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Abstract  A new delay d ifferential equation (DDE) which  is non-periodic is presented to govern circular feed end-milling. 
This equation is considered extended or more generalized since special simplifications lead to the classical periodic DDE 
model for linear feed end-milling and a new periodic DDE model postulated to govern circular end-milling. Stability analysis 
of both periodic DDE is conducted using a modified full-d iscretization map and directly compared on the same cutting 
parameter plane of spindle speed and depth of cut. It is found that stability of regenerative vibration of both periodic 
mechanical models is identical. Th is means that curvature has negligible effect on stability thus circular end-milling can 
almost accurately be represented as straight-line feed end-milling. 
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1. Introduction 
The life and performance of machine tools is 

compromised by vibrations called chatter. The most 
detrimental o f machine tool vibrat ions is the regenerative 
chatter that is triggered by small perturbations and sustained 
by unfavourable cutting parameter combinations. 
Regenerative chatter is caused by regenerative effects (or 
effects of waviness) on two out-of-phase profiled surfaces of 
perturbed consecutive tool passes. Thus tool motion in a past 
time affects the present motion. This feedback of delay 
effects can introduce tool instability since without it the tool 
is intrinsically stable under positive damping. The 
aforementioned feedback of delay effects means that 
regenerative chatter is modelled by delay differential 
equations (DDE’s). The DDE governing the milling process 
is parametrically excited because of time-dependence 
angular position of the cutting edges. 

The mil ling  p rocess  is  extens ively  modelled  with 
straigh t -line (o r linear) feed[1-6]. The t ime-dependent 
angular position of the cutting edges under straight line feed 
is periodic leading to periodic DDEs for linear feed  milling. 
Situations needing polar cuts arise in  real life but it  seems 
that  linear feed  end-milling  equat ion  has so  far been 
presumed applicable in this situation as well. In this work 
modelling of circular end-milling is conducted to reveal the 
effects curvature could have on regenerative chatter stability.  
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A non-periodic DDE results, which under a rational 
simplification becomes a periodic DDE. Th is periodic DDE 
is used as a model for circular end-milling. Simplification of 
infinitely large radius imposed on the non-periodic DDE 
leads to a periodic DDE identical with those seen in[1, 6], 
which are derived on the basis of straight-line feed. The 
non-periodic DDE for circular end-milling can thus be 
considered more general for end-milling. Th is forms the 
centre of novelty of contribution of this work. 

Stability of the new periodic mechanical model for 
circular end-milling is compared  with that of a classical 
periodic mechanical model of linear feed end-milling to 
reveal the effects of curvature on regenerative chatter 
stability. It was found that presence of curvature in circular 
feed end-milling model has no meaningful effect on 
regenerative chatter stability. Thus a circular end-milling can 
precisely be approximated as straight-line feed end-milling. 
The model transformation utilized for stability analysis is the 
modified full-d iscretization mapping which is generated and 
illustrated in[7] to be superior in convergence at very low 
spindle speed range (Ω ≤ 500rpm)  and computational 
speed than the original fu ll-discretization mapping seen in[8]. 
Detailed derivation of modified fu ll-discretization map for 
the postulated mechanical of circular end-milling is given. 
This is a specific contribution of this work. 

2. Model for Periodic Circular Milling 
The tool is prescribed to cut a circular slot on a workpiece 

W along a circular path C of radius 𝑟𝑟 at a tangential speed 𝑣𝑣 
as shown in figure1. The displacement due to revolutionary 
motion of the tool is referred to an inertial coordinate system 
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𝑥𝑥 − 𝑦𝑦 which is fixed at the initial position of the tool with 
𝑥𝑥(𝑡𝑡) pointing in the initial feed direction. The non-inertial 
reference coordinate system 𝑋𝑋 − 𝑌𝑌 displaces in phase with 
the tool while rotating at a  constant angular speed 𝑣𝑣 𝑟𝑟⁄ . The 
tool rotates with spindle speed Ω given in revolutions per 
minute (rpm). 

 
Figure 1.  Dynamical model of circular end-milling 

At any time 𝑡𝑡 the motion of the tool in the instantaneous 
feed direction 𝑋𝑋(𝑡𝑡) is a linear superposition of prescribed 
feed motion and v ibrations. The v ibrations are  composed of  
the tool’s response to force of tool-workpiece interaction that 
is devoid of self-excited vibrat ions 𝑥𝑥𝑡𝑡(𝑡𝑡) and perturbations 
𝑧𝑧(𝑡𝑡) of the tool due regenerative effects. The displacement 
of the tool from 𝑦𝑦-axis at time 𝑡𝑡 is 𝑥𝑥(𝑡𝑡) = 𝑋𝑋(𝑡𝑡) cos(𝑣𝑣𝑣𝑣 𝑟𝑟⁄ ). 
This becomes  
𝑥𝑥(𝑡𝑡) = ∫ 𝑣𝑣cos�𝑣𝑣

𝑟𝑟
𝑠𝑠�d𝑠𝑠𝑡𝑡

0 + 𝑥𝑥𝑡𝑡(𝑡𝑡) cos�𝑣𝑣
𝑟𝑟
𝑡𝑡� + 𝑧𝑧(𝑡𝑡) cos�𝑣𝑣

𝑟𝑟
𝑡𝑡� (1) 

