
Software Engineering 2018, 7(1): 1-12

DOI: 10.5923/j.se.20180701.01

An Analogous t-Way Test Generation Strategy for

Software Systems | MC-MIPOG

Jalal Mohammed Hachim Altmemi

Department of Computer Engineering, Iraq University Collage, Iraq

Abstract Combinatorial testing has been a dynamic research region in late years. One test here is managing the

combinatorial blast issue, which regularly requires an extremely costly computational procedure to locate a decent test set

that covers every one of the blends for a given collaboration quality (t). Parallelization can be a powerful way to deal with

deal with this computational cost, that is, by taking preferred standpoint of the current headway of multicore designs. In

accordance with such appealing prospects, this paper introduces another deterministic technique, called multicore altered info

parameter arrange (MC-MIPOG) in view of a prior system, input parameter arrange summed up (IPOG). Not at all like its

antecedent system, has MCMIPOG embraced a novel approach by expelling control and information reliance to allow the

tackling of multicore frameworks. Trials are attempted to illustrate speedup pick up and to contrast the proposed

methodology and different procedures, including IPOG. The general outcomes show that MC-MIPOG beats generally

existing techniques regarding test estimate inside worthy execution time. Not at all like most methodologies, MC-MIPOG is

too fit for supporting high collaboration qualities of t > 6.

Keywords Parameter, T-way, Frameworks, T-way Testing, MC-MIPOG

1. Background Information

Interaction (t-way) testing is a methodology to generate a

test suite for detecting interaction faults. The generation of a

t-way test suite is a n NP hard problem (Zamli, et al., 2013).

Many t-way strategies have been presented in the scientific

literature. Some early algebraic t-way strategies exploit exact

mathematical properties of orthogonal arrays (Zamli, et al.,

2013). These t-way strategies are often fast and produce

optimal solutions, yet they impose restrictions on the

supported configurations and interaction strength.

Computational t-way strategies remove such restrictions,

allowing for the support of arbitrary configurations at the

expense of producing non-optimal solution (Zamli, et al.,

2013).

Zamli, et al., (2013) Prior works infer that pairwise testing

considering 2-route connection of factors can be viable to

distinguish most blames in a commonplace programming

framework. While this conclusion may be valid for a few

frameworks, it can't be summed up to all programming

framework shortcomings, particularly when there are huge

associations between factors (R. C. Bryce et al, 2010).

For instance, the examination by the National Institute of

* Corresponding author:

jalal_canan@yahoo.com (Jalal Mohammed Hachim Altmemi)

Published online at http://journal.sapub.org/se

Copyright © 2018 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International

License (CC BY). http://creativecommons.org/licenses/by/4.0/

Standards and Technology (NIST) announced that 95% of

the genuine blames on the test programming include 4-way

cooperation. Indeed, the greater part of the deficiencies is

distinguished with 6-way cooperation. When all is said in

done, the thought of higher collaboration qualities can be

risky. Rahman, et al, (2014) states that whenever the

parameter cooperation scope t increases to more than 2, the

number of t-way test sets likewise increments

exponentially.1 For case, think about a framework with 10

parameters, where each parameter has 5 esteems. There are

1,125 2-way tuples (or sets), 15,000 3-way tuples, 131,250

4-way tuples, 787,500 5-way tuples, 3,281,250 6-way tuples,

9,375,000 7-way tuples, 17,578,125 8-way tuples,

19,531,250 9-way tuples, and 9,765,625 10-way tuples.

2. Introduction

From this illustrative case, for a substantial framework

with numerous parameters, considering a higher-arrange

t-way test set can lead toward a combinatorial blast issue

Torres-jimenez, et al, 2013). Therefore, this paper likewise

investigates the present best in class and examines the

similitudes and contrasts among a few variations of IPOG

inside the writing. Moreover, several examinations

embraced are talked about to exhibit the speedup pick up. At

long last, examinations with other existing methodologies, to

1
 Zamli, K.Z., Younis, M.I., Abdullah, S.A.C., Soh, Z.H.C.: Software Testing,

1st edn. Open University, Malaysia KL (2013).

http://creativecommons.org/licenses/by/4.0/

2 Jalal Mohammed Hachim Altmemi: An Analogous t-Way Test

Generation Strategy for Software Systems | MC-MIPOG

be specific, TConfig, Jenny, TVG, ITCH, IPOG, IPOG_D,

and IPOF are moreover illustrated. For most cases,

MC-MIPOG outflanks other existing systems regarding test

size and backings a high level of connection (t).2 Whatever

is left of this paper is sorted out as takes after. Area II

presents a best in class survey of the current techniques, area

III gives the points of interest of the proposed MIPOG

technique furthermore, how it differs from the first IPOG

(Lehmann and Wegener, 2000). Segment IV gives a point by

point portrayal of MC-MIPOG and talks about its usage.

