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Abstract In this paper, the problem of estimating the scale parameter of log gamma distribution under Bayesian and
maximum likelihood framework has been addressed. The uniform and Jeffreys priors have been assumed for posterior
analysis. The Bayes estimators and associated risks have been derived under five different loss functions. The credible
intervals and highest posterior density intervals have been constructed under each prior. A simulation study has been carried
out to illustrate the numerical applications of the results and to compare the performance of different estimators. The purpose
is to compare the performance of the estimators based on Bayesian and maximum likelihood frameworks. The performance
of different Bayes estimators has also been compared using five different loss functions. The study indicated that for
estimation of the said parameter, the Bayesian estimation can be preferred over maximum likelihood estimation. While in

case of the Bayesian estimation, the entropy loss function under Jeffreys can effectively be employed.
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1. Introduction

The log gamma distribution is often used to model the
distribution of rate of claims in insurance. Balakrishnan and
Chand[1] discussed the best linear unbiased estimators of
the location and scale parameters of log-gamma distribution
based on general Type-II censored samples. Chung and
Kang[2] used the generalized log-gamma distribution to fit
the industrial and medical lifetime data. To overcome the
Bayesian computation, the Markov Chain Monte Carlo
(MCMC) method was employed. Ergashev[3] estimated the
lognormal-gamma distribution by using the Markov chain
Monte Carlo method and imposing prior assumptions about
the model’s unknown parameters. Demirhan and Hamurkar
oglu[4] proposed a new generalized multivariate
log-gamma distribution. The use of the suggested
distribution under Bayesian approach has also been
discussed. Kumar and Shukla[5] obtained the maximum
likelihood estimates of the two parameters of a generalized
gamma distribution directly by solving the likelihood
equations as well as by reparametrizing the model. Shawky
and Bakoban[6] derived Bayesian and non-Bayesian
estimators of the shape parameter, reliability and failure rate
functions in the case of complete and type-II censored
samples. The mean square errors of the estimates have been
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computed. Comparisons have been made between these
estimators using a Monte Carlo simulation study. Chen and
Lio[7] studied the maximum likelihood estimates for the
parameters of the generalized Gamma distribution using
progressively type-Il censored sample. Singh et al[8]
proposed Bayes estimators of the parameter of the
exponentiated gamma distribution and associated reliability
function under general entropy and squared error loss
functions for a censored sample. The proposed estimators
have been compared with the corresponding maximum
likelihood estimators through their simulated risks. Feroze
and Aslam[9] considered the Bayesian analysis of Gumbel
type II distribution under different loss functions using
doubly type II censored samples. The applicability of the
results has been discussed under a simulation study. Fabrizi
and Trivisano[10] investigated the performance of Bayes
estimators of parameter of log-normal distribution using
quadratic expected loss. Amin[11] considered the
maximum likelihood estimation procedure for estimation of
the parameters of the mixed generalized Rayleigh
distribution under type I censored samples. Numerical
example has been used to illustrate the theoretical results.
Dey[12] considered the Bayesian estimation of generalized
exponential distribution under different loss functions.

In the following sections, the point and interval estimates
have derived under maximum likelihood and Bayesian
approach. The variances/risks of the point estimators have
also been obtained.

2. The Maximum Likelihood Estimation
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The maximum likelihood estimator along with its variance
has been derived in the following.

The probability density function of log gamma
distribution is:
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The likelihood function fora sample of size n is:
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and corresponding variance are:

3. Bayesian Estimation under the
Assumption of Uniform Prior

For estimation the parameter(s) under a Bayesian
frame work, it mandatory to decide about an appropriate prior.
There is no rule of thumb to select a particular prior; however
Berger[13] suggested that even an inappropriate choice of
prior can give useful results. In practice the informative
priors are not always available, for such situations, the use of
non-informative priors become popular. One of the most
widely used non-informative priors, due to Laplace[14], is a
uniform prior. Therefore, the uniform prior has been
assumed for the estimation of the scale parameter of the log
gamma distribution.