It is seen from figure1 that the spring force and damping 
force are respectively given as 𝐹𝐹s = 𝑘𝑘[𝑥𝑥(𝑡𝑡) − 𝑟𝑟 sin(𝑣𝑣𝑣𝑣 𝑟𝑟⁄ )] 
and 𝐹𝐹d = 𝑐𝑐[𝑥̇𝑥(𝑡𝑡) − 𝑣𝑣 cos(𝑣𝑣𝑣𝑣 𝑟𝑟⁄ )] giving rise to the equation 
of motion in 𝑥𝑥  direct ion becoming 
𝑚𝑚𝑥𝑥̈(𝑡𝑡) + 𝑐𝑐 �𝑥𝑥̇(𝑡𝑡) − 𝑣𝑣 cos �𝑣𝑣

𝑟𝑟
𝑡𝑡�� + 𝑘𝑘 �𝑥𝑥(𝑡𝑡) − 𝑟𝑟 sin �𝑣𝑣

𝑟𝑟
𝑡𝑡� � + 𝐹𝐹𝑥𝑥 = 0 (2) 

where 𝐹𝐹𝑥𝑥  is the cutting force in 𝑥𝑥  direction for 𝑗𝑗𝑗𝑗ℎ tooth of 
the tool. The 𝑥𝑥 −component of cutting force for 𝑗𝑗𝑗𝑗ℎ tooth 
of the tool is seen from tool-workp iece disposition of figure2 
to become 
𝐹𝐹𝑥𝑥,𝑗𝑗 (𝑡𝑡) = 𝑔𝑔𝑗𝑗 (𝑡𝑡)�𝐹𝐹norm ,𝑗𝑗 (𝑡𝑡) sin𝜃𝜃𝑗𝑗 (𝑡𝑡) + 𝐹𝐹tan ,𝑗𝑗 (𝑡𝑡) cos𝜃𝜃𝑗𝑗 (𝑡𝑡)� (3) 

Where 𝑔𝑔𝑗𝑗 (𝑡𝑡)  is a  screen function that has the value of 
unity when the tool is active but varnishes when the tool is 

inactive (not cutting). If the start and end angles of cut are 
designated 𝜃𝜃𝑠𝑠  and  𝜃𝜃𝑒𝑒  respectively 𝑔𝑔𝑗𝑗 (𝑡𝑡) becomes  

𝑔𝑔𝑗𝑗 (𝑡𝑡) = �1 𝑖𝑖𝑖𝑖 𝜃𝜃𝑠𝑠 <  𝜃𝜃𝑗𝑗 (𝑡𝑡) <  𝜃𝜃𝑒𝑒
0                  otherwise

�            (4) 

In this work, the instantaneous angular position of 𝑗𝑗 th 
tooth 𝜃𝜃𝑗𝑗 (𝑡𝑡)  is measured clockwise relat ive to the negative 
𝑦𝑦 − axis. The motion of 𝑋𝑋 − 𝑌𝑌  reference frame has the 
effect of extending the active time of cut such that screen 
function for circular slotting at time 𝑡𝑡 becomes 

𝑔𝑔𝑗𝑗 (𝑡𝑡) = 1
2
�1 + 𝑠𝑠𝑠𝑠𝑠𝑠 �sin�𝜃𝜃𝑗𝑗 (𝑡𝑡) − 𝑣𝑣

𝑟𝑟
𝑡𝑡���         (5) 

 
Figure 2.  Milling tooth-workpiece disposition 

𝑁𝑁 is number of teeth on the milling tool mean ing that 𝑗𝑗 
will have the values 1, 2, 3......𝑁𝑁. The teeth are numbered in 
line with rotational direction. 𝜃𝜃𝑗𝑗 (𝑡𝑡)  is given by the equation 

𝜃𝜃𝑗𝑗 (𝑡𝑡) = �𝜋𝜋Ω 
30
� 𝑡𝑡 + (𝑗𝑗 − 1) 2𝜋𝜋

𝑁𝑁
+ 𝜃𝜃0            (6) 

where 𝜃𝜃0  is the initial angular position of the tooth indexed 
1. Total 𝑥𝑥-component of cutting force for the tool becomes  
𝐹𝐹𝑥𝑥(𝑡𝑡) = ∑ 𝑔𝑔𝑗𝑗 (𝑡𝑡)�𝐹𝐹norm ,𝑗𝑗 (𝑡𝑡)sin𝜃𝜃𝑗𝑗 (𝑡𝑡) +𝐹𝐹tan ,𝑗𝑗(𝑡𝑡)cos𝜃𝜃𝑗𝑗 (𝑡𝑡)�𝑁𝑁

𝑗𝑗 =1  (7) 
The milling tangential and normal cutting forces for the 

𝑗𝑗th tooth can be given by the non-linear laws [1] 
𝐹𝐹tan ,𝑗𝑗 (𝑡𝑡) = 𝐶𝐶𝐶𝐶�𝑓𝑓a sin𝜃𝜃𝑗𝑗 (𝑡𝑡)�

𝛾𝛾
          (8) 

, tan,( ) ( )norm j jF t F t=              (9) 

where 𝑤𝑤  is depth of cut, 𝐶𝐶  is the cutting coefficient 
associated with the workpiece, 𝑓𝑓a  is the actual feed  and 𝛾𝛾 
is an exponent that is usually less than one having a value of 
3 4⁄  for the three-quarter rule. is the rat io of normal cutting 
force coefficient to tangential cutting force coefficient. 
= 0.3 is used in this work to conform with literature[1]. The 
event of introducing equations (8) and (9) into (7) g ives 
equation for 𝑥𝑥-component of cutting force. 