Segment V reports assessment tests. At last, segment VI

expresses our decisions and proposals for future works.

3. Related Work

Zamli, et al (2011) analyses that combinatorial testing

methodologies can be delegated either computational or

logarithmic systems. Generally mathematical approaches

figure test sets straightforwardly by a numerical work. 3

Arithmetical methodologies are frequently in view of the

augmentations of numerical techniques for building

orthogonal exhibits (OA). A few varieties of the arithmetical

approach additionally abuse recursion to allow the

development of bigger test sets from littler ones (Klaib,

2009). Therefore, the calculations associated with

logarithmic methodologies are regularly lightweight and not

subject to the combinatorial blast issue.

Thus, procedures that depend on logarithmic approach are

amazingly quick. Then again, arithmetical approaches

frequently force limitations on the framework arrangements

to which they can be connected. This essentially confines the

relevance of logarithmic methodologies for programming

testing (Lei, 2013). Prior works in combinatorial testing

distinguish two procedures (Klaib, 2009), to be specific the

programmed effective test generator (AETG) and input

parameter arrange (IPO). The AETG fabricates a test set one

test at once until all the tuples are secure. AETG and its

variations are later summed up into a general system to help

multi-way connection (t≤ 6). Interestingly, IPO covers one

parameter at any given moment. This permits Initial public

offering to accomplish a lower request of multifaceted nature

than AETG.

Initial public offering is a pairwise system (cooperation

quality t = 2) in view of vertical and even augmentation.

Firstly, a pair of test set is produced by the IPO system for

both starting variables.4 At that point, it keeps on stretching

out the test set to produce a pairwise test set for the initial

three parameters and keeps on doing as such for each extra

2
 R. C. Bryce, Y. Lei, D. R. Kuhn, and R. N. Kacker, “Combinatorial Testing,”

Handb. Res. Softw. Eng. Product. Technol. Implic. Glob., 196–208 (2010).
3
 M. Rahman, R. R. Othman, R. B. Ahmad, and M. Rahman, “Event Driven

Input Sequence Tway Test Strategy Using Simulated Annealing,” in Fifth Int.

Conf. on Intelligent Systems, Modelling and Simulation, 663–667 (2014).
4
 Lehmann, E., Wegener, J.: Test Case Design By Means Of The CTE-XL. In:

Proceedings of the 8th European International Conference on Software Testing,

Analysis & Review (EuroSTAR 2000), Copenhagen, Denmark (2000).

parameter until the point that every one of the parameters of

the framework are secured by means of flat expansion

(Younis, 2010). On the off chance that required for

connection scope, IPO likewise utilizes vertical expansion

with a specific end goal to include new tests after the

fulfillment of flat expansion. Afterward, Initial public

offering is summed up into IPOG. A few IPOG variations

have been proposed to enhance its execution, including

IPOG-D, IPOF, and IPOF2. Both IPOG and IPOG-D are

techniques which can be determined. Not at all like IPOG,

has IPOG-D consolidated the IPOG procedure with a

mathematical recursive development called D-development

to diminish the quantity of tuples to be secured. Lei and

others detailed that when t = 3, IPOG-D is debased to a

D-development arithmetical approach. Now, if t > 3, a minor

rendition of IPOG covers the revealed tuples that might have

been missed amid D-development. 5 In that capacity,

IPOG-D tends to be speedier than IPOG, however with a

bigger test set.

4. MIPOG Strategy

In this area, we present the MIPOG technique and exhibit

how it can be parallelized into MC-MIPOG. We likewise

feature the likenesses and contrasts between MIPOG

furthermore, IPOG (Bryce and Colbourn, 2007).

Notwithstanding the way that it is an effective technique, we

take note of that the age of a test set (ts) can be

temperamental in IPOG (see Fig. 1) because of the likelihood

of the present experiment changing amid the vertical

expansion (particularly for test cases that incorporate

"couldn't care less" esteem). This raises the issue of reliance

between already produced test cases and the updated one.To

address this reliance issue, we have considered variation

calculations for both level and vertical expansion to expel

conditions (see the MIPOG procedure in Fig. 2).

For level expansion, the MIPOG system after checking all

the estimations of the input variables, picks the esteem that

holds the most extreme number of mixes for the revealed

tuples in the π set. Additionally, MIPOG upgrades the don't

mind esteem. Therefore, MIPOG dependably creates a stable

experiment which can't be adjusted via hunting down tuples

that can be secured by a similar test. This is performed by

methods for thorough looking of revealed tuples that can be

joined with this experiment amid level expansion (to

guarantee that the experiment is surely advanced).

