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Abstract  In many areas of medical research, a bivariate analysis is desirable because it simultaneously tests two 
correlated response variables. Several parametric bivariate procedures are available but each of them requires bivariate 
normality assumption for response variables. Although in recent years, continuous efforts have been made to test bivariate 
normality but it is not clear that which test is the most powerful in specified situation. The aim of this study is to compare 
power of eight different test of bivariate normality with at least one paper which marked them as a powerful test and dedicate 
the most powerful test in the specified situation. In this study, power of Mardia skewness, Mardia kurtosis, Henze-Zirkler, 
Mshapiro, Shapiro-wilk, Royston’s W, Doornik-Hansen and Szekely-Rizzo compared with each other using Monte Carlo 
simulation techniques. The power study shows that the most powerful test under bivariate distributions with different shapes 
is not the same. Using simulation studies, we show that “Mshapiro” test will perform much better under symmetric, skewed, 
medium tailed and heavy tailed distributions. Also, “Royston’s W” test will perform much better when underlying 
distribution is highly skewed. 
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1. Introduction 
1.1. Preliminary 

It is often the case that health science studies involve 
some correlated variables as response variables. For 
example in a clinical trial whose main purpose was to 
compare control and treatment group , treatment of chronic 
obstructive pulmonary diseases, lung function test can be 
used as the main response variable and peak expiratory flow 
rate, forced vital capacity and forced expiratory volume 
were considered as secondary response variables[1]. It is 
obvious that the correlation between these main and 
secondary response variables were great. Structure of most 
data according to different aspect such as underlying 
structure (intrinsic properties), environmental structure or 
laboratory structure is observable and usually they are 
corrected[2]. 

So, for many health research studies and medical studies 
experiments involve two correlated response data as called 
bivariate response data. For such studies, a bivariate 
analysis that compares the treatment on two response 
variables simultaneously may have advantages over two 
separate univariate test, one for each variable[3]. 

The great advantage of bivariate analysis is the  
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possibility of increased power. If the response variables are 
not too highly correlated, the bivariate test has a chance of 
finding significant differences among the treatments even if 
none of the univariate tests is significant[4]. But many of 
the procedure required to analyze bivariate date, including 
Hotelling T2 , discriminant analysis and bivariate regression, 
assume bivariate normality (BVN). So its testing has great 
importance. Actually most of bivariate tests are based on 
bivariate normality assumption and perhaps this is a reason 
that make greater use of BVN tests in recent years[5]. 

Despite the sensitivity of these bivariate techniques to 
BVN assumption, this assumption frequently does not 
tested. May be because of the lack of awareness of the 
existence of the test and the lack of information regarding 
size and power[6]. 

This study focuses on the latter issue of size and power. 
Bivariate normality test may be restated as follows. 
Consider random bivariate sample (𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) 𝑖𝑖 = 1, . . ,𝑚𝑚 
from continuous bivariate population e.g. weight and height 
of infants in a population. 

� 𝐻𝐻𝐻𝐻: (𝑥𝑥,𝑦𝑦)~𝑁𝑁2 (𝜇𝜇,∑)
    𝐻𝐻1:𝑛𝑛𝑛𝑛𝑛𝑛 𝐻𝐻0                      

�          (1) 

We examine via a Monte Carlo simulation the 
performance of some of the most common and powerful 
tests for hypothesis (1) in the literature. 

1.2. Background 

In recent years, continuous efforts have been made to test 
hypothesis (1) and numerous papers have been written on 



 International Journal of Statistics and Applications 2014, 4(1): 40-45  41 
 

 

this topic. Some properties of these tests are "overall", 
"omnibus", "directed" or "graphical" but with increase in 
the number of BVN test conducting logical test seems to be 
difficult[7]. Most of the BVN tests are development of 
univariate normality tests. Thus, most of BVN tests are 
based on skewness and kurtosis or goodness of fit 
procedure[8]. Generally, BVN tests can be classified in to 
four groups but none of them are quite distinct[8]: Class 1: 
goodness of fit test, class 2: skewness and kurtosis 
approaches, class3: consistent and invariant test, class 4: 
graphical and correlational approach. 