( ) ( ) ( ){ }1
( ) sin cos sin ( )N

x j j j a jj
F t g t Cw t t f t

γ
θ θ θ=

   = +   ∑                       (10) 

𝑓𝑓a  is the difference between present and one period delayed position of tool, thus 
𝑓𝑓a = 𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)                                       (11) 

where 𝑥𝑥(𝑡𝑡) = 𝑥𝑥  and 𝑥𝑥(𝑡𝑡 − 𝜏𝜏) = 𝑥𝑥𝜏𝜏 in figure1. Equations (10) and (11) taken together give 

( ) ( ) ( ) ( ) ( )1
( ) sin sin cos ( )N

x j j j jj
F t g t C t t t w x t x t γγ θ θ θ τ=

 = + − −   ∑                   (12) 

With the designation ∑ 𝑔𝑔𝑗𝑗 (𝑡𝑡)𝐶𝐶sin𝛾𝛾 𝜃𝜃𝑗𝑗 (𝑡𝑡)�sin𝜃𝜃𝑗𝑗 (𝑡𝑡) + cos𝜃𝜃𝑗𝑗 (𝑡𝑡)�𝑁𝑁
𝑗𝑗 =1 = 𝑞𝑞(𝑡𝑡), equation (12) becomes 
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𝐹𝐹𝑥𝑥 (𝑡𝑡) = 𝑤𝑤𝑤𝑤(𝑡𝑡) [𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)]𝛾𝛾                                   (13) 
Equation (2) becomes 

𝑚𝑚𝑥𝑥̈(𝑡𝑡) + 𝑐𝑐 �𝑥𝑥̇(𝑡𝑡) − 𝑣𝑣 cos �𝑣𝑣
𝑟𝑟
𝑡𝑡�� + 𝑘𝑘 �𝑥𝑥(𝑡𝑡) − 𝑟𝑟 sin�𝑣𝑣

𝑟𝑟
𝑡𝑡�� + 𝑤𝑤𝑤𝑤(𝑡𝑡)[𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)]𝛾𝛾 = 0         (14) 

Equation (14) becomes re-arranged  
𝑚𝑚𝑥𝑥̈(𝑡𝑡) + 𝑐𝑐𝑥𝑥̇(𝑡𝑡) + 𝑘𝑘𝑘𝑘(𝑡𝑡) = 𝑐𝑐𝑐𝑐 cos �𝑣𝑣

𝑟𝑟
𝑡𝑡� + 𝑘𝑘𝑘𝑘 sin�𝑣𝑣

𝑟𝑟
𝑡𝑡� − 𝑤𝑤𝑤𝑤(𝑡𝑡) [𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)]𝛾𝛾            (15) 

Based on the assumptions; the ratio 𝑣𝑣 𝑟𝑟⁄  does not get too high, spindle speed Ω does not get too low and time 𝑡𝑡 lies in  the 
interval[0, 𝜏𝜏] the simplificat ions; [1 − cos(𝑣𝑣𝑣𝑣 𝑟𝑟⁄ )] ≈ 0 and sin(𝑣𝑣𝑣𝑣 𝑟𝑟⁄ ) sin(𝑣𝑣𝑣𝑣 𝑟𝑟⁄ ) ≈ 0are admissible. Some attributes of a 
high-speed machining system are as follows[9]: spindles capable of speeds exceeding 40 thousand revolutions per minute 
while simultaneously delivering tens of kilowatts of power to the cutting zone, rigid low-mass machine-tool structures, 
high-speed linear slide-ways capable of coordinated linear motions at tangential speeds of up to 0.6 meters per second and 
accelerations of 20 meters per second squared. If for illustration it is assumed that a circu lar slot of radius 𝑟𝑟 = 20mm  is 
created by a three tooth end-miller at  very high feed speed 0.6ms−1 , spindle speed  Ω = 5000rpm  and 𝑡𝑡 = 𝜏𝜏 seconds 
then  

�1 − cos �
𝑣𝑣
𝑟𝑟
𝜏𝜏�� = �1 − cos �

𝑣𝑣
𝑟𝑟

60
𝑁𝑁Ω

�� = 0.0072

sin�
𝑣𝑣
𝑟𝑟
𝑡𝑡� sin�

𝑣𝑣
𝑟𝑟
𝜏𝜏� = sin�

𝑣𝑣
𝑟𝑟
𝑡𝑡� sin �

𝑣𝑣
𝑟𝑟

60
𝑁𝑁Ω

� = 0.0143
 

These results are seen to be close to the simplifications even at low Ω and high feed. Since feed speeds in circular cut is 
expected to be much smaller than 0.6ms−1, the simplificat ions are expected to be met for real circular milling process even 
when the radius gets smaller. This expectation is higher at h igher spindle speeds. In light of equation (1) the actual feed 
𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏) is re-written on the basis of the simplificat ions to become 

𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏) = �rsin�𝑣𝑣
𝑟𝑟
𝜏𝜏� − �𝑧𝑧(𝑡𝑡) − 𝑧𝑧(𝑡𝑡 − 𝜏𝜏) cos �𝑣𝑣

𝑟𝑟
𝜏𝜏�� cos �𝑣𝑣

𝑟𝑟
𝑡𝑡��                (16) 

