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Abstract  In this paper, an attempt has been made for the analytical solution of the unsteady mixed convection flow 
induced by the combined effects of the mechanically driven lid and the buoyancy force within rectangular enclosures. The 
couple of nonlinear equations describing the fluid behavior and temperature distribution within rectangular enclosures form a 
very complex system where the analytical solution is not available in the literature. To the best of the author's knowledge, this 
the first time such an attempt is presented. To drive the solutions of the coupled nonlinear boundary systems, an optimal 
homotopy asymptotic method was applied in the initial stage, then follow by the method of eigenfunction combined with 
orthogonality property. Explicit analytical solutions for both fluid velocity and temperature distribution are obtained. The 
results proved the effective technique for solving the couple nonlinear equations in a rectangular enclosure. 
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1. Introduction 
Considerable attention has been paid in recent years to the 

problems heat transfer analysis rectangular domain with 
regular boundary conditions yielding a well-posed problem. 
The governing couple equations are very complicated and 
highly nonlinear, with mostly numerical solutions.  

The theoretical studies of mixed convective flow in a 
lid-driven cavity finds applications in flow and heat transfer 
in solar ponds and solar collectors, dynamics of lakes, 
reservoirs and cooling ponds, cooling of electronic systems, 
thermal-hydraulics of nuclear reactors, thermal convection in 
micropolar fluids, chemical processing equipment, 
lubricating grooves, crystal growing, materials processing 
such as float glass production, galvanizing, metal coating 
and casting, food processing, and industrial processes where 
a solid ribbon or a solid material is heated as it moves 
through a furnace, among others [1-10]. 

The above literature shows that the convective heat 
transfer and flow in a rectangular enclosure driven by a 
horizontal wall while being cooled from one horizontal and 
vertical wall, with the other vertical wall thermally isolated 
have not been investigated. This configuration finds practical  
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applications in the cooling of an extruded plate in a hot 
rolling process. The fluid flow and the heat transfer patterns 
within the enclosure dictate the degree of cooling and hence 
the quality of the final product. This fact motivates the 
present study. The purpose of this work is therefore to 
present a parametric investigation of the Richardson and 
Prandtl numbers, and the aspect ratio on the flow patterns, 
energy distribution and heat transfer behaviour for this 
configuration. 

The aim of the present work is to solve the problem of 
mixed convection flow in rectangular enclosures driven by a 
continuously moving horizontal plate using an analytical 
technique, OHAM. In view of this we have established an 
analytic solution based on the OHAM to venture further into 
the regime of nonlinear fluids. 

2. Analytical approach 
We start with the basic idea of OHAM, the governing 

equations to solved are classified into two velocity Ω  and 
temperature T  that is 

( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

( )

1 1 1

2 2 2

, , , 0.

, , , 0.

, 0.

L x y N x y g x y

L T x y N T x y g x y

B T

Ω + Ω + =

+ + =

Ω =

   (1) 

 

mailto:abdulsalamgital@yahoo.com


46 Abdulsalam Ya’u Gital et al.:  Free Convection Flow in Rectangular  
Enclosures Driven by a Continuously Moving Horizontal Plate 

where ( )1,2 ,jL j =  are linear operators, ( )1,2jN j =  

are non-linear operators, ( )1, 2jg j =  are known function 

and B  is a boundary operator. 

Construct an optimal homotopy 
( ) [ ], ; : R 0,1 Rx y qϕ × →  which satisfies the 

following equations: 

 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( )

1 1 1 1 1 1 1 1

1 1

1 , ;  , , ;  , , ;  ,

, ;  0,
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B x y q

ϕ ϕ ϕ
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( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
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B x y q
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=

 (3) 

where , Rx y ∈  and 0 1q≤ ≤  is an embedding parameter, ( )H q  is a nonzero auxiliary function for 0q ≠  and 

( )0 0H = , and ( ), ;  j x y qϕ  ( )1,2j =  are unknown functions 

Clearly, when 0q =  and 1q =  it holds that  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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1 2