In the first category, most of the comparative and review 
studies introduced Royston test which is an extension of the 
Shapiro-Wilk tests, as the best[6, 9]. Mardia skewness and 
Mardia kurtosis test as the examples of second group have 
been widely used, although some previous studies have 
reported them as low power tests. Doornik and Hansen test 
based on kurtosis can be another example of this category 
[10]. For the third category approach Epps and Pully in 
1983 proposed and invariant test[11]. In the last category, 
Healy approach could be mentioned that draw BVN based 
on squared raddi[12]. 

In many previous studies, researchers have compared 
power of few tests with their proposed tests and most of the 
available tests have not been compared with each other, so 
in this study we wish to calculate power of the most 
powerful and common recommended BVN tests in previous 
researches via simulation studies for different distributions 
(symmetric , skewed and highly skewed). 

2. Methods  
A total of 8 different tests of BVN, with at least one 

paper which marked them as powerful test, were studied in 
this investigation.  

2.1. Tests for Bivariate Normality 
In this section, for completeness a brief description of 

selected test statistics is presented. Suppose 𝑋𝑋 represents a 
𝑛𝑛 × 2 bivariate data matrix, where 𝑛𝑛 is the sample size. 

2.1.1. Mardia Skewness 

Mardia skewness test is given by 

𝑀𝑀𝑀𝑀 =
1
𝑛𝑛2 �𝑔𝑔𝑖𝑖𝑖𝑖 2

𝑛𝑛

𝑖𝑖𝑖𝑖

 

where 𝑔𝑔𝑖𝑖𝑖𝑖 = (𝑥𝑥𝑖𝑖 − 𝑥𝑥̅)´𝑆𝑆−1(𝑥𝑥𝑗𝑗 − 𝑥𝑥̅) 
And 𝑆𝑆−1 is the inverse of the sample variance matrixes 

[13]. 

2.1.2. Mardia Kurtosis 

Mardia kurtosis test is given by 

𝑀𝑀𝑀𝑀 =
1
𝑛𝑛2 �𝑔𝑔𝑖𝑖𝑖𝑖2

𝑛𝑛

𝑖𝑖𝑖𝑖

 

where 𝑔𝑔𝑔𝑔𝑔𝑔 = (𝑥𝑥𝑥𝑥 − 𝑥𝑥̅)´𝑆𝑆−1(𝑥𝑥𝑥𝑥 − 𝑥𝑥̅) 
And 𝑆𝑆−1 is the inverse of the sample variance matrix 𝑆𝑆 

[13]. 

2.1.3. Henze-Zirkler 

Henze-Zirkler test with test statistic: 

𝐻𝐻𝐻𝐻 = � |𝜓𝜓𝑛𝑛(𝑡𝑡) − exp(−
�|𝑡𝑡|�

2

2

)|2𝜑𝜑𝛽𝛽(𝑡𝑡)𝑑𝑑(𝑡𝑡) 

where 𝜓𝜓𝑛𝑛(𝑡𝑡) is an empirical characteristic function , 𝜑𝜑𝛽𝛽(𝑡𝑡) 
is a kernel function that was chosen to be 𝑁𝑁2(0,𝛽𝛽2𝐼𝐼2 ) and 
𝛽𝛽 is a smoothing parameter[14, 15]. 