For vertical enhancement, MIPOG modifies the π set in

decremented estimate arrange. MIPOG picks the primary

tuple lately from the revised π set what's more, consolidates

that tuple with other appropriate tuples in the π set. That is,

the subsequent experiment must have the most extreme

weight of the revealed tuples found through thorough

5
 Lei, Y., Kacker, R., Kuhn, R., Okun, V., Lawrence, J.: IPOG/IPOG-D:

Efficient Test Generation For Multi-way Combinatorial Testing. Journal of

Software Testing, Verification and Reliability 18(3), 125–148 (2013).

 Software Engineering 2018, 7(1): 1-12 3

looking of revealed tuples. As a whole, these tuples are

evacuated from the π set once consolidated. This procedure

keeps rehashing while the π set is filled to guarantee finish

connection scope. To delineate the contrasts amongst IPOG

and MIPOG level and vertical expansion, we think about a

framework with 4 parameters. Figures 3 and 4 demonstrate

the way toward producing a 3-way test set utilizing IPOG

and MIPOG, individually. Now, a negligible test set is

created by MIPOG (3×2×2=12 esteems), while IPOG creates

14 test cases. As appeared in Fig. 3, IPOG settles on the

parameter esteem task right on time in level expansion.

Aside from guaranteeing most combines are secured now of

task, IPOG too guarantees that every parameter esteem is as

similarly adjusted as conceivable. Conversely, MIPOG

chooses the parameter esteem task late (see Fig. 4), that is,

simply after first filtering all the parameter esteems to yield

the most ideal arrangement (with greatest weight). In vertical

augmentation, IPOG iteratively checks for revealed t-route

mixes from the even expansion and includes the blend into

another test in the vertical augmentation, frequently utilizing

effectively secured t-way mixes. In a comparative way,

MIPOG likewise checks for revealed t-route mixes from the

flat expansion. Nonetheless, MIPOG advances the expansion

of another test in the vertical augmentation by joining the

most revealed t-way blends at whatever point conceivable.

This is effectively done when they couldn’t care less esteem.

This step, while enhancing the test estimate, additionally

builds the by and large calculation of MIPOG.

Figure 1. IPOG Strategy (Wang, 2003)

Figure 2. IMPOG Strategy (Shaiful, 2016)

4 Jalal Mohammed Hachim Altmemi: An Analogous t-Way Test

Generation Strategy for Software Systems | MC-MIPOG

Figure 3. Generation of test set using IPOG (Shaiful, 2016)

Figure 4. Generation of test set using MIPOG (Ramli, 2016)

The net impact of the variation expansion calculations in

MIPOG is twofold. To begin with, we can simply get a more

ideal test set which would be in any event a similar size or

significantly littler than that of IPOG. Besides, there are no

conditions between along these lines created test esteems, in

this way, allowing the probability of parallelization.6 To

parallelize MIPOG, we can segment the π set for parameter

Pi into vi parcels (see Fig. 2). Therefore, the age of each

segment can be performed in a different string. Also, both

flat and vertical augmentation can be performed in discrete

monitored (synchronized) strings. In the following segment,

we talk about the parallel rendition of MIPOG, called

MC-MIPOG outlined particularly for Intel Multicore

framework.

5. MC-MIPOG Strategy

Worked from MIPOG, the MC-MIPOG system conveys

the computational procedures and memory into pieces. In

rundown, the MC-MIPOG system execution depends on the

following outline criteria: Memory should be conveyed with

a specific end goal to hold Pi in moderately autonomous cells,

called π[Vi]. Here, each π[Vi] needs its own memory to hold

6
 K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, “A Tabu Search hyper-heuristic

strategy for t-way test suite generation,” Appl. Soft Comput. J.,44, 57–74

(2016).

the t-way mixes for a one of a kind specific incentive for the

parameter Pi; that is, there are Vi allotments for π. In this

case, each segment is produced by a different string, called a

combinatorial string. There are Vi isolate strings for even

augmentation, called even augmentation strings. Similarly,

there are likewise Vi isolate strings for vertical augmentation,

called vertical expansion strings. The chose test set is put

away into a mutual memory controlled by the test generator

(ace) program which controls the creation, synchronization,

and cancellation of all of these said strings.

Note that the most recent advancement in multicore

frameworks with multitasking working frameworks (as in

Linux and Windows) oversees processor/proclivity in an

ideal way. This improvement empowers every product string

to be mapped into a similar equipment string while at the

same time keeping the information near the processor

through a procedure called a reserve worm.7 Accordingly,

the real control of processor and memory partiality is

naturally performed by the working framework.

Advantages of An Analogous t-Way Test Generation

Strategy for Software Systems MC-MIPOG over other state

of arts.

7
 Wang, Z., Xu, B., Nie, C.: Greedy Heuristic Algorithms To Generate Variable

Strength Combinatorial Test Suite. In: Proceedings of the 8th International

Conference on Quality Software, Oxford, UK, pp. 155–160 (2013).