The uniform prior is assumed to be: p( )1

The posterior distribution for /3 given data under the
assumption of uniform prior is:
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The Bayes estimator and risk under uniform prior using
squared error loss function (SELF) are:
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The Bayes estimator and risk under uniform prior using
quadratic loss function (QLF) are:
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The Bayes estimator and risk under uniform prior using
weighted loss function (WLF) are:
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The Bayes estimator and risk under uniform prior using
precautionary loss function (PLF) are:

ﬁPLF = =

R(IBPLF) = 2;111)6" \/(na—Z)(na—3) na -2

The Bayes estimator and risk under uniform prior using
entropy loss function (ELF) are:

no—1 1
R(Bor)= Z;—y—ln(na—l)
k=1
Where y =(.57721 is an Euler constant.

The Bayes estimator and risk under uniform prior using
weighted balanced loss function (WELF) are:
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4. Bayesian Estimation under the n
Assumption of Jeffreys Prior Zln X,
1
As discussed in the above section, in case of unavailability ﬂ — =l
of the informative priors the non-informative priors are used. WLE no

Another non-informative prior has been suggested by
Jeffreys[15] which is frequently used in situations where one
does not have much information about the parameters. This .
is defined as the distribution of the parameters proportional R ( IBWLF ) = =L
to the square root of the determinants of the Fisher (na)(na - 1)

information matrix i.e. The Bayes estimator and risk under Jeffreys prior using
precautionary loss function (PLF) are:
Py ‘I (é)‘
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where (é) 6,8 PLF \/(na—l)(na—Z)
The Jeffreys prior for scale parameter of log gamma
distribution is: ﬂpLF 221 nx 1 1
g O/ |_ 1 Jna—1)(na—2) na-1
Here I(é) = F

813 The Bayes estimator and risk under Jeffreys prior using
entropy loss function (ELF) are:

The posterior distribution for f given data under the IBELF =
. Lo no
assumption of Jeffreys prior is:
" no no 1
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(ﬂ| ) IB nele =l The Bayes estimator and risk under Jeffreys prior using
( ) weighted balanced loss function (WBLF) are:
The Bayes estimator and risk under Jeffreys prior using
squared error loss function (SELF) are: Z In X,
n _i=1
. IBWBLF -
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(,BSELF) = > 5. The Credible and Highest Posterior
(na—1)" (na-2) Density Intervals
The Bayes estimator and risk under Jeffreys prior using
quadratic loss function (QLF) are: As discussed by Saleemand Aslam[16], the (1—£)100%
credible intervals have been constructed under the
Zln X; assumption of uniform and Jeffreys prior and presented
ﬂ _ =l respectively.
LF
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The Bayes estimator and risk under Jeffreys prior using 2(na—1),(ﬁj 2(na—1),(1—£)
weighted loss function (WLF) are: 2 2
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Where 1—k is the confidence coefficient.
An interval (ﬂlaﬂz) will said to be (1 —k)lOO%

highest posterior density interval for [ if it satisfies the
following two conditions simultaneously.

So, the highest posterior density interval for /8 under uniform can be obtained by solving the following two equations
simultaneously:

1 i=1 1 2
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Where I'| nax —1, ,Bj Z In X; |3 j=1,2 is an incomplete gamma function.

i=1
Similarly, the highest posterior density interval for [ under Jeffreys can be obtained by solving the following two
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equations simultaneously:

6. The Posterior Predictive Distributions

The posterior predictive distribution is defined as: £ (y| E) = Ip(ﬂ| ﬁ)f (ya IB) d:B
0

The posterior predictive distribution using the posterior distribution under uniform prior is:

no—1
Ynx{ (In y)a_l
p(vlx)= — ©
B(na—l,a)y Zlnxl. +Ilny

i=l1

Where B (noc -1, a) is a beta function.