2.1.4. Mshapiro 

Mshapiro test is given by  

𝑀𝑀𝑀𝑀ℎ = [(1 −𝑊𝑊)𝜆𝜆 − 𝜇𝜇𝑦𝑦 ] 𝜎𝜎𝑦𝑦�  

where     𝑊𝑊 =
[∑ 𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=1  𝑦𝑦(𝑖𝑖)]2

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦¯)𝑛𝑛
1

2�  

and 𝑎𝑎 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑎𝑎) = 𝑚𝑚′𝑉𝑉−1[�𝑚𝑚′𝑉𝑉−1�(𝑉𝑉−1 𝑚𝑚′)]−
1
2 

with 𝑚𝑚 and 𝑉𝑉 being of the vector of expected value and 
the 𝑛𝑛 × 𝑛𝑛  covariance matrix of standard normal order 
statistic, respectively[16, 17]. 

2.1.5. Shapiro –wilk Test 

Shapiro –wilk test with test statistics: 

𝑆𝑆𝑆𝑆 =  
1
2
�𝑊𝑊𝑧𝑧𝑧𝑧

2

𝑖𝑖=1

 

where 𝑊𝑊𝑧𝑧𝑧𝑧  is Shapiro-Wilk´s univariate statistics for the 
𝑖𝑖 𝑡𝑡ℎ standardized variate 𝑍𝑍𝑖𝑖[18]. 

2.1.6. Royston’s W Test 

Royston extended the Shapiro-Wilk univariate test to a 
bivariate (multivariate) case. The test statistic:  

𝑅𝑅 = 𝑒𝑒𝑒𝑒 

Where 𝐺𝐺 = ∑ 𝑘𝑘𝑘𝑘2
𝑗𝑗  and 𝑒𝑒 estimated by 

𝑒̑𝑒 =
2

[1 + (𝑝𝑝 − 1)𝑐𝑐̅]
 

where 𝑐𝑐̅ = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝2−𝑝𝑝)𝑖𝑖𝑖𝑖  is an estimate for the average 

correlation among 𝑘𝑘𝑘𝑘  and 𝑘𝑘𝑘𝑘 = (𝐹𝐹−1 �𝐹𝐹(−𝑍𝑍𝑍𝑍 )
2

�)2  ; 𝐹𝐹(𝑥𝑥)is 
the normal cumulative distribution function[9]. 

2.1.7. Doornik and Hansen Test 

Doornik and Hansen’s omnibus test with test statistic: 
DH = Z1′ Z1 + Z2′Z2  where Z1 and 𝑍𝑍2  denote the 

transformed skewness and kurtosis, respectively [10]. 

2.1.8. Szekely and Rizzo Test 

Szekely and Rizzo test is given by  
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𝑆𝑆𝑆𝑆 = 𝑛𝑛(
2
𝑛𝑛�𝐸𝐸 ��𝑦𝑦𝑗𝑗 − 𝑍𝑍�� − 2

Γ �(p + 1)
2� �

Γ�𝑝𝑝 2� �

𝑛𝑛

𝑗𝑗=1

−
1
𝑛𝑛2 � |�𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑘𝑘�|)

𝑛𝑛
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where 
𝐸𝐸�|𝑦𝑦 − 𝑍𝑍|�

=
√2Γ �(p + 1)

2� �

Γ�𝑝𝑝 2� �

+ �2
𝜋𝜋
�

(−1)𝑘𝑘

𝑘𝑘! 
||𝑦𝑦||2𝑘𝑘+2

(2𝑘𝑘 + 1)(2𝑘𝑘 + 2)
Γ �(p + 1)

2� � Γ(𝑘𝑘 + 3
2� )

Γ(𝑘𝑘 + 𝑝𝑝
2� + 1)

∞

𝑘𝑘=0

 

𝑝𝑝 = 2;  and 𝑌𝑌 = [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛  is the 𝑝𝑝 × 𝑛𝑛  standardized 
data matrix ]19[ . 