 Software Engineering 2018, 7(1): 1-12 5

6. Test Generator (Main Program)

As suggested before, the principle program parts are to

deal with the shared memory and to arrange strings. Quickly,

the principle program fills in as takes after:

Start with a void test set (ts) and produces all tuples for the

principal t-parameters.

Create combinational strings (equivalent to the quantity of

values in Pi), going to them parameters esteems (P1… Pi-1).

Wait for every combinational string to complete their age,

and afterward read π[Vi's].

Shut down the combinational strings.

Create level expansion strings (equivalent to the quantity

of values in Pi), going to them π[Vi's], and Vi's for the Pi

variable.

For flat augmentation:

For each experiment τ in ts:

Hold up until the point that all strings have approved

outcomes.

Read the weight (that is, the quantity of secured tuples in

the wake of including the allotted esteem) from each string.

At that point, pick the esteem comparing to the greatest

weight to be added to ts if no tuples coordinate (weight zero)

couldn't care less added to τ.

Tell the flat expansion strings that approve that

determination is finished.

As indicated by the choice in c, issue charge to the chosen

string to erase tuples from their own π set (πv). Enable the

chose strings to refresh τ.

Sit tight for chose string to complete its work.

Shut down the flat strings.

Create vertical augmentation strings equivalent to the

quantity of values in Pi, pass them to π[Vi's], and Vi's for the

Pi variable.

In vertical augmentation:

Sit tight for the strings to complete their halfway test set

(tsvth).

Gather tsvths from the strings. At that point add each tsvth

to ts.

Shut down the vertical strings.

For lucidity, the total calculation for the ace program is

given in Fig. 5.

Working Threads

In this area, we will portray how each string work.

For combinational strings:

Each string creates its own fractional tuples set (πv).

Each string advises the ace.

For flat expansion strings:

Read next experiment τ in ts.

It is possible in hundred to one that τ does not contain

couldn't care less, decide the heaviness of τ.

It is possible in hundred to one that τ contains couldn't

care less, the string improves the don't mind an incentive to

have however much weight as could reasonably be expected.

Approve the weight by warning.

Sit tight for warning.

Read the summon issued from principle, if it contains

erase then the string erases tuples secured by τ from (πv); at

that point, attach v to τ (in the event that b) or erase τo (in

hundred to one that c) from (πv); then, replace τ with τo.

Because of cancellation in f, advise the holding up

process.

For vertical enhancement strings:

Orchestrate πv in diminishing request, pick the principal

tuple, also, produce the experiment with most extreme

weight.

6 Jalal Mohammed Hachim Altmemi: An Analogous t-Way Test

Generation Strategy for Software Systems | MC-MIPOG

Rehash step (an) until (πv) is vacant.

Inform the holding up process.

The total calculations for the combinational string, level

augmentation string, and vertical expansion string are given

in Figs. 6, 7, and 8, individually.

Figure 5. Algorithm for master program (Harman, 2014)

Figure 6. Algorithm for combinational trend

 Software Engineering 2018, 7(1): 1-12 7

Figure 7. Algorithm for horizontal extension threads (Harman, 2014)

Figure 8. Algorithm for vertical extension thread (Nasser, 2015)

7. Evaluation

Our assessment has three principle points. To start with,

we analyze the conduct of MC-MIPOG to that of IPOG as far

as the test measure proportion.8 Besides, we explore whether

there is speedup pick up from parallelizing MIPOG in

MC-MIPOG. At long last, we think about the viability of the

MC-MIPOG procedure to that of different methodologies

(counting that of other IPOG variations) in terms of the

produced execution time and test measure.

8. MC-MIPOG Behavior against IPOG

To think about the conduct of MC-MIPOG and IPOG, we

played out a gathering of investigations received from Lei

8
 Czerwonka, J.: Pairwise Testing In Real World. In: Proceedings of 24th

Pacific Northwest Software Quality Conference, Portland, Oregon, USA, pp.

419–430 (2006).

and others. In these investigations, we are intrigued to look at

the test sizes of MC-MIPOG and IPOG. Note that the IPOG

test estimate is gotten from.

Group 1: The quantity of parameters (P) and the qualities

(V) are consistent, yet the scope quality (t) is fluctuated from

2 to 7.

Group 2: The scope quality (t) and the qualities (V) are

steady to 4 and 5, however the q uantity of parameter (P) is

differed from 5 to 15.

Group 3: The quantity of parameter (P) and the scope

quality (t) are consistent from t to 10 and 4, individually, yet

the values (V) are differed from 2 to 10. The after effects of

the tests are appeared in Tables 1, 2, and 3, individually.

Here, we characterize the size proportion as the extent of the

test set from MC-MIPOG to the size got from IPOG.