, ;  0 , ,    , ,  0 , ,

, ,  1 , ,     , ,  1 , .
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ϕ ϕ
 

 

= Ω =

= Ω =
                   (4) 

Choose the auxiliary function ( ), ;H x y q  in the form 

( ) 2
1 2 ... .n

nH q qC q C q C= + + +                              (5) 

where 1 2, ..., nC C C  are constants to be determined. 
Construct a Taylor's series solution of equations (2) and (3) in the form  

( ) ( ) ( )0
1

, ,  , , , ; ,      1, 2. and 1,2,..,k
j i jk i

k
x y q C x y x y C q j i nϕ

∞

=
= Ω + Ω = =∑           (6) 

substituting equation (6) into equations (2) and (3) and boundary and equating the coefficients of like powers of q  to obtain  

( ) ( )( ) ( )
( )( ) ( )( ) ( )

0 0

1 1 0 0 1
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, , ,    0,
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                (7) 

and the k  th order equation is defined by  

( )( ) ( )( ) ( )( ) ( )( )
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         (8) 

where ( ) ( ) ( ) ( )( )0 1, , , ,... ,k ij k iN x y x y x y−− Ω Ω Ω  is the coefficient of ,k iq −  obtained by expanding 

( )( ),j jN x yΩ  in series with respect to the embedding parameter .q   

( )( ) ( )( ) ( ) ( ) ( ) ( )( )0 0 0 1 2
1

, , , , , , , ,... , .k
j j j j jk j j j jk

k
N x y N x y N x y x y x y x y q

∞

=
Ω = Ω + Ω Ω Ω Ω∑  (9) 

The solution of equation (1) can be approximately obtained in the form  
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( ) ( )0
1

, ; , ( , ; )
m

m
i k i

k
x y C x y x y C

=
Ω = Ω + Ω∑                           (10) 

( ) ( )0
1

, ; , ( , ; )
m

m
i k i

k
T x y C T x y T x y C

=
= + ∑                            (11) 

Substitute equations (10) and (11) into equation (1) it results the following expression for residual: 

( ) ( )( ) ( ) ( )( )1 1 2, ; , ; , , ;m m
i i j iR x y C L x y C g x y N x y C= Ω + + Ω               (12) 

( ) ( )( ) ( ) ( )( )2 2 2, ; , ; , , ;m m
i i j iR x y C L x y C g x y N x y C= Ω + + Ω                (13) 

 

Figure 1.  Physical configuration  

If ( ), ; 0j iR x y C = , then (10) and (11) will be the exact solution. Generally such a case will not happen for nonlinear 

problems, but we can minimize the functional by the method of lease squares 

( ) ( )1 2

1 2

2 , ;
b b

j i j ia a
J C R x y C dxdy= ∫ ∫                                    (14) 

where 1 2 1, ,a a b  and 2b  belong to the domain of the problem. Finally, the unknown constants ( )1,2,...iC i m=  can be 
optimally identified from the conditions 
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( ) ( ) ( )
1 2

... 0.j i j i j i

m

J C J C J C
C C C

∂ ∂ ∂
= = =

∂ ∂ ∂
                              (15) 

With these known values of ( )1,2,...iC i m= , the approximate solution of equation (10) and (11) are well determined. 

Statement of the problem 
In the present investigation, we consider convective heat transfer and flow in a rectangular enclosure driven by a horizontal 

wall, the horizontal plate divides the rectangular enclosure into equal halves while being cooled from one horizontal and 
vertical wall, with the other vertical wall thermally isolated as described by Waheed [1] Figure 1 show the physical 
configuration. 

