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Abstract  Forecasting financial time series, such as stock price indices, is a complex process. This is because financial 

time series are usually quite noisy and involve ambiguous seasonal effects due to holidays, weekends, irregular closure 

periods of the stock market, changes in interest rates, and announcements of macroeconomic and political events. Support 

vector machines (SVM) and Artificial neural networks (ANN) have been used in a variety of applications, mainly in 

classification, regression, and forecasting problems. In the SVM method for both regression and classification, data is 

mapped to a higher-dimensional space and separated using a maximum-margin hyperplane. This paper investigated the 

application of SVM in financial forecasting. The autoregressive integrated moving average (ARIMA), ANN, and SVM 

models were fitted to Al-Quds Index of the Palestinian Stock Exchange Market time series data and two-month future 

points were forecast. The results of applying SVM methods and the accuracy of forecasting were assessed and compared to 

those of the ARIMA and ANN methods through the minimum root-mean-square error of the natural logarithms of the data. 

We concluded that the results from SVM provide a more accurate model and a more efficient forecasting technique for 

such financial data than both the ANN and ARIMA models. 

Keywords  ARIMA model, Artificial neural networks, Back-propagation, Forecasting, Kernel function, Nonlinear time 
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1. Introduction 

Recently, forecasting of future observations based on 

time series data has received great attention in many fields 

of research. Several techniques have been developed to 

address this issue in order to predict the future behaviour of 

a particular phenomenon. The traditional approach based on 

Box and Jenkins' Autoregressive Integrated Moving 

Averages (ARIMA) models is commonly used because the 

resulting models are easy to understand and interpret. 

Support vector machines (SVM) and artificial neural 

networks (ANN) are alternative methods that can be used 

for forecasting in nonlinear time series and can overcome 

the problems of nonlinearity and nonstationarity. The use of 

SVM and ANN is increasing rapidly because of their ability 

to form complex nonlinear systems for forecasting based on 

sample data. In particular, in recent years, SVM and ANN 

have been applied in economic forecasting to predict stock 

market indicators in line with economic growth in various 

countries[1]. When fitting ARIMA models to economic and 

financial data that are either nonlinear or non-stationary 

time series, the results of forecasting are expected to be  

 

* Corresponding author: 

Mahmoud K. Okasha (m.okasha@palnet.com) 

Published online at http://journal.sapub.org/statistics 

Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved 

inaccurate. The forecast values tend to converge to the 

mean of the series after a few forecast values. Thus, 

alternative forecasting methods such as SVM need to be 

examined on non-linear and non-stationary time series. 

The research problem in this study involves the 

applicability of the SVM method and its ability to forecast 

financial time series data; to investigate this, we compare 

SVM with those of the ARIMA and ANN techniques. The 

data used in this investigation is a time series that represents 

the daily scores of Al-Quds index of the Palestine Stock 

Exchange (PSE), published in the Palestine Stock Exchange 

[2]. The number of observations in the series is 1,321, 

representing daily scores in the period from August 1, 2007 

to December 31, 2012, a period which includes the recent 

economic crises in the global financial market. The PSE 

operates five days per week, excluding national and 

religious holidays. Al-Quds index is the main indicator used 

to describe changes in stock prices in the market. This is an 

index number that measures the overall level of rise and 

decline in the prices of companies trading on the PSE. It is 

easy to see that the time series is not a stationary one. 

Several studies have been conducted on the comparison 

between ARIMA models, SVM, and ANN in forecasting 

using time series data. Most of these studies have been 

data-based and many have used economic data. Kuan and 

White[3] discussed the possibility of using ANN for 

economic variables and the usability of traditional time 
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series models, and emphasized the similarities between the 

two methods. In a similar study, Yao and Tan[4] used 

neural networks to predict several kinds of long-term 

exchange rates, whereas Tkacz[5] compared the forecasting 

abilities of time series models, linear models, and ANN 

models using Canadian gross domestic product (GDP) data 

and financial variables. Zhang[6] used a hybrid approach 

that combined the ARIMA and ANN models. Junoh[7] 

forecast the GDP of the Malaysian economy using 

information based on economic indicators. Mohammadi,  

et al.[8] compared several methods of forecasting the spring 

inflow to the Amir Kabir reservoir in the Karaj river 

watershed. Rutka[9] conducted a study to forecast network 

traffic using ARIMA and ANN. Some of these studies 

showed that ANN has limitations, such as an overtraining 

problem that emerges from the implementation of empirical 

risk minimization principles, making it fall into a local 

optimal solution. It is also necessary to select a large 

number of controlling parameters, which is very difficult to 

carry out.  