8 Jalal Mohammed Hachim Altmemi: An Analogous t-Way Test

Generation Strategy for Software Systems | MC-MIPOG

Table 1. Size ratio results for 5 to 15 variables with 5 esteems in 4-way testing

Table 2. Size ratio results for 10 variables with 2 to 10 esteems in 4-way testing

Table 3. Size ratio results for 10 variables with 5 esteems for t=2 to 7

From Tables 1 to 3, it is apparent that MC-MIPOG

performs superior to anything IPOG as far as test estimate

because the size proportion is continuously < 1. In Table 3,

NS shows that the parameter and values picked with a given

quality are not upheld.

Although contrasting great and IPOG, MIPOG's test

estimate isn't the most ideal contrasted with Colbourn's best

known distributed outcomes. Regardless, on a positive note,

MIPOG adds to finding the ideal test estimate for (t = 5, p =

10, v = 5) that yields 8,169 rather than 8,555 as announced by

Colbourn. Indeed, MIPOG likewise reports another ideal test

estimate for (t = 7, p = 10, v = 5) that yields 186,664. Note

that this result for (t = 7, p = 10, v = 5) has not been

accounted for by Colbourn (K. Rabbi, Mamun and Islam,

2015).

9. Speedup Gain in MC-MIPOG

To quantify the speedup, pick up from parallelizing

MIPOG, we subjected both MIPOG and MC-MIPOG to

three test bunches depicted before. The consequences of the

examinations are appeared in Tables 4, 5, and 6. Here, the

speedup is characterized as the proportion of the time taken

by the successive MIPOG calculation to the time taken by

MC-MIPOG calculation.9 Every one of the outcomes were

acquired utilizing the Linux Centos OS with a 2.4 GHz Core

2 Quad CPU and 2 GB RAM with JDK 1.5 introduced. Note

that the execution time is in seconds, and both MIPOG and

9
 L. Y. Xiang, A. A. Alsewari, and K. Z. Zamli, “Pairwise Test Suite Generator

Tool Based On Harmony Search Algorithm (HS-PTSGT),” NNGT Int. J. Artif.

Intell.,2, 62–65 (2015).

MC-MIPOG create a similar test set in all cases (Ahmed, et

al., 2015).

As found in Table 4, the speedup increments directly as

the number of parameters increments. Here, additional

overhead is included for the fifth parameters because of the

need to begin and close the comparing strings. As found in

Table 5, the speedup picks up likewise increments

quadratically as the quantity of qualities increments.

Extrapolating and performing bend fitting of the outcomes

from Table 6, we watch that the speedup increments

logarithmically as the quality of scope increments. For this

situation, there is too no speedup pick up for this procedure

when t = 2, perhaps due to the overhead required for creation,

synchronization, and cancellation of strings for a little level

of collaboration.

10. Comparison with other Strategies

To explore the viability of the MC-MIPOG procedure

against different procedures, including IPOG and its

variations, regarding test estimate and the quantity of created

test sets, we receive a typical setup framework, the TCAS

module. The TCAS module is an air ship impact shirking

framework created by the Federal Aviation Administration

which has been utilized as contextual analysis in other

related works.10 The TCAS factor contains twelve variables;

seven variablescontain 2 esteems, two variables contain

three esteems, one variablecontains four esteems, and two

variablescontain 10 esteems. As featured before, we picked

10

 R. R. Othman, N. Khamis, and K. Z. Zamli, “Variable Strength t-way Test

Suite Generator with Constraints Support,” Malaysian J. Comput. Sci., 27, 3,

204–217 (2014).

 Software Engineering 2018, 7(1): 1-12 9

the TCAS module claiming similar parameters and qualities

have been utilized by other specialists. By embracing similar

parameters and qualities, target examination might be made

between different procedure usage. To guarantee that the

outcomes got are up-todate given the way that a portion of

the usage have developed enormously finished the years, we

downloaded all the accessible usage inside our condition to

guarantee reasonable examination. Here, we are likewise

intrigued to research regardless of whether every procedure

bolsters high (t > 6).

We downloaded ACTS (actualizing IPOG, IPOG-D,

IPOF1, and IPOF2) from NIST, ITCH, Jenny, TConfig, and

TVGII. We were not ready to download AETG since the

execution is a business item; in this manner it was not

considered for correlation in our investigation. To repay the

way that that Jenny is a MSDOS-based executable program,

we picked a running situation comprising of Windows XP

2.0 GHz, an Intel Core 2 Duo CPU, furthermore, 1 GB RAM

with JDK 1.6 introduced. Tables 7 and 8 abridge the entire

outcomes. As in Table 3 NS demonstrates that the parameter

and qualities picked with guaranteed quality are not

bolstered. Additionally, obscured cell columns demonstrate

the best execution in term of test estimate.

As found in Table 7, MC-MIPOG, IPOG, IPOF1, and

IPOF2 gave the ideal test measure at t = 2. At t = 3, both

MC-MIPOG what's more, IPOG gave the ideal test measure.