The linearized Taylor series expansion of [𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)]𝛾𝛾  about rsin(𝑣𝑣𝑣𝑣 𝑟𝑟⁄ ) is 
[𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)]𝛾𝛾 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛾𝛾 �𝑣𝑣

𝑟𝑟
𝑡𝑡� ��𝑟𝑟sin�𝑣𝑣

𝑟𝑟
𝜏𝜏��

𝛾𝛾
+ 𝛾𝛾 �𝑟𝑟sin�𝑣𝑣

𝑟𝑟
𝜏𝜏��

𝛾𝛾−1
�𝑧𝑧(𝑡𝑡) − 𝑧𝑧(𝑡𝑡 − 𝜏𝜏) cos �𝑣𝑣

𝑟𝑟
𝜏𝜏���       (17) 

Inserting equations (1), (17) and 𝑧𝑧(𝑡𝑡) = 0 into equation (15) gives 
𝑚𝑚 �− 𝑣𝑣2

𝑟𝑟
sin�𝑣𝑣

𝑟𝑟
𝑡𝑡� + 𝑥𝑥̈𝑡𝑡 (𝑡𝑡) cos �𝑣𝑣

𝑟𝑟
𝑡𝑡� − 2 �𝑣𝑣

𝑟𝑟
�𝑥𝑥̇ 𝑡𝑡 (𝑡𝑡) sin�𝑣𝑣

𝑟𝑟
𝑡𝑡� − 𝑣𝑣2

𝑟𝑟2 𝑥𝑥𝑡𝑡(𝑡𝑡) cos �𝑣𝑣
𝑟𝑟
𝑡𝑡�� + 𝑐𝑐 �𝑣𝑣 cos �𝑣𝑣

𝑟𝑟
𝑡𝑡� + 𝑥𝑥̇𝑡𝑡 (𝑡𝑡) cos �𝑣𝑣

𝑟𝑟
𝑡𝑡� −

𝑥𝑥𝑡𝑡(𝑡𝑡)𝑣𝑣𝑟𝑟sin𝑣𝑣𝑟𝑟𝑡𝑡+𝑘𝑘𝑟𝑟sin𝑣𝑣𝑟𝑟𝑡𝑡+𝑥𝑥𝑡𝑡𝑡𝑡cos𝑣𝑣𝑟𝑟𝑡𝑡=𝑐𝑐𝑣𝑣cos𝑣𝑣𝑟𝑟𝑡𝑡+𝑘𝑘𝑟𝑟sin𝑣𝑣𝑟𝑟𝑡𝑡−𝑤𝑤𝑞𝑞𝑡𝑡cos𝛾𝛾𝑣𝑣𝑟𝑟𝑡𝑡𝑟𝑟sin𝑣𝑣𝑟𝑟𝜏𝜏𝛾𝛾    (18) 

Equation (18) governs the motion  of the unperturbed tool. Equation (18) is used to eliminate the 𝑥𝑥𝑡𝑡(𝑡𝑡) component of 
motion in equation (15) to give the perturbation model 

𝑚𝑚 cos �
𝑣𝑣
𝑟𝑟
𝑡𝑡� 𝑧̈𝑧(𝑡𝑡) + �𝑐𝑐 cos �

𝑣𝑣
𝑟𝑟
𝑡𝑡� − 2𝑚𝑚

𝑣𝑣
𝑟𝑟

sin�
𝑣𝑣
𝑟𝑟
𝑡𝑡�� 𝑧̇𝑧(𝑡𝑡) + �𝑘𝑘 cos �

𝑣𝑣
𝑟𝑟
𝑡𝑡� − 𝑐𝑐

𝑣𝑣
𝑟𝑟

sin�
𝑣𝑣
𝑟𝑟
𝑡𝑡� − 𝑚𝑚

𝑣𝑣2

𝑟𝑟2 cos �
𝑣𝑣
𝑟𝑟
𝑡𝑡�� 𝑧𝑧(𝑡𝑡) 

= −𝑤𝑤𝑤𝑤 �𝑟𝑟sin�𝑣𝑣
𝑟𝑟
𝜏𝜏��

𝛾𝛾−1
cos𝛾𝛾 �𝑣𝑣

𝑟𝑟
𝑡𝑡� 𝑞𝑞(𝑡𝑡) �𝑧𝑧(𝑡𝑡) − 𝑧𝑧(𝑡𝑡 − 𝜏𝜏) cos �𝑣𝑣

𝑟𝑟
𝜏𝜏��                                        (19) 

The specific force variat ion of circular end-milling is seen from the right-hand side of (19) to have the form 
ℎ(𝑡𝑡) = 𝛾𝛾 �𝑟𝑟sin �𝑣𝑣

𝑟𝑟
𝜏𝜏��

𝛾𝛾−1
𝑐𝑐𝑐𝑐𝑐𝑐𝛾𝛾−1 �𝑣𝑣

𝑟𝑟
𝑡𝑡� 𝑞𝑞(𝑡𝑡)                           (20) 

Making use of the relations 𝑐𝑐 𝑚𝑚⁄ = 2𝜉𝜉𝜔𝜔n  𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 𝑚𝑚⁄ = 𝜔𝜔n
2 , equation (19) by virtue of equation (20) becomes 

