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Abstract  In this paper, the prob lem of estimating the scale parameter of log gamma distribution under Bayesian and 
maximum likelihood framework has been addressed. The uniform and Jeffreys priors have been assumed for posterior 
analysis. The Bayes estimators and associated risks have been derived under five different loss functions. The credible 
intervals and highest posterior density intervals have been constructed under each prior. A simulat ion study has been carried 
out to illustrate the numerical applicat ions of the results and to compare the performance of different estimators. The purpose 
is to compare the performance of the estimators based on Bayesian and maximum likelihood frameworks. The performance 
of different Bayes estimators has also been compared using five d ifferent loss functions. The study indicated that for 
estimation of the said parameter, the Bayesian estimation can be preferred over maximum likelihood estimation. While in 
case of the Bayesian estimation, the entropy loss function under Jeffreys can effectively be employed. 
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1. Introduction 
The log gamma distribution is often used to model the 

distribution of rate of claims in insurance. Balakrishnan and 
Chand[1] discussed the best linear unbiased estimators of 
the location and scale parameters of log-gamma distribution 
based on general Type-II censored samples. Chung and 
Kang[2] used the generalized log-gamma distribution to fit 
the industrial and medical lifetime data. To overcome the 
Bayesian computation, the Markov Chain Monte Carlo 
(MCMC) method was employed. Ergashev[3] estimated the 
lognormal-gamma distribution by using the Markov chain 
Monte Carlo method and imposing prior assumptions about 
the model’s unknown parameters. Demirhan andHamurkar
og lu[4]  p ropos ed  a new genera l ized  mu lt ivar iate 
log-gamma  d is t ribut ion . The use o f the s uggested 
d is t ribu t ion  under Bayes ian  approach  has  also  been 
discussed. Kumar and Shukla[5] obtained the maximum 
likelihood estimates of the two parameters of a generalized 
gamma d istribut ion d irect ly by so lv ing the likelihood 
equations as well as by reparametrizing the model. Shawky 
and  Bakoban[6] derived  Bayes ian  and  non-Bayes ian 
estimators of the shape parameter, reliability and failure rate 
functions in  the case of complete and type-II censored 
samples. The mean square errors of the estimates have been  
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computed. Comparisons have been made between these 
estimators using a Monte Carlo simulation study. Chen and 
Lio[7] studied the maximum likelihood estimates for the 
parameters of the generalized Gamma distribution using 
progressively type-II censored sample. Singh et al.[8] 
proposed Bayes estimators of the parameter of the 
exponentiated gamma d istribution and associated reliab ility 
function under general entropy and squared error loss 
functions for a censored sample. The proposed estimators 
have been compared with the corresponding maximum 
likelihood estimators through their simulated risks. Feroze 
and Aslam[9] considered the Bayesian analysis of Gumbel 
type II d istribution under different loss functions using 
doubly type II censored samples. The applicability o f the 
results has been discussed under a simulation study. Fabrizi 
and Trivisano[10] investigated the performance of Bayes 
estimators of parameter o f log-normal distribution using 
quadratic expected loss.  Amin[11] considered the 
maximum likelihood estimation procedure for estimation of 
the parameters of the mixed generalized Ray leigh 
distribution under type I censored samples. Numerical 
example has been used to illustrate the theoretical results. 
Dey[12] considered the Bayesian estimat ion of generalized 
exponential distribution under different loss functions. 
In the following sections, the point and interval estimates 
have derived under maximum likelihood and Bayesian 
approach. The variances/risks of the point estimators have 
also been obtained. 

2. The Maximum Likelihood Estimation 
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The maximum likelihood estimator along with  its variance 
has been derived in the following. 