For every single other case, MCMIPOG continuously beats

different systems. Other than MCMIPOG, only Jenny can

bolster more than t = 6 for the TCAS module.

Notwithstanding, we have not been effective in summoning

Jenny for t > 8 because the program usage crashes.

Table 4. Speedup results for 5 to 15 variables with 5 esteems in 4-way testing

Table 5. Speedup results for 10 variables with 2 to 10 esteems in 4-way testing

Table 6. Speedup results for 10 variables with 5 esteems for t=2 to 7

Table 7. Comparative test size results using the TCAS module for t = 2 to 12

10 Jalal Mohammed Hachim Altmemi: An Analogous t-Way Test

Generation Strategy for Software Systems | MC-MIPOG

Table 8. Comparative test generation time using the TCAS module for t = 2 to 12

Even though TVG empowers the client to choose t from a

range from 2 to 9, we can't get any outcome for t = 5 because

the program execution crashes. Note that our try different

things with TVGII created unexpected outcomes in

comparison to the distributed outcomes (here, we utilized the

device with the "T_ Reduced" choice), maybe because of

another refresh of the execution11. Enabling the client to

choose t about 2 and 6, our experience shows that for the

TCAS module, TConfig simply gives a result for t < 5. Here,

a special case happens when we endeavor to get an outcome

for t > 5. A comparative perception can be seen for Tingle.

Note that ITCH does not bolster t > 4. Likewise, for the

situation of ITCH, the test measure for t = 3 is more

prominent than that for t = 4.

11. Conclusions

As PC makers make multicore CPUs unavoidably

accessible inside sensible costs, outfitting this innovation is

never again an extravagance yet a feasible and helpful choice.

In this paper, we explored and assessed a parallel technique

called MC-MIPOG for t-way test information age on

multicore engineering. Our outcomes demonstrate that

MC-MIPOG scales well against existing systems. In

arrangement for our future work, we are at present porting

MIPOG and MC-MIPOG into the matrix condition. Our

underlying usage comes about have been empowering. We

are additionally intending to perform more broad

correlations with Colburn's best-known outcomes. In

examination with all other IPOG variations (aside from

MCMIPOG), obviously IPOG beat IPOG_D, IPOF1, what's

more, IPOF2 regarding test measure for the TCAS module.

Like different systems (aside from MC-MIPOG), this group

11

 Zamli, K.Z., Klaib, M.F.J., Younis, M.I., Isa, N.A.M., Abdullah, R.: Design

And Implementation Of A T-Way Test Data Generation Strategy With

Automated Execution Tool Support. Information Sciences 181(9), 1741–1758

(2011).

of procedures can't deliver a test suite for t > 6. That is, no

choice is given for t > 6. As far as execution time, IPOG-D

has the quickest general time for t ≤ 6. For t > 6, MC-MIPOG

is quickest since no different systems can give t-way test age

bolster (Jenny underpins up to t = 8). From one viewpoint,

MIPOG is like IPOG and IPOG_D in the sense that they are

overall deterministic procedures. From another point of view,

IPOF and IPOF2, are non-deterministic systems. The general

point of IPOG_D, IPOF, and IPOF2 is to accomplish a

speedier execution time than that of IPOG. By and large,

getting an advanced test measure and a quick execution time

are two sides of the same coin12. Acquiring an improved test

measure requires more preparing time for picking the most

upgraded tuple. On the other hand, acquiring quick execution

time implies that little improvement is performed to get the

ideal test measure. This is apparent to the extent the test sizes

are worried for IPOG_D, IPOF, also, IPOF2. MIPOG is a

procedure that is intended to deliver a littler test estimate

than that of IPOG under the cost of something beyond

handling time amid flat augmentation. As talked about

before, not at all like IPOG, IPOG_D, and IPOF, MIPOG

embraces an alternate sort of vertical expansion which is

more heavyweight than that of IPOG (for improvement of

vertical expansion). Therefore, MIPOG's execution time

proves to be slower as compared to the clear majority of the

IPOG variations. In any case, the usage of MCMIPOG has

lightened this disadvantage through the reception of a

multicore design. Truth be told, MIPOG is the main

methodology inside the IPOG family that can be

parallelized.

12

 A. B. Nasser, Y. A. Sariera, A. A. Alsewari, and K. Z. Zamli, “Assessing

Optimization Based Strategies for t-way Test Suite Generation : The Case for

Flower-based Strategy,” in IEEE Int. Conf. on Control System, Computing and

Eng, 150–155 (2015).

 Software Engineering 2018, 7(1): 1-12 11

REFERENCES

[1] Zamli, K.Z., Younis, M.I., Abdullah, S.A.C., Soh, Z.H.C.:
Software Testing, 1st edn. Open University, Malaysia KL
(2013).