2.2. Simulation Study 
All of the eight tests mentioned in the previous section 

compared with each other using samples from bivariate 
normal and non-normal distribution. Simulations were run 
for bivariate normal distribution with 𝜌𝜌 = 0.5,0,−0.5 . 
Also simulations were run for some non-normal 
distributions generated using the 𝑔𝑔 − 𝑎𝑎𝑎𝑎𝑎𝑎 − ℎ distribution 
[20], i.e. generating 𝑍𝑍𝑍𝑍𝑍𝑍  from a bivariate normal 
distribution and setting  

𝑋𝑋𝑖𝑖𝑖𝑖 = exp(𝑔𝑔𝑍𝑍𝑖𝑖𝑖𝑖 )−1 𝑔𝑔⁄ exp( ℎ 𝑍𝑍𝑖𝑖𝑖𝑖
2 2⁄ ) 

For 𝑔𝑔 = 0 this expression is taken to be   
𝑋𝑋𝑋𝑋𝑋𝑋 = 𝑍𝑍𝑍𝑍𝑍𝑍 exp(ℎ𝑍𝑍𝑍𝑍𝑍𝑍

2

2
) . 

As the 𝑔𝑔 − 𝑎𝑎𝑎𝑎𝑎𝑎 − ℎ distribution provides a convenient 
method for considering a very wide range of situation 
corresponding to both symmetric and asymmetric 
distributions, it use is highly recommended. The case 
𝑔𝑔 = ℎ = 0 corresponds to a normal distribution, the case 
𝑔𝑔 = 0 corresponds to a symmetric distribution, and as 𝑔𝑔 
increases the skewness increases as well. 

For example, with 𝑔𝑔 = 0.5 and ℎ = 0 the skewness is 
1.75, which is great[3]. In this study, simulations were run 
with 𝑔𝑔 = 0 , 0.2 , 0.5 to span the range of skewness values 
that seems to occur in practice. These different values of g, 
𝑔𝑔 = 0 , 0.2 ,0.5, stand for non-skewed, skewed and highly 
skewed distributions respectively. 

The parameter h determines the heaviness of the tail. As 
h increases, the heaviness increases as well. With ℎ = 0.2 
and 𝑔𝑔 = 0  the kurtosis equals 36. This might seem 
extreme [3], so our simulation were run for ℎ = 0 , 0.1 , 0.2.  

As the power of tests dependent on sample size, so our 
simulations were run for 𝑛𝑛 = 15 , 25, 50, 100.The monte 
carlo study was employed, where 5000 samples were 
generated for each combination of 𝑛𝑛 = 15,25,50,100  ,𝑔𝑔 =
0,0.2,0.5 and ℎ = 0,0.1,0.2.  

3. Results and Discussion 

Table 1.  Monte carlo rejection proportion for the bivariate population (ρ =0, n=15) 

g, h MK MS HZ Msh SW R DH SR 

0.0, 0.0 0.0018 0.0164 0.0368 0.1344 0.0450 0.0568 0.0.878 0.0470 
0.2, 0.0 0.0082 0.0542 0.0898 0.2274 0.1222 0.1470 0.1768 0.1050 
0.5, 0.0 0.0806 0.2828 0.4036 0.5700 0.5268 0.5610 0.5626 0.4350 
0.0, 0.1 0.0274 0.0976 0.1050 0.2900 0.1526 0.1918 0.2232 0.1346 
0.2, 0.1 0.0494 0.1422 0.1700 0.3750 0.2366 0.2798 0.2970 0.2066 
0.5, 0.1 0.171 0.3878 0.468 0.6460 0.5698 0.6138 0.6048 0.5098 
0.0, 0.2 0.1068 0.2312 0.2482 0.4550 0.3294 0.3798 0.3980 0.2980 
0.2, 0.2 0.1356 0.2812 0.3058 0.5204 0.3918 0.4452 0.4530 0.3472 
0.5, 0.2 0.2626 0.4826 0.5478 0.7004 0.6360 0.6766 0.6648 0.5844 