0,u v
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∂ ∂
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                                      (16) 
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ρ
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ρ
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where cT  is the temperature of ambient medium 
In the above equations we will describe the velocity components u  and v  as the derivatives of the stream function 

.
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=
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                                          (20) 

the vorticity equation 

,v u
x y

ω ∂ ∂
= −

∂ ∂
                                        (21) 

Introduced the following non-dimensional variables 

,   ,   ,   ,   ,

,    .
/

c

w w c h

w w

T Tx y u vx y u v T
b l U U T T

U L U L
ψ ωψ

∗ ∗ ∗ ∗ ∗

∗

−
= = = = =

−

= Ω =
                      

(22) 

where ψ  is the stream function, ω  is the vorticity and b  is the weight of the enclosure. 
The results of the analysis (after dropping the ∗ -notation) are the stream function equation 

2 2

2 2x y
ψ ψ ∂ ∂

Ω = − +  ∂ ∂ 
                                      (23) 

and the vorticity transport equation 
2 2
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 (24) 

and also, the energy equation 
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2 2
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where Re  is the Reynolds number, iR  is the Richardson number and Pr  is the Prandtl number. 

The boundary conditions and initial condition for two enclosure A  and B  are as follows: 

0

1

0
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Special cases for the boundary condition: 
Case 1: Upper wall of enclosure A   

1
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y

uu v T y
y

ψ
=
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Case 2: Lower wall of enclosure B   

1
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y

uu v T y
y

ψ
=−

 ∂
= = = Ω = − = = − ∂ 

                 (28) 

where ρ  is the fluid density, p  is the pressure, pc  is the specific heat capacity at constant pressure, β  is the 

volumetric coefficient of thermal expansion, µ  is the fluid viscosity, k  is the thermal conductivity, t  is the time, T  is 
the temperature and u , v  are the fluid velocity components, in the x −  and y −  directions, respectively. 

The aim of the present investigation is to discuss the analytical approach for the steady two-dimensional incompressible 
and laminar in rectangular domain. 
Applications 

Choosing the linear and nonlinear operator defined by 

( )( ) ( ) ( )2 2
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and the stream function 
2 2

2 2
j j

j x y

ψ ψ ∂ ∂
 Ω = − +
 ∂ ∂ 
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The correspond boundary conditions are 
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The zeroth order deformation:  
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whose solutions are 
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Using equation (39), the stream function (33) becomes 

( )
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0 0
2 2 , ,Q x y

x y
ψ ψ∂ ∂
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∂ ∂

                                 (41) 

subject to the the boundary conditions 

( ) ( ) ( ) ( )0 0 0 00, 1, , 1 ,1 0y y x xψ ψ ψ ψ= = − = =
                        

(42a) 

( )0 ,0 1.xψ =                                        (42b) 

where ( ) ( ) ( )1, sin sinh 1n nQ x y A n x n yπ π∞
== − − ∑     

Our first approach to find the stream function is to split problem (41) in two problems that are easier to solve: 

1 20 0 0 ,ψ ψ ψ= +                                      (43) 

where 
10ψ  is a particular solution of the stream function and 

20ψ  is the solution of the corresponding homogeneous 

stream function. That is, 
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+ =

∂ ∂
                                   (44) 

non-homogeneous equation (44) corresponding to the homogeneous boundary condition in (42a)  
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ψ ψ∂ ∂
+ =

∂ ∂
                                      (45) 

homogeneous equation (45) corresponding to the nonhomogeneous boundary condition in (42b)  
Using the method of eigenfunction expansion we expand 

10ψ  in a series of x −  eigenfunctions 

( ) ( ) ( )10
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By differentiating (46) twice with respect to y  then replacing in (44) we obtain 
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∂
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Again, differentiating term-by-term of (46) twice with respect to x  we obtain: 
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0 2
2
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so that equation (47) becomes  
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where p pω π=   

Multiplying equation (49) by ( )sin q xπ  and integrating with respect to x  from 0x =  to 1x =  and interchanging 
the order of summation and integration, we get  

( )
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1 12

2 0 0
1

sin sin , sinp
p p

p

d y
y p x q x dx Q x y q x dx

dy

ϕ
ω ϕ π π π

∞

=

 
 − =
 
 

∑ ∫ ∫            (50) 

Using the orthogonality property, this equation reduce to  
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2

2
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q q q
d y

y Q x y
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ϕ
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where  

( ) ( ) ( )1

0
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The series (46) satisfy the boundary condition (42a) if  

( ) ( )1 1 0q qϕ ϕ− = =                                    (53) 

Equation (51) subject to the condition (53) is a second order linear ODE which can be solve by using the method of 
variation of parameters. 