[2] R. C. Bryce, Y. Lei, D. R. Kuhn, and R. N. Kacker,
“Combinatorial Testing,” Handb. Res. Softw. Eng. Product.
Technol. Implic. Glob., 196–208 (2010).

[3] M. Rahman, R. R. Othman, R. B. Ahmad, and M. Rahman,
“Event Driven Input Sequence Tway Test Strategy Using
Simulated Annealing,” in Fifth Int. Conf. on Intelligent
Systems, Modelling and Simulation, 663–667 (2014).

[4] J. Torres-jimenez, C. V. Tamps, and C. V. Tamps, “Survey
of Covering Arrays,” in 15th Int. Symp. on Symbolic and
Numeric Algorithms for Scientific Computing, 20–27 (2013).

[5] Lehmann, E., Wegener, J.: Test Case Design By Means Of
The CTE-XL. In: Proceedings of the 8th European
International Conference on Software Testing, Analysis &
Review (EuroSTAR 2000), Copenhagen, Denmark (2000).

[6] Zamli, K.Z., Klaib, M.F.J., Younis, M.I., Isa, N.A.M.,
Abdullah, R.: Design and Implementation of A T-Way Test
Data Generation Strategy With Automated Execution Tool
Support. Information Sciences 181(9), 1741–1758 (2011).

[7] Klaib, M. F. J.: Development of An Automated Test Data
Generation And Execution Strategy Using Combinatorial
Approach. PhD. Thesis, School of Electrical And Electronics,
Universiti Sains Malaysia (2009).

[8] Lei, Y., Kacker, R., Kuhn, R., Okun, V., Lawrence, J.:
IPOG/IPOG-D: Efficient Test Generation For Multi-way
Combinatorial Testing. Journal of Software Testing,
Verification and Reliability 18(3), 125–148 (2013).

[9] Younis, M. I.: MIPOG: A Parallel T-Way Minimization
Strategy For Combinatorial Testing. PhD. Thesis, School of
Electrical And Electronics, Universiti Sains Malaysia (2010).

[10] Bryce, R.C., Colbourn, C.J.: The Density Algorithm For
Pairwise Interaction Testing. Software Testing, Verification
and Reliability. 17(3), 159–182 (2007).

[11] Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.,
Collofello, J.S.: Variable Strength Interaction Testing Of
Components. In: Proceedings of 27th Annual International
Computer Software and Applications Conference, Dallas,
USA pp. 413–418 (2003).

[12] Wang, Z., Xu, B., Nie, C.: Greedy Heuristic Algorithms To
Generate Variable Strength Combinatorial Test Suite. In:
Proceedings of the 8th International Conference on Quality
Software, Oxford, UK, pp. 155–160 (2013).

[13] Schroeder, P.J., Korel, B.: Black-Box Test Reduction Using
Input-Output Analysis. SIGSOFT Software Engineering
Notes 25(5), 173–177 (2000).

[14] Schroeder, P. J.: Black-Box Test Reduction Using
Input-Output Analysis. PhD Thesis, Department of Computer
Science, Illinois Institute of Technology, Chicago, IL, USA
(2001).

[15] Czerwonka, J.: Pairwise Testing In Real World. In:
Proceedings of 24th Pacific Northwest Software Quality
Conference, Portland, Oregon, USA, pp. 419–430 (2006).

[16] L. Y. Xiang, A. A. Alsewari, and K. Z. Zamli, “Pairwise Test
Suite Generator Tool Based On Harmony Search Algorithm
(HS-PTSGT),” NNGT Int. J. Artif. Intell., 2, 62–65 (2015).

[17] H. Wu, C. Nie, F. Kuo, H. Leung, and C. J. Colbourn, “A
Discrete Particle Swarm Optimization for Covering Array
Generation,” Evol. Comput., 19, 4, 575–591, (2015).

[18] Z. Wang and H. He, “Generating Variable Strength Covering
Array for Combinatorial Software Testing with Greedy
Strategy,” J. Softw., 8, 12, 3173–3181 (2013).

[19] R. R. Othman, N. Khamis, and K. Z. Zamli, “Variable
Strength t-way Test Suite Generator with Constraints
Support,” Malaysian J. Comput. Sci., 27, 3, 204–217 (2014).

[20] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang, “TCA:
An Efficient Two-Mode MetaHeuristic Algorithm for
Combinatorial Test Generation,” in 30th IEEE/ACM
International Conference on Automated Software
Engineering 494–505 (2015).

[21] B. S. Ahmed, T. S. Abdulsamad, and M. Y. Potrus,
“Achievement of minimized combinatorial test suite for
configuration-aware software functional testing using the
Cuckoo Search algorithm,” Inf. Softw. Technol., 66,13– 29
(2015).

[22] K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, “A Tabu Search
hyper-heuristic strategy for t-way test suite generation,” Appl.
Soft Comput. J., 44, 57–74 (2016).