The probability density function of log gamma 
distribution is: 
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The likelihood function for a sample of size n is: 
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The maximum likelihood estimator o f the parameter β  
and corresponding variance are: 

1
ln

n

i
i

MLE

x

n
β

α
==
∑

 

( )
( )

2

2
1

3

ln
n

i
iMLE

MLE

x
V

n n
ββ
α α

=

 
 
 = =
∑

 

3. Bayesian Estimation under the 
Assumption of Uniform Prior 

For estimat ion the parameter(s) under a Bayesian 
framework, it  mandatory to decide about an appropriate prior.  
There is no rule of thumb to select a part icular prior;  however 
Berger[13] suggested that even an inappropriate choice of 
prior can  give useful results. In practice the informat ive 
priors are not always available, for such situations, the use of 
non-informative priors become popular. One of the most 
widely used non-informative priors, due to Laplace[14], is a 
uniform prior. Therefore, the uniform prior has been 
assumed for the estimation of the scale parameter of the log 
gamma distribution.  

The uniform prior is assumed to be: ( ) 1p β ∝  

The posterior distribution for β  given data under the 
assumption of uniform prior is: 
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The Bayes estimator and risk under uniform prior using 
squared error loss function (SELF) are: 
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The Bayes estimator and risk under uniform prior using 
quadratic loss function (QLF) are: 
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The Bayes estimator and risk under uniform prior using 

weighted loss function (WLF) are: 
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The Bayes estimator and risk under uniform prior using 
precautionary loss function (PLF) are: 
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The Bayes estimator and risk under uniform prior using 
entropy loss function (ELF) are: 
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Where 0.57721γ =  is an Eu ler constant. 
The Bayes estimator and risk under uniform prior using 

weighted balanced loss function (WELF) are: 
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4. Bayesian Estimation under the 
Assumption of Jeffreys Prior 

As discussed in the above section, in case of unavailability 
of the informative priors the non-informative priors are used. 
Another non-informative p rior has been suggested by 
Jeffreys[15] which is frequently used in situations where one 
does not have much informat ion about the parameters. This 
is defined as the distribution of the parameters proportional 
to the square root of the determinants of the Fisher 
informat ion matrix i.e.  

( )jp I β∝
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The Jeffreys prior for scale parameter o f log gamma 
distribution is: 
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The posterior distribution for β  given data under the 
assumption of Jeffreys prior is: 
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The Bayes estimator and risk under Jeffreys prior using 
squared error loss function (SELF) are: 
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The Bayes estimator and risk under Jeffreys prior using 
quadratic loss function (QLF) are: 
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The Bayes estimator and risk under Jeffreys prior using 

weighted loss function (WLF) are: 
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The Bayes estimator and risk under Jeffreys prior using 
precautionary loss function (PLF) are: 
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The Bayes estimator and risk under Jeffreys prior using 
entropy loss function (ELF) are: 
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The Bayes estimator and risk under Jeffreys prior using 
weighted balanced loss function (WBLF) are: 
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5. The Credible and Highest Posterior 
Density Intervals  

As discussed by Saleem and Aslam[16], the ( )1 100%k−
credible intervals have been constructed under the 
assumption of uniform and Jeffreys prior and presented 
respectively. 
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Where 1 k−  is the confidence coefficient. 

An interval ( )1 2,β β  will said to be ( )1 100%k−  

highest posterior density interval for β  if it satisfies the 
following two conditions simultaneously. 
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Where 1 k−  is the confidence coefficient. 

And ( ) ( )1 2p x p xβ β=  

So, the highest posterior density interval for β  under uniform can be obtained by solving the following two equations 
simultaneously: 
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Similarly, the highest posterior density interval for β  under Jeffreys can be obtained by solving the following two 
equations simultaneously: 
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6. The Posterior Predictive Distributions 

The posterior predict ive distribution is defined as: ( ) ( )
0

( ) ;p y x p x f y dβ β β
∞
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The posterior predict ive distribution using the posterior distribution under uniform prior is: 
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Where ( )1,B nα α− is a beta function. 