The complementary function for the homogeneous function is ( ) ( )1 2cosh sinhB q y B q yπ π+ . Taking 1B  and 2B  
as function of ,y  let 
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Substituting equations (54) and (57) into equation (51), we obtain 
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where ξ  is a dummy variable. 
Hence, the solution of the nonhomogeneous equation describe by equations (41) and (42a), using the superposition 

principle is  
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By using the superposition principle, the general solution of equation (45) is found to be  
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Using the nonhomogeneous boundary condition in (42b)  
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Hence, the series solution of the stream function (41) is  
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After evaluating the integral, we have 
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In view of equations (20) and (21), the velocity components are the derivatives of the stream function (70)  
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The first order deformation: 
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where 0 ,Ω  0 ,T  0u  and 0v  are defined by equations (39), (40), (71), and (72) , respectively. 
We assume the solutions of equations (73) and (75) of the form 

1 21 1 1 ,Ω = Ω + Ω                                        (77) 

1 21 1 1 ,T T T= +                                          (78) 

where 
11Ω  and 

11T  are the particular solutions while 
21Ω  and 

21T  are the solutions of the corresponding homogeneous 

equations. That is  
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using the method of eigenfunction and variation of parameters the solution of 
11Ω  and 

11T  satisfying the homogeneous 

boundary condition (74) and (76) respectively, are express in the following form the following form 
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where  
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Now, we shall find 
21Ω  and 

21T  from equation (80) and (82) satisfying 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 1

2 1

2 1

2 1

1 1

1 1

1 1 1

1 1 2

0, 0, 0

1, 1, 0

,0 ,0

,1 ,1

y y

y y

x x F x

x x F x

Ω = −Ω =

Ω = −Ω =

Ω = −Ω = −

Ω = −Ω = −

                             (85) 

 



 Science and Technology 2015, 5(3): 45-56 55 
 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 1

2 1

2 1

2 1

1 1

1 1

1 1 1

1 1 2

0, 0, 0

1, 1, 0

,0 ,0

,1 ,1

T y T y

T y T y

T x T x G x

T x T x G x

= − =

= − =

= − = −

= − = −

                              (86) 

where 1,2F  and 1,2G  are the only non-zero boundary conditions. 

The above boundary conditions are obtained by using equations (77) and (78) and the given boundary condition (74) and 
(76).  

By using the superposition principle, the general solution of equations (80) and (82) are found 
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where 1,2k  and 1,2l  are constants to determined. 

Now, applying the nonhomogeneous boundary conditions (85) and (86) into equations (87) and (88), respectively, we get, 
after renaming the constants, the equations  
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Also, applying homogeneous boundary conditions (85) and (86), equations (87) and (88), respectively can be written as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2
1

2 1 2
1

cosh sinh sin

cosh sinh sin

n

n

F x k n k n n x

G x l n l n n x

π π π

π π π

∞

=
∞

=

− = +  

− = +  

∑

∑
                        (90) 

which gives 
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Also, from equations (87) and (88), we have 
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therefore, 
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Hence, the series solutions of equations is  
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3. Conclusions Remarks 

In this paper, an optimal homotopy asymptotic method is 
applied for solving rectangular enclosures driven by a 
continuously moving horizontal plate. This procedure is 
explicit, efficient and has a distinct advantage over usual 
approximation methods in that the approximate solution 
obtained here is valid not only for weakly nonlinear 
equations, but also for strongly nonlinear ones. This 
approach seems to be useful and can be used to obtain other 
analytical solutions for other couple flow problems. 
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