SVMs were originally developed by Vapnik[10] for 

pattern recognition problems to provide a novel approach to 

improve the generalization property of neural networks. 

Recently, with the introduction of the e-insensitive loss 

function, SVMs have been extended to solve nonlinear 

regression, classification, and time series forecasting 

problems[11, 12, 13, 14]. SVMs’ ability to solve nonlinear 

regression estimation problems makes it a promising 

technique in time series forecasting[15, 16]. This has 

become a topic of intense interest due to its successful 

application in classification and regression tasks. Studies on 

SVM have shown some success in application to certain 

fields, such as pattern recognition and function regression. 

In terms of the application of SVM to financial time series 

forecasting, Kim[17] applied SVM to predict the stock price 

index for South Korea, while Tay & Cao[18] used SVM to 

predict five kinds of exchange rates, including GBP/USD, 

for the purpose of comparing between SVM and neural 

networks. 

In this paper, we compares the performance of SVM with 

the ARIMA models and ANN learning theory, using a 

real-world dataset to train the models and to create a 

two-month forecast (10% of the number of observations). 

The results show that the tendencies of the predicted value 

curve using SVM are basically identical to those of the 

actual value curve. In addition, since there is no structured 

way to choose the optimal parameters of SVM, this study 

investigates the variability in performance with respect to 

the parameters. 

2. Artificial Neural Networks 

Rosenblatt[19, 20] developed the first single 

feed-forward network. Here, the output obtained from this 

single layer was the weighted sum of various inputs. A 

major development in ANN occurred when Cowan[21], 

introduced new functions, such as activation of the smooth 

sigmoid function, which have the capacity to deal with 

nonlinear functions more effectively than the learning 

process ―perceptron‖ model. The procedure which uses the 

gradient-descent learning technique for multilayer 

feed-forward ANN is known as back-propagation, or the 

generalized delta rule, as set forth by Rumelhart, et al.[22] 

and developed by Zou et al.[23]. Initial weights are selected 

randomly between –1 and +1 and the power of NN models 

largely depends on how their layer-connection weights are 

adjusted over time. The weight adjustment process is 

known in NN methodology as training of the network. The 

objective of the training process is to update the weights in 

such a way as to facilitate learning of the patterns inherent 

in the data. The data is divided into two groups—the 

training group and the test group, where the training group 

is used to estimate the weights in the model. 

The network outputs depend on the input units, hidden 

units, weights of the network, and the activation function. 

The ANN method uses the error or cost function to measure 

the difference between the target value and the output value. 

The back-propagation method takes the network error and 

propagates it backward into the network. Errors are used at 

each neuron to update the weights. The weights of the 

network are frequently adjusted in such a way that the error 

or objective function becomes as small as possible.  

The output of ANN, assuming linear output neuron j, a 

single hidden layer with h sigmoid hidden nodes, and an 

input variable (xi), is given by: 
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where g(.) is the linear transfer function of output neuron k 

and bk is its bias; wj is the connection weight between 

hidden layers and output units; and f(.) is the transfer 

function of the hidden layer.  

Transfer functions can take several forms. The most 

widely used transfer functions are: 
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n

i i
s


 is the input signal, referred to as 

the weighted sum of incoming information. 

The gradient descent method is utilized to calculate the 

weights of the network and to adjust the weight of 

interconnection to minimize the sum of the squared error 

(SSE) of the network. This is given by: 
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where kY  and ˆ
kY  are the true and predicted output 

vectors, respectively, of the kth output node. The constant ½ 

is used to facilitate computation of the derivative for the 

error function, which is essential in estimating the 

parameters[24]. 

For a univariate time series forecasting problem, the 

inputs of the network are the past lagged observations 

1 2( , ,....., )t t t px x x    
and the output is the predicted 

value ( )ix  [25]. Hence, ANN can be written as: 

1 2( , ,....., , )t t t t p tx g x x x w            (4) 

where w is a vector of all parameters and g(.) is a function 

determined by the network structure and connection 

weights. For more detailed information on the use and 

application of ANN for a time series, see Okasha & 

Yassin[26], and Tseng, Yu & Tzeng[27]. 