Table 2.  Monte carlo rejection proportion for the bivariate population (ρ =0, n=25) 

g, h MK MS HZ Msh SW R DH SR  
0.0, 0.0 0.0062 0.0278 0.042 0.1188 0.0492 0.0494 0.0616 0.0486  
0.2, 0.0 0.043 0.1384 0.1222 0.2958 0.2158 0.235 0.2196 0.1466  
0.5, 0.0 0.2994 0.6326 0.6636 0.771 0.832 0.8422 0.824 0.7096  
0.0, 0.1 0.1346 0.1994 0.1424 0.3662 0.2396 0.2764 0.2936 0.1876  
0.2, 0.1 0.2004 0.3188 0.263 0.4784 0.3854 0.4106 0.4182 0.3196  
0.5, 0.1 0.4706 0.7334 0.7222 0.8274 0.832 0.8472 0.8338 0.7638  
0.0, 0.2 0.3626 0.4258 0.381 0.599 0.5022 0.543 0.571 0.4422  
0.2, 0.2 0.412 0.5048 0.4694 0.671 0.5956 0.6298 0.642 0.5298  
0.5, 0.2 0.6206 0.7952 0.7862 0.8654 0.8634 0.8764 0.8702 0.8188  
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Table 3.  Monte carlo rejection proportion for the bivariate population (ρ =0, n=50) 

g, h MK MS HZ Msh SW R DH SR 
0.0, 0.0 0.016 0.0448 0.0442 0.11 0.0518 0.0522 0.057 0.0484 
0.2, 0.0 0.1214 0.3454 0.2316 0.4352 0.4348 0.4396 0.4206 0.2976 
0.5, 0.0 0.65 0.9646 0.934 0.9532 0.994 0.9938 0.9918 0.9628 
0.0, 0.1 0.3616 0.3376 0.2296 0.5014 0.4066 0.4216 0.4912 0.305 
0.2, 0.1 0.4994 0.6056 0.4576 0.6876 0.6636 0.676 0.6852 0.5566 
0.5, 0.1 0.839 0.977 0.9462 0.9654 0.9872 0.987 0.9850 0.9704 
0.0, 0.2 0.7478 0.6376 0.6426 0.8072 0.7832 0.7904 0.8336 0.7164 
0.2, 0.2 0.7954 0.7728 0.7578 0.8694 0.8696 0.8734 0.8940 0.8114 
0.5, 0.2 0.9312 0.977 0.9706 0.977 0.988 0.9882 0.9876 0.9812 

Table 4.  Monte carlo rejection proportion for the bivariate population (ρ =0, n=75) 

g, h MK MS HZ Msh W R DH SR 
0.0, 0.0 0.0254 0.0428 0.0536 0.1028 0.0498 0.0502 0.0534 0.0518 
0.2, 0.0 0.1846 0.5462 0.3364 0.5577 0.6284 0.6268 0.4206 0.2976 
0.5, 0.0 0.6500 0.9646 0.934 0.9532 0.994 0.9938 0.9918 0.9626 
0.0, 0.1 0.3616 0.3376 0.2296 0.5014 0.4066 0.4216 0.4912 0.305 
0.2, 0.1 0.4994 0.6056 0.4576 0.6876 0.6636 0.676 0.6852 0.5566 
0.5, 0.1 0.8390 0.977 0.9462 0.9654 0.9872 0.987 0.985 0.9704 
0.0, 0.2 0.7478 0.6376 0.6426 0.8072 0.7832 0.7904 0.8336 0.7164 
0.2, 0.2 0.7954 0.7728 0.7578 0.8694 0.8696 0.8734 0.8899 0.8114 
0.5, 0.2 0.9312 0.9770 0.9706 0.9770 0.9880 0.9882 0.9876 0.9812 