Similarly, the posterior predictive d istribution using the posterior distribution under Jeffreys prior is: 
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Table 1.  ML and Bayes (under uniform prior) estimates along with their variances for β = 2 

n MLE 
Loss Functions 

SELF QLF WLF PLF ELF WBLF 

50 
2.143383 2.187126 2.143383 2.165033 2.198371 2.165033 2.209673 

(0.045941) (0.049315) (0.010000) (0.022092) (0.022490) (0.004947) (0.010204) 

100 
2.057927 2.078714 2.057927 2.068268 2.083983 2.068268 2.089266 

(0.021175) (0.021934) (0.005000) (0.010446) (0.010538) (0.002516) (0.005051) 

200 
2.036242 2.046474 2.036242 2.041345 2.049050 2.041345 

 
2.051629 

(0.010366) (0.010549) (0.002500) (0.005129) (0.005152) (0.001258) (0.002513) 

300 
2.022447 2.029211 2.022447 2.025823 2.030910 2.025823 2.032610 

(0.006817) (0.006897) (0.001667) (0.003388) (0.003398) (0.000840) (0.001672) 

500 
1.996488 2.000489 1.996488 1.998486 2.001492 1.998486 2.002495 

(0.003986) (0.004014) (0.001000) (0.002002) (0.002006) (0.000506) (0.001002) 

Table 2.  ML and Bayes (under uniform prior) estimates along with their variances for β = 4 

n MLE 
Loss Functions 

SELF QLF WLF PLF ELF WBLF 

50 
4.293970 4.381602 4.293970 4.337343 4.404130 4.337343 4.426773 

(0.184382) (0.197922) (0.010000) (0.044259) (0.045055) (0.004947) (0.010204) 

100 
4.305496 4.348986 4.305496 4.327132 4.360010 4.327132 4.371062 

(0.092686) (0.096009) (0.005000) (0.021854) (0.022048) (0.002516) (0.005051) 

200 
4.244293 4.265621 4.244293 4.254930 4.270990 4.254930 4.276365 

(0.045035) (0.045833) (0.002500) (0.010691) (0.010738) (0.001258) (0.002513) 

300 
4.132408 4.146229 4.132408 4.139307 4.149700 4.139307 4.153174 

(0.028461) (0.028796) (0.001667) (0.006922) (0.006942) (0.000840) (0.001672) 

500 
4.014124 4.022168 4.014124 4.018142 4.024185 4.018142 4.026203 

(0.016113) (0.016227) (0.001000) (0.004026) (0.004033) (0.000506) (0.001002) 

Table 3.  ML and Bayes (under Jeffreys prior) estimates along with their variances for β = 2 

n MLE 
Loss Functions 

SELF QLF WLF PLF ELF WBLF 

50 
2.143383 2.165033 2.143383 2.143383 2.176051 2.143383 2.187126 

(0.045941) (0.047830) (0.009901) (0.021650) (0.022036) (0.004997) (0.010101) 

100 
2.057927 2.068268 2.057927 2.057927 2.073485 2.057927 2.078714 

(0.021175) (0.021605) (0.004975) (0.010341) (0.010433) (0.002504) (0.005025) 

200 
2.036242 2.041345 2.036242 2.036242 2.043908 2.036242 2.046474 

(0.010366) (0.010470) (0.002494) (0.005103) (0.005126) (0.001255) (0.002506) 

300 
2.022447 2.025823 2.022447 2.022447 2.027517 2.022447 2.029211 

(0.006817) (0.006863) (0.001664) (0.003376) (0.003386) (0.000839) (0.001669) 

500 
1.996488 1.998486 1.996488 1.996488 1.999487 1.996488 2.000489 

(0.003986) (0.004002) (0.000999) (0.001998) (0.002002) (0.000506) (0.001001) 
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Table 4.  ML and Bayes (under Jeffreys prior) estimates along with their variances for β = 4 

n MLE 
Loss Functions 

SELF QLF WLF PLF ELF WBLF 

50 
4.293970 4.337343 4.293970 4.293970 4.359417 4.293970 4.381602 

(0.184382) (0.191965) (0.009901) (0.043373) (0.044146) (0.004997) (0.010101) 

100 
4.305496 4.327132 4.305496 4.305496 4.338045 4.305496 4.348986 

(0.092686) (0.094566) (0.004975) (0.021636) (0.021827) (0.002504) (0.005025) 