3. Support Vector Machines 

SVM is used for a variety of purposes, particularly 

classification and regression problems. SVM can be 

especially useful in time series forecasting, from the stock 

market to chaotic systems[28]. The method by which SVM 

works in time series is similar to classification: Data is 

mapped to a higher-dimensional space and separated using 

a maximum-margin hyperplane. However, the new goal 

differs in that our goal is to find a function that can 

accurately predict future values[29].  

Consider a given training set of n data points  
1

,
n

i i i
x y


 

with input data 
p

ix  , where p is the total number of 

data patterns and the output is iy  . Generally, the idea 

of building SVM to approximate a function involves 

mapping the data x into a high-dimensional feature space 

via nonlinear mapping and performing a linear regression in 

the feature space. SVM approximates the function in the 

following form:  

   Ty x w x b                 (5) 

where, φ(x) represents a high-dimensional feature space 

that is nonlinearly mapped from the input space x[30]. The 

coefficients w and b are estimated by minimizing the 

following function: 
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subject to the following constraints: 
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This gives:   

  1 0 for 1,2,......,i iy wx b i n        (8) 

To estimate w and b, the above equation is transformed to 

the prime function below by introducing the positive slack 

variables ξ and ξ* as follows: 
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The first term (1/2) 
Tw w in Eq. (9) is the weights vector 

norm, yi is the desired value, and C is referred to as the 

regularized constant, determining the tradeoff between the 

empirical error and the regularized term. ε is called the tube 

size of SVM and is equivalent to the approximation 

accuracy placed on the training data points. Here, the slack 

variables ξ and ξ* are introduced. Using Lagrange 

multipliers and exploiting the optimality constraints, the 

decision function given by Eq. 9 takes the following explicit 

form: 
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with the constraints:  
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This can also be expressed in the form: 
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or more generally as: 
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where  ,iK x x is defined as the kernel function[31, 32]. 

The value of the kernel is equal to the inner product of two 

vectors, Xi and Xj, in the feature space φ(xi) and φ(xj), that 

is,      ,i i iK x x x x   . Typical examples of the 

kernel function are: 
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Here, γ, r, and d are kernel parameters; the kernel 

parameter need to be chosen carefully, as they implicitly 

define the structure of the high dimensional feature space 

φ(x) and thus controls the complexity of the final solution 

[33]. 

4. Application of the Box-Jenkins 
Methodology 

The available time series data was composed of 1,321 

observations representing Al-Quds daily stock price index 

for Palestine. The series was transformed using natural 

logarithms to stabilize the time series. Figure 1 represents 

the original time series and indicates that the time series 

was non-stationary and involved a sharp decline in stock 

market indices at the end of 2008; this was a period of 

worldwide economic crisis, which influenced all global 

financial markets. The natural logarithms of the series are 

displayed in Fig. 2 and the first order differences of the 

natural logarithms are shown in Fig. 3. No clear seasonal 

fluctuations in the series are observed, and the seasonal 

effects, if any, are disregarded. 

 

Figure 1.  Al-Quds Index Daily Data 

 

Figure 2.  The Logarithms of Al-Quds Index Daily Data 
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Figure 3.  The 1st Differences of the Logarithms of Al-Quds Index 

The sample autocorrelation and partial autocorrelation functions of the transformed Al-Quds index of the PSE time series, 

as shown in Fig. 4 and 5, indicated that the series had been stabilized, the transformed series was  stationary, and some 

autocorrelations were significantly different from zero. 

The stationarity of the transformed series was tested using Kwiatkowski, et al.[34] method, and the results indicated that 

the KPSS level was 0.1542, while the truncation lag parameter was 8, and the p-value was approximately 0.1. This 

indicates that the first difference of the natural logarithms of Al-Quds index of PSE series was stationary.  

 

Figure 4.  The Autocorrelation Function of the Differenced Logarithms of the Series 

 

Figure 5.  The Partial Autocorrelation Function of the Differenced Logarithms of the Series 

To fit the Box-Jenkins ARIMA model for the 

transformed series, we identified the orders p and q of the 

ARIMA model while fixing d at 1. The correlogram of the 

transformed series given in Fig. 4 and 5 above enables us to 

identify the values of these parameters. In this correlogram, 

we noted a significant autocorrelation and partial 

autocorrelation at lag 1. There are several graphical tools to 

facilitate identification of the ARMA orders. These include 

the corner method[35] and the extended autocorrelation 

(EACF) method[36, 37].  

