝑚 + 𝑛𝑛)2(𝑚𝑚 + 𝑛𝑛 − 1)
 

Therefore, for large samples like ours the required test 
statistic is; 

𝑍𝑍 =
(𝑟𝑟 + ℎ − 𝜇𝜇)

𝜎𝜎
∼ 𝑁𝑁(0,1) 

where, 

ℎ = �      0.5, 𝑖𝑖𝑖𝑖 𝑟𝑟 < 𝜇𝜇
−0.5, 𝑟𝑟 > 𝜇𝜇

� 

Also, the required test statistic for the test of normality 
(Shapiro-Wilk test) is given by; 

𝑊𝑊 =
𝑆𝑆2

𝑏𝑏
 

Where; 

𝑆𝑆2 = �𝑎𝑎(𝑘𝑘){𝑥𝑥𝑛𝑛+1−𝑘𝑘 − 𝑥𝑥(𝑘𝑘)} 

and, 

𝑏𝑏 = �(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 

In the above, the parameter k takes the values; 
x(k) is the kth order statistic of the set of residuals and the 

values of coefficient a(k) for different values of n and k are 
given in the Shapiro-Wilk table. H0 is rejected at level α i.e. 
W is less than the tabulated value. 

Table 9.  Result of the test of independence of Residuals using Run Test 

Residual Test 
Value 

No of 
Runs Z Asymp. Sig. 

(2 tailed 
Exp. Height -0.200 5 -1.802 0.072* 

Exp. Diameter -0.0318 3 -3.002 0.003*** 

HExp. Height -0.0047 6 -1.494 0.135ns 

HExp. Diameter 0.0035 4 -2.499 0.012** 

* Significant at 10%, ** significant at 5%, *** significant at 99% and ns not 
significant 

Table 10.  Result of the test of normality of Residuals using K-S & S-W 
Tests 

Residual 
Kolmogorov-Sminov Shapiro-Wilk 

Statistic Asmp. Sig. Statistic Asmp. 
Sig. 

Exp. Height 0.262 0.003*** 0.842 0.008*** 

Exp. Diameter 0.198 0.077* 0.933 0.244ns 
HExp. Height 0.172 0.193ns 0.954 0.519ns 

HExp. Diameter 0.192 0.095ns 0.953 0.500ns 

* Significant at 10%, ** significant at 5%, *** significant at 99% and ns not 
significant 

5. Conclusions 
We have succeeded in introducing a new growth model 

using the hyperbolic function. The mean function of top 
height and Dbh over age using the Hyperbolic Exponential 
growth model predicted closely the observed values of top 
height and Diameter of Pines. However, large correlations of 
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the estimated parameters do not necessary mean that the 
original model is inappropriate for the physical situation 
under study. For example, in a linear model, when a 
particular β (a coefficient) does not appear to be different 
from zero, it does not always imply that the corresponding x 
(independent variable) is ineffective; it may be that, in a 
particular set of data under study, x does not change enough 
for its effect to be discernible. In general, efficient parameter 
estimation can best be achieved through a good 
understanding of the meaning of the parameters, the 
mathematics of the model, including the partial derivatives, 
and the system being modelled. Hyperbolic Exponential 
model proposed can also be extended to lotka’s theorem 
about a stable population in Demography. 
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