Table 5.  Monte carlo rejection proportion for the bivariate population (ρ =0.5, n=15) 

g, h MK MS HZ Msh SW R DH SR 

0.0, 0.0 0.0018 0.0164 0.0368 0.1344 0.0450 0.5760 0.0868 0.0470 
0.2, 0.0 0.0092 0.0606 0.0978 0.2484 0.1306 0.1518 0.1742 0.1158 
0.5, 0.0 0.1106 0.312 0.4534 0.5988 0.5278 0.5674 0.4130 0.3404 
0.0, 0.1 0.0272 0.0980 0.1100 0.2956 0.1532 0.1902 0.2086 0.1350 
0.2, 0.1 0.0602 0.1598 0.188 0.3864 0.2380 0.2776 0.2960 0.2198 
0.5, 0.1 0.2018 0.4246 0.5038 0.6602 0.5800 0.6122 0.5940 0.5382 
0.0, 0.2 0.1196 0.2410 0.254 0.4726 0.3194 0.3774 0.3846 0.3044 
0.2, 0.2 0.1528 0.2864 0.3228 0.5310 0.3880 0.4386 0.4426 0.3662 
0.5, 0.2 0.2996 0.5064 0.5658 0.7080 0.6324 0.6638 0.6580 0.5986 

 

The results in Table 1, Table 2, Table 3 and Table 4 were 
based on 5000 samples of sizes 15, 25, 50, 75 respectively, 
from a bivariate population with uncorrelated variables. 

The result in Table 5, Table 6, Table 7 and Table 8 were 
based on similar conditions from a bivariate population with 
𝜌𝜌 = 0.5 for two considered variables also the results in  

Table 9, Table 10, Table 11 and Table 12 were for two 
considered variables with 𝜌𝜌 = −0.5. 

A nominal significance level of 0.05 wasused. ”mvnormt
est”, ”mvshapiroTest”, ”MVN”, “normwhn.test” and 
"energy” Library in R program version 2.15.3 were used . 

Under the bivariate distribution with uncorrelated 
variables and 𝑛𝑛 = 15, the simulation results showed that 
"Msh" test statistic performed better than any of the test 
statistics compared here for almost all distributions 

(symmetric, skewed and heavy or light tailed). It followed 
by "R" and "DH”. The findings of this study show that 
"Msh" test had greater power than others for symmetric, 
skewed and heavy tailed uncorrelated, bivariate 
distributions but not for highly skewed when sample size is 
medium(𝑛𝑛 = 25). For highly skewed uncorrelated bivariate 
distributions when sample size is medium it seems that "R" 
is the best and "SW" and "DH" are the second and the third. 

But for large samples(𝑛𝑛 ≥ 50) under similar condition 
approximately power of "Msh”,"R”, and "DH" are similar 
and better than others. 

The simulation results under bivariate distribution with 
𝜌𝜌 = 0.5 ,−0.5 were closely similar. In general simulation 
performed for bivariate distributions with different 
correlations showed similar power trends. 
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Table 6.  Monte carlo rejection proportion for the bivariate population (ρ =0.5, n=25) 

g, h MK MS HZ Msh SW R DH SR 
0.0, 0.0 0.0062 0.0278 0.042 0.1188 0.0408 0.0516 0.0582 0.0486 
0.2, 0.0 0.0512 0.1548 0.1476 0.3094 0.2186 0.2328 0.2226 0.1744 
0.5, 0.0 0.3568 0.6724 0.7188 0.781 0.8184 0.2232 0.806 0.7552 
0.0, 0.1 0.1372 0.2052 0.144 0.361 0.227 0.2642 0.2858 0.1926 
0.2, 0.1 0.2222 0.3498 0.2874 0.4956 0.3978 0.4176 0.4264 0.3408 
0.5, 0.1 0.5278 0.7516 0.7434 0.831 0.8298 0.8272 0.8226 0.785 
0.0, 0.2 0.379 0.436 0.3956 0.6108 0.507 0.5378 0.5786 0.455 
0.2, 0.2 0.4398 0.5294 0.481 0.68 0.5894 0.6178 0.6416 0.5454 
0.5, 0.2 0.6582 0.8044 0.7962 0.8672 0.8536 0.8566 0.8576 0.8324 