We applied the EACF method to the underlying 

differenced time series and compared the results of different 

estimates of p and q. The result of this comparison was that 

an appropriate model for the series could be ARIMA(0,1,1), 
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ARIMA(1,1,2), or ARIMA(2,1,2). Therefore, the 

parameters for the three models were estimated, and the 

best model that could predict future values for stock prices 

among the models was identified. The results of this 

analysis revealed that the best model is ARIMA (0, 1, 1), 

since this had the lowest Akaike information criterion (AIC), 

and Bayesian information criterion (BIC). 

The parameters of the ARIMA(0,1,1) model, as the best 

one, were estimated and the following model was obtained:  

1
ˆ   0.1769 tY  

 

with AIC = -7717.59 and RMSE= 0.0282, where Yt denotes 

the differenced natural logarithm of Al-Quds index of the 

PSE series. Note that the intercept was omitted from this 

model, since it was not significant and equalled zero. 

Figure 6 displays three diagnostic tools for the fitted 

ARIMA(0,1,1) model. These are plots of the standardized 

residuals, the sample ACF of the residuals, and the p-values 

for the Ljung-Box test statistic for a whole range of values 

of K from 2 to 12. The horizontal dashed lines at 5% help 

determine the size of the p-values. These plots and the 

significance test of the coefficients suggest that the 

ARIMA(0,1,1) model fits the natural logarithms of Al-Quds 

index of the PSE time series adequately.  

 

Figure 6.  Diagnostic Plots for the Residuals of the ARIMA(0,1,1) Model 

Using the model in Eq. 13 above to forecast two-month future values yields, the forecast values displayed in Fig. 7 were 

obtained. The first two values were close to the actual values, while the rest quickly settled to the mean of the series; the  

95% forecasting confidence limits contained all of the actual values. This shows that ARIMA models may be suitable for 

forecasting a few, but not many, future values. 
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Figure 7.  Actual, Forecast and Forecast Limits for Differenced Logarithms of the Series 

5. Fitting the Artificial Neural Network 
Model to the Data 

This section focuses on fitting the ANN model described 

in Section 2 into the time series data for Al-Quds daily 

stock price index for Palestine. The data had 1,321 points, 

as shown in Fig. 1 and described in section 4. The number 

of observations in the training set was the same as the 

number of observations used in fitting the ARIMA model. 

That is, 90% (1,255 observations) of the series was 

considered a training set, and 10% (66 observations— 

representing more than a two-month period) was used as a 

test set. We assumed a continuous learning rate throughout 

the training of the network. R statistical software was used 

for all computations. 

The selection of hidden layers for the network is not 

straightforward. When the number of hidden layer units is 

too small, correlation of the output and input cannot be 

assessed properly, and errors increase. However, when the 

number of hidden layer units is sufficiently large, unrelated 

noise and the correlation of both input and output can be 

examined, as the error increases accordingly. Many 

methods have been developed to identify the number of 

hidden layer units, but there is no ideal solution to this 

problem[38]. Therefore, in our analysis, we started with one 

hidden layer and gradually increased the number to 15 

layers; we then attempted to find the network with the least 

RMSE for the residuals.  

Since the series may also contain seasonality effects, 

different numbers of seasonal lags were used as inputs. 

When the feed-forward back-propagation network for the 

stock price index data was applied with one unit in the 

hidden layer associated with different values of lags and 

different learning rates, 90 results produce 90 networks. The 

best network with the minimum RMSE of the residuals in 

the various runs with different numbers of seasonal lags 

was that with one unit in the hidden layer and five seasonal 

lags. The minimum RMSE of the natural logarithms of 

Al-Quds index of the PSE for the final network equalled 

0.02990. Taking into consideration the independence of the 

learning rates, the number of lags considered and the 

number of hidden layers, the RMSE value did not change a 

great deal.  

Using the above ANN model, we obtained the 

forecasting results for Al-Quds index of the PSE time series 

as shown in Fig. 8. Moreover, through this figure we can 

observe that the values of forecasting were almost identical 

to the actual values of the time series, although ANN does 

not require the time series to be stationary.  