𝑧̈𝑧(𝑡𝑡) + �2𝜉𝜉𝜔𝜔n − 2𝑣𝑣
𝑟𝑟

tan �𝑣𝑣
𝑟𝑟
𝑡𝑡�� 𝑧̇𝑧(𝑡𝑡) + �𝜔𝜔n

2 − 𝑣𝑣2

𝑟𝑟2 − 2𝜉𝜉𝜔𝜔n
𝑣𝑣
𝑟𝑟

tan �𝑣𝑣
𝑟𝑟
𝑡𝑡� + 𝑤𝑤

𝑚𝑚
ℎ(𝑡𝑡)�𝑧𝑧(𝑡𝑡) = 𝑤𝑤

𝑚𝑚
cos �𝑣𝑣

𝑟𝑟
𝜏𝜏� ℎ(𝑡𝑡)𝑧𝑧(𝑡𝑡 − 𝜏𝜏)     (21) 

Equation (21) is a non-periodic DDE. But can be simplified to be periodic. 
Firstly, when radius of curvature 𝑟𝑟 approaches infinity the end-milling process of figure1 approaches straight line milling 

operation. Under this condition equations (20) and (21) respectively approach 
ℎl (𝑡𝑡) = 𝛾𝛾(𝑣𝑣𝑣𝑣) 𝛾𝛾−1𝑞𝑞p (𝑡𝑡)                                     (22) 

𝑧̈𝑧l (𝑡𝑡) + 2𝜉𝜉𝜔𝜔n 𝑧̇𝑧l (𝑡𝑡) + �𝜔𝜔n
2 + 𝑤𝑤

𝑚𝑚
ℎl (𝑡𝑡) � 𝑧𝑧l (𝑡𝑡) = 𝑤𝑤

𝑚𝑚
ℎl (𝑡𝑡)𝑧𝑧l (𝑡𝑡 − 𝜏𝜏)                        (23) 

where 𝑞𝑞p (𝑡𝑡) = ∑ 1
2
�1 + sgn�sin�𝜃𝜃𝑗𝑗 (𝑡𝑡)���𝐶𝐶sin𝛾𝛾 𝜃𝜃𝑗𝑗 (𝑡𝑡)�sin𝜃𝜃𝑗𝑗 (𝑡𝑡) + cos𝜃𝜃𝑗𝑗 (𝑡𝑡)�𝑁𝑁

𝑗𝑗 =1  is 𝜏𝜏-periodic. Equation (23) together with 
equation (22) is the same as the traditional one describing periodic DDE for straight line milling derived in[1, 6] on 
fundamental assumption of linear feed. This means deriving same equation from a more generalized standpoint. 

Another 𝜏𝜏-periodic simplificat ion of equation (21) results when the approximation 𝑣𝑣𝑣𝑣 𝑟𝑟⁄ ≈ 0 is made leading to equations 
(20) and (21) respectively becoming  

ℎc (𝑡𝑡) = 𝛾𝛾[𝑟𝑟sin(𝛼𝛼𝛼𝛼)]𝛾𝛾−1𝑞𝑞p (𝑡𝑡)                                  (24) 
𝑧̈𝑧c(𝑡𝑡) + 2𝜉𝜉𝜔𝜔n 𝑧̇𝑧c (𝑡𝑡) + �𝜔𝜔n

2 − 𝛼𝛼2 + 𝑤𝑤
𝑚𝑚
ℎc (𝑡𝑡)� 𝑧𝑧c (𝑡𝑡) = 𝑤𝑤

𝑚𝑚
cos(𝛼𝛼𝛼𝛼) ℎc (𝑡𝑡)𝑧𝑧c (𝑡𝑡 − 𝜏𝜏)               (25) 
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where 𝛼𝛼 = 𝑣𝑣 𝑟𝑟⁄  is termed angular feed  speed. 𝛼𝛼  is 
measured in rad ians per second. Equation (25) is the 
resulting dynamical model of circu lar end-milling. The 
effect of curvature is reflected by the presence of 𝛼𝛼 in both 
equations (24) and (25). This equation could also be viewed 
as corrected form of equation (23) for application to the case 
of circu lar end-milling. The 𝜏𝜏-periodicity of equations (23) 
and (25) means amenability of stability analysis to the 
extended Floquet theory for delayed systems. For the same 
tool-workpiece combination, the periodic circular end- 
milling with tangential feed speed 𝑣𝑣t  is considered 
equivalent to straight-line end-milling with linear feed speed 
𝑣𝑣l  when 𝑣𝑣t = 𝑣𝑣l . This forms the basis of comparison of 
equations (23) and (25). 

The first direct comparison of circular end-milling and 
straight-line end-milling lies in comparing ℎc (𝑡𝑡) and ℎl (𝑡𝑡)  
on same time axis as shown in figure3 (a) for 𝑟𝑟 =
20mm and α = 10rads−1  and figure3 (b) for 𝑟𝑟 =
20mm and α = 30rads−1 . The plot of specific force 
variations ℎc (𝑡𝑡) and ℎl (𝑡𝑡)  is seen in figure3 for a system 
with the typical specification; 𝐶𝐶 = 3.5 × 107 Nm−7 4⁄ , 
 𝛾𝛾 = 0.75 (from the three-quarter ru le), Ω = 10000rpm  to 
exhibit 𝜏𝜏 -periodicity. It is noteworthy that the graphical 
forms of ℎc (𝑡𝑡)  and ℎl (𝑡𝑡)  are identical for three tooth 
end-miller at the parameters chosen. This is expected from 
the fact that coefficient of 𝑞𝑞p (𝑡𝑡) in (22) and (24) are similar 
at reasonably high Ω and low 𝛼𝛼. 