[23] M. Shaiful, A. Rashid, R. R. Othman, Z. R. Yahya, M. Zamri,
and Z. Ahmad, “Implementation of Artificial Bee Colony
Algorithm for T-way Testing,” in 3rd Int. Conf. on Electronic
Design (ICED), 591–594 (2016).

[24] N. Ramli, R. R. Othman, M. Shaiful, and A. Rashid,
“Optimizing Combinatorial InputOutput Based Relations
Testing using Ant Colony Algorithm,” in 3rd Int. Conf. on
Electronic Design, 586–590 (2016).

[25] K. Z. Zamli, F. Din, S. Baharom, and B. S. Ahmed,
“Engineering Applications of Arti fi cial Intelligence Fuzzy
adaptive teaching learningbased optimization strategy for the
problem of generating mixed strength t -way test suites,” Eng.
Appl. Artif. Intell., 59, 35–50 (2017).

[26] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y.
Zhang, “Search based software engineering for software
product line engineering: a survey and directions for future
work,” in 15th Soft. Product Line Conference, 5– 18 (2014).

[27] K. Rabbi, Q. Mamun, and R. Islam, “An Efficient Particle
Swarm Intelligence Based Strategy to Generate Optimum
Test Data in Tway Testing,” on Industrial Electronics and
App., 123–128 (2015).

[28] M. B. Cohen, "Designing Test Suites for Software Interaction
Testing," PhD Thesis, Department of Computer Science,
University of Auckland, 2015.

[29] B. Garvin, M. Coehn, and M. Dwyer, "Evaluating
Improvements to a Meta-Heuristic Search for Constrained
Interaction Testing," Empirical Software Engineering, vol. 16,
pp. 61-102, 2011.

[30] C. B. Renee and C. J. Colbourn, "One-test-at-a-time Heuristic
Search for Interaction Test Suites," in Proceedings of the 9th
Annual Conference on Genetic and Evolutionary
Computation, ACM, 2017, pp. 1082-1089.

12 Jalal Mohammed Hachim Altmemi: An Analogous t-Way Test

Generation Strategy for Software Systems | MC-MIPOG

[31] A. R. A. Alsewari, "Design and Implementation of a
Harmony Search based t-way Testing Strategy with
Constraints Support," PhD Thesis, School of Electrical and
Electronics Engineering, Universiti Sains Malaysia, 2012.

[32] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, "Application of
Particle Swarm Optimization to Uniform and Variable
Strength Covering Array Construction," Applied Soft
Computing, vol. 12, pp. pp. 1330-1347, 2012.

[33] B. S. Ahmed, "Adopting a Particle Swarm based Test
Generator Strategy for Variable Strength and t-way Testing,"
PhD Thesis, School of Electrical and Electronics Engineering,
Universiti Sains Malaysia, 2012.

[34] M. Črepinšek, S.-H. Liu, L. Mernik, and M. Mernik, "Is a
Comparison of Results Meaningful from the Inexact
Replications of Computational Experiments?," Soft
Computing, vol. 20, pp. 223-235, 2015.

[35] M. Črepinšek, S.-H. Liu, and M. Mernik, "Replication and
Comparison of Computational Experiments in Applied
Evolutionary Computing: Common Pitfals and Guidelines to
avoid them," Applied Soft Computing, vol. 19, pp. 161-170,
2014.

[36] M. Mernik, S.-H. Liu, D. Karaboga, and M. Črepinšek, "On
Clarifying Misconceptions when Comparing Variants of the

Artificial Bee Colony Algorithm by Offering a New
Implementation," Information Sciences, vol. 291, pp. 115-127,
2015.

[37] A. Draa, "On the Performances of the Flower Pollination
Algorithm- Qualitative and Quantitative Analyses," Applied
Soft Computing, vol. 34, pp. 349-371, 2015.

[38] M. Črepinšek, S.-H. Liu, and M. Mernik, "Exploration and
Exploitation in Evolutionary Algorithms: A Survey," ACM
Computing Surveys, vol. 45, 2013.

[39] P. Cowling and G. Kendall, "A Hyper Heuristic Approach to
Scheduling a Sales Summit," in Proceedings of 3rd
International Conference on Practice and Theory of
Automated Time Tabling, 2013, pp. 176-190.

[40] M. Ayob and G. Kendall, “A Monte Carlo Hyper-Heuristic to
Optimise Component Placement Sequencing For Multi Head
Placement Machine," in Proceedings of the International
Conference on Intelligent Technologies, 2013, pp. 132-141.

[41] E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and
S. Schulenburg, "Hyper-Heuristics: An Emerging Direction
in Modern Search Technology," in Handbook of
Meta-Heuristics -International Series in Operations Research
and Management Science. vol. 57, F. Glover and G.
Kochenberger, Eds., ed: Kluwer, 2003, pp. 457-474.