Figure 9 shows the residuals of the final network and 

indicates that they were very small, with the majority close 

to zero, and most falling in the interval between -0.05 and 

0.05. We may conclude that the best network to forecast the 

logarithms of the Al-Quds index of the PSE time series is 

that which uses the back-propagation algorithm with 15 

units in the hidden layer, five seasonal lags used as inputs, 

and a learning rate of 0.01. 
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Figure 8.  Observed and Fitted Values of the Logarithms of the Series Using ANN 

 

Figure 9.  Residuals of the ANN model of the Logarithms of the Series 

6. Fitting the SVM to Data 

The time series consisted of 1,321 points of daily 

Al-Quds indices of the PSE, as shown in Fig. 1. The series 

was transferred to natural logarithms to stabilize its variance, 

as shown in Fig. 2. First, 90% of the points in the series 

were used for training and the rest for testing the SVM. 

Ten-fold cross-validation was also performed.   

Now, given a time series 1 2{ , ,....., }nx x x , to make 

forecasting about it using SVM, the time series needed to be 

transferred into an autocorrelated dataset. That is to say, if 

{ }tx  is the goal value of forecasting, the previous values 

 1 2, ,.....,t t t px x x    should be the correlated variables 

of the input. From this, we were able to map the 

autocorrelated input variables 1 2{ , ,....., }t t t t px x x x  


 

to the goal variable, { }t ty x . Here p is an embedding 

dimension. We considered the effect of the forecasting 

horizon and the embedding dimension on the performance 

of SVM. As to the choice of embedding dimension, this 

needed to be made in accordance with practical problems. 

Transferring the data in this way, we obtained the time 

series data suitable for SVM learning. The prediction 

performance was evaluated using RMSE.  
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Because we did not know the optimal embedding 

dimension p, we first had to determine this value. With the 

other conditions fixed, we used p={2,3,4,5,6,7,8,9} to carry 

out our preliminary experiments. From these experiments, 

we found that when p=5, RMSE was the lowest, so we 

concluded that five-days lagged daily indices was most 

suitable for forecasting the next-day’s index. We divide the 

time series data into two parts. The first included 1,256 

points (90% of the series), which were used for both 

training and validation—to train the SVM and to find its 

optimal parameters. The test set was composed of the 

remaining 66 data points (10% of the series) which was 

used to check the predictive power of SVM.  

Since there is no structured method for selecting the free 

parameters of SVMs, the generalization error and number 

of support vectors with respect to C and ε were examined. 

The kernel parameters γ and C were selected based on the 

validation set. RMSE and the number of support vectors 

with respect to the free parameters were investigated. In this 

investigation, the Gaussian function was used as the kernel 

function of the SVMs. Our experiments showed that a width 

value of the Gaussian function of γ=0.02 produced the best 

possible results. Figures 10 shows the logarithms of the 

series together with its predicted values for the training set 

and the forecast values of the test set, with the values of 

RMSE indicated below each figure for different 

experimental values of γ. C and ε were arbitrarily set at 10 

and 1,000, respectively. Table (1) shows the values of the 

RMSEs at various experimental values of γ with C fixed at 

100. The table shows that when γ ϵ (0.00001, 0.02), the 

RMSE decreases as γ increases, while γ ϵ (0.02, 10000), it 

increases as γ increases. This indicates that too small a 

value of γ ϵ (0.00001, 0.02), or too large a value of γ ϵ 

(0.02,10000) can cause the SVM to under-fit. An 

appropriate value for γ would be approximately 0.02 for this 

time series. This is because the value of γ=0.02 produce the 

minimum RMSE and hence prove to be the best possible 

value for γ and provide the best possible forecasts. Only the 

results of γ are illustrated; the same approach can be applied 

to the other two parameters. 