Similarly, the posterior predictive distribution using the posterior distribution under Jeffreys prior is:
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Table 1. ML and Bayes (under uniform prior) estimates along with their variances for § =2
Loss Functions
n MLE
SELF QLF WLF PLF ELF WBLF
50 2.143383 2.187126 2.143383 2.165033 2.198371 2.165033 2209673
(0.045941) (0.049315) (0.010000) (0.022092) (0.022490) (0.004947) (0.010204)
100 2.057927 2078714 2057927 2.068268 2.083983 2.068268 2.089266
(0.021175) (0.021934) (0.005000) (0.010446) (0.010538) (0.002516) (0.005051)
2.036242 2.046474 2.036242 2.041345 2.049050 2041345 2.051629
200 (0.010366) (0.010549) (0.002500) (0.005129) (0.005152) (0.001258) (0.002513)
300 2.022447 2029211 2.022447 2.025823 2.030910 2.025823 2032610
(0.006817) (0.006897) (0.001667) (0.003388) (0.003398) (0.000840) (0.001672)
500 1.996488 2.000489 1996488 1.998486 2.001492 1.998486 2.002495
(0.003986) (0.004014) (0.001000) (0.002002) (0.002006) (0.000506) (0.001002)
Table 2. ML and Bayes (under uniform prior) estimates along with their variances for f =4
n MLE Loss Functions
SELF QLF WLF PLF ELF WBLF
4293970 4381602 4293970 4337343 4404130 4337343 4426773
>0 (0.184382) (0.197922) (0.010000) (0.044259) (0.045055) (0.004947) (0.010204)
100 4305496 4.348986 4305496 4327132 4360010 4327132 4371062
(0.092686) (0.096009) (0.005000) (0.021854) (0.022048) (0.002516) (0.005051)
200 4244293 4265621 4244293 4254930 4270990 4254930 4276365
(0.045035) (0.045833) (0.002500) (0.010691) (0.010738) (0.001258) (0.002513)
4.132408 4.146229 4.132408 4.139307 4.149700 4.139307 4.153174
30 (0.028461) (0.028796) (0.001667) (0.006922) (0.006942) (0.000840) (0.001672)
00 4014124 4022168 4014124 4018142 4024185 4018142 4026203
(0.016113) (0.016227) (0.001000) (0.004026) (0.004033) (0.000506) (0.001002)
Table 3. ML and Bayes (under Jeffreys prior) estimates along with their variances for f =2
. MLE Loss Functions
SELF QLF WLF PLF ELF WBLF
S0 2.143383 2.165033 2.143383 2.143383 2.176051 2.143383 2.187126
(0.045941) (0.047830) (0.009901) (0.021650) (0.022036) (0.004997) (0.010101)
100 2.057927 2.068268 2.057927 2.057927 2.073485 2.057927 2078714
(0.021175) (0.021605) (0.004975) (0.010341) (0.010433) (0.002504) (0.005025)
00 2.036242 2.041345 2036242 2.036242 2.043908 2.036242 2.046474
(0.010366) (0.010470) (0.002494) (0.005103) (0.005126) (0.001255) (0.002506)
2.022447 2025823 2.022447 2.022447 2027517 2.022447 2029211
30 (0.006817) (0.006863) (0.001664) (0.003376) (0.003386) (0.000839) (0.001669)
00 1.996488 1.998486 1.996488 1.996488 1.999487 1.996488 2.000489
(0.003986) (0.004002) (0.000999) (0.001998) (0.002002) (0.000506) (0.001001)
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Table 4. ML and Bayes (under Jeffreys prior) estimates along with their variances for f =4