200 
4.244293 4.254930 4.244293 4.244293 4.260272 4.244293 4.265621 

(0.045035) (0.045489) (0.002494) (0.010637) (0.010684) (0.001255) (0.002506) 

300 
4.132408 4.139307 4.132408 4.132408 4.142767 4.132408 4.146229 

(0.028461) (0.028652) (0.001664) (0.006899) (0.006919) (0.000839) (0.001669) 

500 
4.014124 4.018142 4.014124 4.014124 4.020155 4.014124 4.022168 

(0.016113) (0.016178) (0.000999) (0.004018) (0.004025) (0.000506) (0.001001) 

Table 5.  95% credible intervals under uniform and Jeffreys priors for β = 2 

n 
Uniform Prior Jeffreys Prior 

LL UL UL–LL LL UL UL–LL 
50 1.778313 2.634314 0.856001 1.793191 2.667094 0.873903 

100 1.800048 2.375797 0.575749 1.807955 2.389590 0.581635 
200 1.850551 2.251506 0.400955 1.854765 2.257747 0.402982 
300 1.882030 2.178076 0.296046 1.884954 2.181993 0.297039 
500 1.910943 2.085914 0.174971 1.912774 2.088095 0.175321 

Table 6.  95% credible intervals under uniform and Jeffreys priors for β = 4 

n 
Uniform Prior Jeffreys Prior 

LL UL UL–LL LL UL UL–LL 
50 3.562603 5.277481 1.714878 3.592409 5.343151 1.750743 

100 3.765974 4.970528 1.204555 3.782516 4.999386 1.216870 
200 3.857242 4.692983 0.835740 3.866026 4.705992 0.839965 

300 3.845499 4.450401 0.604902 3.851472 4.458403 0.606931 
500 3.842129 4.193924 0.351795 3.845810 4.198310 0.352500 

 

7. Simulation Study 
Simulation is a technique that can be used to examine the 

performance of d ifferent estimat ion procedures. In this 
technique random samples are generated in such a way that 
estimators under different estimation procedure can be 
compared and are in accordance with the real life problem. 
Here, the inverse transformation method of simulation is 
used to compare the performance of d ifferent estimators. The 
study has been carried out for n = 50, 100, 200, 300 and 500 
using . The risks of Bayes estimates have been 

presented in the parenthesis.  
It is immediate from the Tables 1-4 that the estimated 

value of the parameter converges to the true value as the 
sample size increases. While the magnitude of posterior risks 
decreases by increasing the sample size. However, the 
increase in value of the parameter imposes a negative impact 
on the rate of convergence and the performance (in terms of 
posterior risks) of the estimates. The estimates under Jeffreys 
prior seem to work better than those under uniform prior for 

each loss function except entropy loss function. Among loss 
functions the performance of the estimates under entropy 
loss function is the best. It can also be indicated that with an 
exception estimates under squared error loss function, the 
estimates using Bayesian framework prov ide better results 
than maximum likelihood estimates. 

The results of interval estimat ion are in accordance with 
the point estimation, that is, the width of credible interval is 
inversely proportional to sample size while, it is directly 
proportional to the parametric value. Similarly , the width of 
credible interval is narrower under the assumption of 
Jeffreys prior. 

8. Conclusions 
The study has been conducted to discuss the problem of 

estimating the scale parameter of log gamma distribution 
under maximum likelihood and Bayesian framework. It has 
been assessed that the performance of the Bayes estimation 
is better than maximum likelihood estimat ion with some 

( )2,4β ∈



 International Journal of Statistics and Applications 2012, 2(5): 73-79 79 
 

 

exceptions. In comparison of priors, the performance of the 
Jeffreys prior is found to be better with an exception of 
estimates under entropy loss function. Similarly, the 
estimates under entropy loss function are associated with the 
minimum risks and the magnitude of these risks is 
independent of choice of parametric values. The Bayesian 
interval estimation further strengthens the findings of the 
point estimation. So, in order to estimate the scale parameter 
of the log gamma distribution, the Bayesian estimation can 
be preferred over maximum likelihood estimation.  While 
under the Bayesian estimation, the entropy loss function can 
effectively be employed.  
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