  
 

 (a) 

 
 

 (b) 
Figure 3.  Specific force variation of periodic circular end-milling at 
Ω = 10000rpm, 𝑟𝑟 = 20mm  and (a) α = 10rads−1  (b) α = 50rads−1  
compared with that of equivalent linear feed end-milling 

Though not presented equality between ℎc (𝑡𝑡) and ℎl (𝑡𝑡)  
is also seen for other end-millers of different number o f teeth.  
Equations (23) and (25) have identical coefficient of 
perturbation velocity while their coefficient of perturbation 
displacement are almost equal when 𝛼𝛼 is not too big. This 

means that stability of equations (23) and (25) are thus 
expected to be identical. 

3. Modified Full-Discretization Map for 
Circular Milling 

The map of full-discretization generated in [7] and 
illustrated also in[7] to be more compact, faster and more 
convergent than the older fu ll discretization map g iven in[8] 
is as follows 

𝐱𝐱𝑘𝑘+1 = 𝐌𝐌𝑘𝑘𝐌𝐌𝑘𝑘−1 … … .𝐌𝐌0𝐱𝐱0 = 𝛙𝛙l𝐱𝐱0       (26) 
where  

𝐌𝐌𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡𝐌𝐌11

𝑖𝑖 𝟎𝟎 ⋯ 𝟎𝟎 𝐌𝐌1𝑘𝑘
𝑖𝑖 𝐌𝐌1,𝑘𝑘+1

𝑖𝑖

𝐈𝐈 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐈𝐈 ⋯ 𝟎𝟎 𝟎𝟎 𝟎𝟎
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈 𝟎𝟎 ⎦

⎥
⎥
⎥
⎤

 

and 𝐀𝐀 = � 0 1
−𝜔𝜔n

2 −2𝜉𝜉𝜔𝜔n
�, 𝐁𝐁(𝑡𝑡) = �

0 0
− 𝑤𝑤

𝑚𝑚
ℎl (𝑡𝑡) 0� , 𝐁𝐁𝑖𝑖 =

𝐁𝐁(𝑡𝑡𝑖𝑖 ) ,  𝐆𝐆 = 𝐈𝐈− ∆𝑡𝑡
6

(𝐁𝐁𝑖𝑖 + 2𝐁𝐁𝑖𝑖+1) , 𝐌𝐌11
𝑖𝑖 = 𝐆𝐆−1 �e𝐀𝐀∆𝑡𝑡 +

∆𝑡𝑡6𝐁𝐁𝑖𝑖+1+2𝐁𝐁𝑖𝑖, 𝐌𝐌1𝑘𝑘𝑖𝑖=−∆𝑡𝑡6𝐆𝐆−1𝐁𝐁𝑖𝑖+2𝐁𝐁𝑖𝑖+1 and 
𝐌𝐌1 ,𝑘𝑘+1

𝑖𝑖 = − ∆𝑡𝑡
6
𝐆𝐆−1(𝐁𝐁𝑖𝑖+1 + 2𝐁𝐁𝑖𝑖) . The approximate 

monodromy 𝛙𝛙l acts as a second order tensor that transforms 
the delayed state 𝐱𝐱0 to the present state 𝐱𝐱𝑘𝑘+1 . Equation (26) 
is called modified fu ll-discretization map (MFDM) in[7]. 

The basic idea and procedure of full-d iscretization method 
used in[7] to generate (26) for linear feed end-milling is 
adopted here in the model transformation of the periodic 
DDE model for circular end-milling. Equation (25) is first 
denoted in state space as  

𝐲̇𝐲 = 𝐀𝐀𝐀𝐀 + 1
cos (𝛼𝛼𝛼𝛼 ) 𝐁𝐁(𝑡𝑡)𝐲𝐲 − 𝐁𝐁(𝑡𝑡)𝐲𝐲𝜏𝜏         (27) 

where 𝐲̇𝐲 = �𝑦̇𝑦1
𝑦̇𝑦2
�,𝐲𝐲𝜏𝜏 = �

𝑦𝑦1 ,𝜏𝜏
𝑦𝑦2 ,𝜏𝜏

�, 𝐀𝐀 = � 0 1
−𝜔𝜔n

2 + 𝛼𝛼2 −2𝜉𝜉𝜔𝜔n
� 

and 𝐁𝐁(𝑡𝑡) = �
0 0

− cos(𝛼𝛼𝛼𝛼) 𝑤𝑤
𝑚𝑚
ℎc (𝑡𝑡) 0� . The discrete delay τ 

of the system is divided into 𝑘𝑘  equal time intervals 
[𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1]  where 𝑖𝑖 = 0, 1, 2, … … … (𝑘𝑘 − 1)  and 𝑡𝑡𝑖𝑖 = 𝑖𝑖 𝜏𝜏

𝑘𝑘
=

𝑖𝑖∆𝑡𝑡 . The discretization integer  𝑘𝑘  is the approximat ion 
parameter. Equation (27) is approximated in each of the 
discrete intervals as   

𝐲𝐲�̇ = 𝐀𝐀𝐲𝐲� + 1
cos (𝛼𝛼𝛼𝛼)𝐁𝐁�(𝑡𝑡)𝐲𝐲� −𝐁𝐁�(𝑡𝑡)𝐲𝐲�𝜏𝜏         (28) 