) MLE Loss Functions
SELF QLF WLF PLF ELF WBLF
50 4293970 4337343 4293970 4293970 4359417 4293970 4381602
(0.184382) (0.191965) (0.009901) (0.043373) (0.044146) (0.004997) (0.010101)
100 4305496 4327132 4305496 4305496 4338045 4305496 4348986
(0.092686) (0.094566) (0.004975) (0.021636) (0.021827) (0.002504) (0.005025)
200 4244293 4254930 4244293 4244293 4260272 4244293 4265621
(0.045035) (0.045489) (0.002494) (0.010637) (0.010684) (0.001255) (0.002506)
300 4.132408 4.139307 4.132408 4.132408 4.142767 4.132408 4.146229
(0.028461) (0.028652) (0.001664) (0.006899) (0.006919) (0.000839) (0.001669)
4014124 4018142 4014124 4014124 4.020155 4014124 4.022168
o0 (0.016113) (0.016178) (0.000999) (0.004018) (0.004025) (0.000506) (0.001001)
Table 5. 95% credible intervals under uniform and Jeffreys priors for § =2
Uniform Prior JeffreysPrior
" LL UL UL-LL LL UL UL-LL
50 1.778313 2634314 0.856001 1.793191 2.667094 0.873903
100 1.800048 2375797 0.575749 1.807955 2389590 0.581635
200 1.850551 2251506 0400955 1.854765 2257747 0402982
300 1.882030 2.178076 0.296046 1.884954 2.181993 0.297039
500 1.910943 2.085914 0.174971 1912774 2.088095 0.175321
Table 6. 95% credible intervals under uniform and Jeffreys priors for p =4
Uniform Prior JeffreysPrior
! LL UL UL-LL LL UL UL-LL
50 3.562603 5277481 1.714878 3.592409 5343151 1.750743
100 3.765974 4970528 1204555 3.782516 4999386 1216870
200 3.857242 4.692983 0.835740 3.866026 4705992 0.839965
300 3.845499 4450401 0.604902 3.851472 4458403 0.606931
500 3.842129 4.193924 0351795 3.845810 4.198310 0.352500

7. Simulation Study

Simulation is a technique that can be used to examine the
performance of different estimation procedures. In this
technique random samples are generated in such a way that
estimators under different estimation procedure can be
compared and are in accordance with the real life problem.
Here, the inverse transformation method of simulation is
used to compare the performance of different estimators. The
study has been carried out forn = 50, 100, 200, 300 and 500

using f € (2,4). The risks of Bayes estimates have been

presented in the parenthesis.

It is immediate from the Tables 1-4 that the estimated
value of the parameter converges to the true value as the
sample size increases. While the magnitude of posterior risks
decreases by increasing the sample size. However, the
increase in value of the parameter imposes a negative impact
on the rate of convergence and the performance (in terms of
posterior risks) ofthe estimates. The estimates underJeffreys
prior seemto work better than those under uniform prior for

each loss function except entropy loss function. Among loss
functions the performance of the estimates under entropy
loss function is the best. It can also be indicated that with an
exception estimates under squared error loss function, the
estimates using Bayesian framework provide better results
than maximum likelihood estimates.

The results of interval estimation are in accordance with
the point estimation, that is, the width of credible interval is
inversely proportional to sample size while, it is directly
proportional to the parametric value. Similarly, the width of
credible interval is narrower under the assumption of
Jeffreys prior.

8. Conclusions

The study has been conducted to discuss the problem of
estimating the scale parameter of log gamma distribution
under maximum likelihood and Bayesian framework. It has
been assessed that the performance of the Bayes estimation
is better than maximum likelihood estimation with some
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exceptions. In comparison of priors, the performance of the
Jeffreys prior is found to be better with an exception of
estimates under entropy loss function. Similarly, the
estimates under entropy loss function are associated with the
minimum risks and the magnitude of these risks is
independent of choice of parametric values. The Bayesian
interval estimation further strengthens the findings of the
point estimation. So, in order to estimate the scale parameter
of the log gamma distribution, the Bayesian estimation can
be preferred over maximum likelihood estimation. While
under the Bayesian estimation, the entropy loss function can
effectively be employed.
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