Table 7.  Monte carlo rejection proportion for the bivariate population (ρ =0.5, n=50) 

g, h MK MS HZ Msh SW R DH SR 

0.0, 0.0 0.016 0.0448 0.0442 0.1100 0.0470 0.0466 0.0474 0.0484 

0.2, 0.0 0.1342 0.3674 0.2614 0.4692 0.4422 0.4262 0.423 0.3336 

0.5, 0.0 0.7182 0.974 0.9606 0.9592 0.9926 0.992 0.9908 0.9790 

0.0, 0.1 0.3738 0.3518 0.2404 0.5122 0.406 0.4056 0.4908 0.3198 

0.2, 0.1 0.5242 0.6268 0.4818 0.7084 0.6718 0.6494 0.6928 0.5750 

0.5, 0.1 0.873 0.9808 0.9618 0.9722 0.987 0.985 0.986 0.9860 

0.0, 0.2 0.7632 0.6604 0.6586 0.8226 0.7874 0.781 0.8402 0.7278 

0.2, 0.2 0.8248 0.7836 0.7712 0.8756 0.8698 0.8584 0.8956 0.8286 

0.5, 0.2 0.9512 0.9784 0.976 0.982 0.9886 0.9884 0.9884 0.9854 

Table 8.  Monte carlo rejection proportionfor the bivariate population (ρ =0.5, n=75) 

g, h MK MS HZ Msh SW R DH SR 
0.0, 0.0 0.0254 0.0428 0.0536 0.1028 0.0482 0.0508 0.0486 0.0518 
0.2, 0.0 0.2196 0.578 0.3746 0.5818 0.6352 0.615 0.6126 0.4910 
0.5, 0.0 0.8702 0.9978 0.9958 0.9892 0.9992 0.9996 0.9992 0.9984 
0.0, 0.1 0.5546 0.4178 0.3252 0.6166 0.5456 0.5346 0.6404 0.4246 
0.2, 0.1 0.7166 0.7768 0.6372 0.8234 0.8206 0.8048 0.8327 0.7394 
0.5, 0.1 0.9650 0.9980 0.993 0.9914 0.9984 0.998 0.9986 0.9974 
0.0, 0.2 0.9128 0.7562 0.821 0.9136 0.9178 0.9038 0.9466 0.8696 
0.2, 0.2 0.9392 0.8776 0.904 0.9508 0.9582 0.9518 0.9672 0.9344 
0.5, 0.2 0.9912 0.9960 0.9962 0.9970 0.9982 0.9980 0.9986 0.9974 

 
4. Conclusions 

In health and medical researches , were two variables such 
as cholesterol level and blood pressure are considered for 
important diagnoses, the bivariate values may be related in 
an unknown way[21], so bivariate analysis is considered. An 
important topic for applying most of the bivariate analysis, 
BVN assumption, is necessary. So make a decision about 
BVN considered an important problem. According to 
number of BVN available test, we have compared them 
under various bivariate distributions with different 
correlations and different sample sizes. 

The results of the simulation studies showed that the 
Mshapiro test performed better than most of its competitors 
whether the underlying distribution was normal, or 
non-normal, skewed or symmetric or heavy tailed, but not 
for highly skewed also it makes type I error inflated. It means 

that we could not conclude that Mshapiro is the best overall 
but we could say Mshapiro is the best under specific 
conditions. The simulation results also revealed that similar 
power could be considered for "SW”, "R", "DH" whether the 
underlying distribution was highly skewed and they had 
greater power than other competitors. Therefore, Mshapiro’s 
application where underlying distribution is not highly 
skewed recommended , since it is more powerful than any of 
alternatives compared here for almost all sample sizes and 
Royston’s application recommended where Mshapiro is not 
the best. 
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