Table 1.  Values of the RMSE for various experimental values of γ with C 
fixed at 100 

γ-value RMSE 

0.0001 0.02458 

0.0005 0.00971 

0.001 0.00939 

0.005 0.00778 

0.01 0.00747 

0.02 0.00703 

0.05 0.00794 

0. 1 0.00859 

0.5 0.00992 

1.0 0.01087 

5.0 0.04899 

10.0 0.07574 

100.0 0.13965 

 

 

Figure 10.  Observed and Fitted Values of the Logarithms of the Series Using SVM (γ=0.02) 
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Table 2.  Observed and Forecasted Values of Daily Scores of Al-Quds Index for 66 Days at End of 2012 Using the Final SVM 

No. Observed Forecast No. Observed Forecast 

1 423.28 425.67 34 460.36 458.66 

2 427.50 427.41 35 457.99 459.70 

3 429.17 430.22 36 457.17 458.59 

4 427.46 432.05 37 456.79 457.81 

5 426.14 431.73 38 453.75 457.36 

6 428.68 430.93 39 452.56 455.36 

7 432.90 432.07 40 451.79 453.99 

8 436.81 434.74 41 453.38 453.09 

9 445.76 437.78 42 452.84 453.74 

10 438.86 443.90 43 451.40 453.56 

11 436.56 442.00 44 451.52 452.66 

12 435.82 440.16 45 453.80 452.46 

13 438.61 439.16 46 456.34 453.77 

14 440.01 440.47 47 455.08 455.67 

15 442.50 441.53 48 456.12 455.51 

16 442.09 443.34 49 455.64 456.12 

17 441.34 443.71 50 455.50 456.06 

18 440.85 443.45 51 456.06 455.98 

19 439.07 443.09 52 455.22 456.26 

20 436.52 441.96 53 457.97 455.86 

21 437.31 440.13 54 457.92 457.37 

22 444.39 439.99 55 459.20 457.82 

23 451.85 443.98 56 458.56 458.75 

24 454.05 449.59 57 459.38 458.65 

25 457.11 452.77 58 462.41 459.16 

26 456.16 455.73 59 464.13 461.13 

27 458.84 456.19 60 466.97 462.81 

28 458.00 458.02 61 470.88 465.06 

29 457.20 458.08 62 475.94 468.19 

30 456.95 457.65 63 476.94 472.32 

31 454.48 457.34 64 478.81 474.24 

32 456.47 455.79 65 477.31 476.03 

33 459.76 456.48 66 477.59 475.69 

 

Summing up the analysis above and after several rounds 

of testing, we identified γ = 0.02, C = 100, and ε = 0.001 as 

the best selections for our experiment, and used these 

parameters to train the model again. Following this, we 

were able to predict the test set. The final result was RMSE 

= 0.00703, with a value of γ = 0.02. Figure 10 gives a 

comparison of forecast values with actual values, while 

Table 2 shows actual observed and forecast values of the 

daily scores of Al-Quds index of the PSE for 66 points at 

the end 2012, using consequent one-step-ahead forecasting. 

The results shown in Figure 10 and Table 2 indicate that the 

tendencies of the predicted value curve are basically 

identical to those of the actual value curve, and the 

predicted values fit the actual values very well. 

7. Conclusions 

This article examined the application of SVM to financial 

forecasting. Forecasting financial time series, such as 

indices and stock prices, is a complex process, mainly 

because financial time series are usually very noisy and 

involve ambiguous seasonal effects due to the influences of 

holidays, weekends, and irregular closure periods. They 

also involve other factors such as interest rate changes, 

announcements of macroeconomic news, and political 

events that affect forecast accuracy. In this study, we fit the 

ARIMA, ANN, and SVM models to Al-Quds index of the 

PSE time series data and used these models to forecast 

future observations (for 66 days). The results of applying 

the ARIMA, ANN, and SVM methods were compared 

through the RMSE results. The most important finding was 

that the minimum RMSE of the natural logarithms of 

Al-Quds index of the PSE time series using the SVM model 

equalled 0.00703, while for the ANN model it was 0.02990 

and for the ARIMA model it was 0.0282. The last value 

was the only one computed from the differenced logarithms 

of the series. Finally, we can conclude from the above 

discussion that the results for SVM provided a more 

accurate and more efficient forecasting technique for such 

financial data than the ANN and ARIMA models did. 
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We can also conclude that SVMs provide an alternative, 

promising technique compared to time series forecasting 

using Box-Jenkins methodology and ANN. They offer 

important advantages over other methods, such as having a 

smaller number of free parameters and producing more 

accurate forecasts. Although there is little effect on the 

generalization error with respect to the free parameters of 

SVMs, we believe that there is still much room for 

improvement in SVMs with respect to forecasting financial 

time series. Future work should focus on this possibility. 
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