The time-dependent matrices and vectors are 
approximated linear with 𝑡𝑡 as 

𝐁𝐁�(𝑡𝑡) = 𝐁𝐁𝑖𝑖 + 𝐁𝐁𝑖𝑖+1−𝐁𝐁𝑖𝑖
∆𝑡𝑡

(𝑡𝑡 − 𝑡𝑡𝑖𝑖)

𝐲𝐲�(𝑡𝑡) = 𝐲𝐲𝑖𝑖 + 𝐲𝐲𝑖𝑖+1−𝐲𝐲𝑖𝑖
∆𝑡𝑡

(𝑡𝑡 − 𝑡𝑡𝑖𝑖)

𝐲𝐲�𝜏𝜏 (𝑡𝑡) = 𝐲𝐲𝑖𝑖−𝑘𝑘 + 𝐲𝐲𝑖𝑖+1−𝑘𝑘−𝐲𝐲𝑖𝑖−𝑘𝑘
∆𝑡𝑡

(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
        (29) 

in each of the intervals [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1]. 
Direct integration of equation (28) in the discrete 

interval  [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1]  making use of the result ∫ (𝑡𝑡 −
𝑡𝑡𝑖𝑖+1
𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖𝑛𝑛d𝑡𝑡=∆𝑡𝑡𝑛𝑛+1𝑛𝑛+1 leads to  

( )[ ]2−Nmthl

( )[ ]2−Nmthc

( )[ ]2−Nmthl

( )[ ]2−Nmthc

[ ]st

[ ]st
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      𝐲𝐲𝑖𝑖+1 = e𝐀𝐀∆𝑡𝑡𝐲𝐲𝑖𝑖 + ∆𝑡𝑡
6 cos(𝛼𝛼𝛼𝛼)

(𝐁𝐁𝑖𝑖 + 2𝐁𝐁𝑖𝑖+1)𝐲𝐲𝑖𝑖+1  

+ ∆𝑡𝑡
6 cos (𝛼𝛼𝛼𝛼)

(𝐁𝐁𝑖𝑖+1 + 2𝐁𝐁𝑖𝑖)𝐲𝐲𝑖𝑖   

−∆𝑡𝑡
6

(𝐁𝐁𝑖𝑖 + 2𝐁𝐁𝑖𝑖+1)𝐲𝐲𝑖𝑖+1−𝑘𝑘       

−∆𝑡𝑡
6

(𝐁𝐁𝑖𝑖+1 + 2𝐁𝐁𝑖𝑖)𝐲𝐲𝑖𝑖−𝑘𝑘            (30) 

Equation (30) becomes re-arranged to become 

𝐲𝐲𝑖𝑖+1 = 𝐆𝐆−1 �e𝐀𝐀∆𝑡𝑡 +
∆𝑡𝑡

6 cos(𝛼𝛼𝛼𝛼)
(𝐁𝐁𝑖𝑖+1 + 2𝐁𝐁𝑖𝑖 )�𝐲𝐲𝑖𝑖 − 

∆𝑡𝑡
6
𝐆𝐆−1(𝐁𝐁𝑖𝑖 + 2𝐁𝐁𝑖𝑖+1)𝐲𝐲𝑖𝑖 +1−𝑘𝑘 −

∆𝑡𝑡
6
𝐆𝐆−1(𝐁𝐁𝑖𝑖+1 + 2𝐁𝐁𝑖𝑖)𝐲𝐲𝑖𝑖−𝑘𝑘.(31) 

where  𝐆𝐆 = 𝐈𝐈 − ∆𝑡𝑡
6 cos (𝛼𝛼𝛼𝛼 )

(𝐁𝐁𝑖𝑖 + 2𝐁𝐁𝑖𝑖+1). Th is is put in matrix 
form to give 

⎩
⎪
⎨

⎪
⎧
𝐲𝐲𝑖𝑖 +1
𝐲𝐲𝑖𝑖
𝐲𝐲𝑖𝑖 −1
⋮

𝐲𝐲𝑖𝑖+1−𝑘𝑘⎭
⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡𝐌𝐌11

𝑖𝑖 𝟎𝟎 ⋯ 𝟎𝟎 𝐌𝐌1𝑘𝑘
𝑖𝑖 𝐌𝐌1,𝑘𝑘+1

𝑖𝑖

𝐈𝐈 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐈𝐈 ⋯ 𝟎𝟎 𝟎𝟎 𝟎𝟎
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈 𝟎𝟎 ⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝐲𝐲𝑖𝑖
𝐲𝐲𝑖𝑖−1
𝐲𝐲𝑖𝑖−2
⋮

𝐲𝐲𝑖𝑖−𝑘𝑘⎭
⎪
⎬

⎪
⎫

 (32) 

where 𝐌𝐌11
𝑖𝑖 = 𝐆𝐆−1 �e𝐀𝐀∆𝑡𝑡 + ∆𝑡𝑡

6 cos (𝛼𝛼𝛼𝛼 )
(𝐁𝐁𝑖𝑖+1 + 2𝐁𝐁𝑖𝑖)� , 𝐌𝐌1𝑘𝑘

𝑖𝑖 =

− ∆𝑡𝑡
6
𝐆𝐆−1(𝐁𝐁𝑖𝑖 + 2𝐁𝐁𝑖𝑖+1) and 𝐌𝐌1,𝑘𝑘+1

𝑖𝑖 = − ∆𝑡𝑡
6
𝐆𝐆−1(𝐁𝐁𝑖𝑖+1 + 2𝐁𝐁𝑖𝑖). 

If equation (32) is designated as 𝐱𝐱𝑖𝑖+1 = 𝐌𝐌𝑖𝑖 𝐱𝐱𝑖𝑖 the MFDM 
for the system becomes  

𝐱𝐱𝑘𝑘 = 𝐌𝐌𝑘𝑘−1 … … .𝐌𝐌0𝐱𝐱0              (33) 
The fin ite Floquet transition matrix in this case becomes  

𝛙𝛙c = 𝐌𝐌𝑘𝑘−1 … … .𝐌𝐌0               (34) 
The approximate monodromy operator 𝛙𝛙c  maps the 

delayed state 𝐱𝐱0 to the present state 𝐱𝐱𝑘𝑘+1. The basic idea of 
stability analysis is that all the eigenvalues of a monodromy 
operator must be of magnitude less than one for asymptotic 
stability. Stability transition curve is then tracked along 
parameter combinations of neutral stability. Neutral stability 
means unit moduli for maximum magnitude (crit ical) 
eigenvalues. These critical eigenvalues are analytical[10] 
and experimentally[11] established for milling process to be 
either -1 (in the case of flip or period two bifurcation) or a 
complex con jugate pair ( in the case of secondary Hopf or 
Neimark-sacker bifurcat ion). 

4. Results and Discussions  
The stability charts of figures 4 and 5 are calculated by a 

MATLAB program that is executed by the contour command. 
The parameters utilized are 𝑚𝑚 = 0.431kg, 𝜔𝜔n = 5700  
rads−1, 𝜉𝜉 = 0.02 and 𝐶𝐶 = 3.5 × 107 Nm−7 4⁄ . Calculation 
of eigen-values of 𝛙𝛙l and 𝛙𝛙c  with 𝑘𝑘 = 80  is done on a 
200 by 25 data grid with spindle speed steps 96rpm and 
depth of cut steps 0.0008m. The points at which critical 
conditions occur are connected by the stability transition 
curve. Stability charts of three and ten tooth end-millers are 
generated in figures 4 and 5 respectively. Each circular 
end-milling tool is slotting along circular feed paths of rad ius 
𝑟𝑟 =  20mm and angular feed speed of 𝛼𝛼 = 0.125, 10 or 
30 rad s−1  while the equivalent straight-line (or linear) 
end-miller is prescribed with  feed speed of 𝑣𝑣 = 𝛼𝛼𝛼𝛼 =
0.125 × 0.02 = 0.0025ms−s, 10 × 0.02 = 0.2ms−s  or 
30 × 0.02 = 0.6ms−s. Results of stability analysis of both 
periodic circular and straight-line end-milling of equal feed 
speed are placed on the same axis for d irect comparison of 
chatter stability. Points below the curve are stable while 
points above it are unstable. Stability charts at all feed speeds 
are produced with same scale for comparison of chatter 
stability of tools of different number of teeth and different 
feed speed. It is seen from figures 4 and 5 that circular feed 
end-milling (CFEM) and linear feed end-milling (LFEM) 
have coincident stability transition curves. This result is 
expected since there is no curvature effect (either 𝑟𝑟 or 𝛼𝛼) 
seen in the coefficient of perturbation velocity of the 
proposed periodic model (equation (25)) for circular 
end-milling. Th is result justifies any earlier approximation of 
circular end-milling with the classical model for linear feed 
end-milling. It should be noted that chatter stability improves 
with increase of 𝛼𝛼 for circular end-milling or increase in 𝑣𝑣 
for linear feed end-milling. 

 
(a) 
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Figure 4.  Stability chart for three tooth end-miller (a) 𝑟𝑟 = 20mm and  α = 0.125rads−1 (b) 𝑟𝑟 = 20mm  and  α = 10rads−1  (c) 𝑟𝑟 = 20mm  and  
α = 30rads−1. The full black line is for CFEM while the red dotted line is for LFEM.  
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(b) 
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(c) 

Figure 5.  Stability chart for ten tooth end-miller (a) 𝑟𝑟 = 20mm  and α = 0.125rads−1  (b) 𝑟𝑟 = 20mm and  α = 10rads−1  (c) 𝑟𝑟 = 20mm and  
α = 30rads−1. The full black line is for CFEM while the red dotted line is for LFEM 

5. Conclusions 
Model described by non-periodic delay differential 

equation is presented for circu lar end-milling. A 
simplification of this model gives an approximate periodic 
delay differential for circular end-milling. Another 
simplification of the non-periodic model based on the fact 
that straight-line feed end-milling is a circu lar end-milling of 
infinitely large radius led to the trad itional periodic delay 
differential equation seen in literature for linear feed 
end-milling. A modified full-d iscretization mapping is used 
in regenerative chatter stability comparison of the periodic 
circular end-milling and linear feed end-milling. It is derived 
that circular end-milling is as stable as its linear feed 
equivalent. Though this result has been implied in some 
earlier pract ice of approximat ing circular feed end-milling 
with the mathemat ical model of its linear feed equivalent, 
this work provides theoretical justification to that. 
Equivalence is based on equal feed speed. Increase in 
angular feed  speed causes improvement in chatter stability of 
circular end-milling while increase in linear feed speed 
equivalently causes improvement in chatter stability of 
straight-line feed end-milling. 
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