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Abstract  There is no single cause of undesirable v ibrations occurring in rotating machinery. Poor operating conditions 
like loose mechanical parts, fau lty impellers, fau lty bearings, faulty gears, unbalanced mach ine elements, whirling and 
unbalanced shafts intensify vibration in rotating machines. In this work rotational unbalance was singled out as a cause of 
vibration and its nature, causes, effects and remedies explored and exp lained. Analytical equations are derived for both cases 
of single and double plane balancing of experimentally determined unbalance. The double plane balancing equations (10, 11 
and 12) are novel to this work. With the derived balancing equations, an operator could avoid the difficult-to-understand, 
difficult-to-use and erro r prone graphical approach. In the modern world’s industrial set-up, productivity is improved by 
integrating high-speed computers into the process of production. Based on this need a general MATLAB program was 
written for quick solution of experimental double plane balancing problems. Three exercises drawn from a standard text were 
used to illustrate the usefulness of the derived equations. 
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1. Introduction 
International Standards Organization (ISO) as seen in[1] 

defines unbalance as that condition which exists in  a rotor 
when a v ibratory force or mot ion is imparted to its bearings 
as a result of centrifugal forces. Unbalance is the uneven 
distribution of mass about a rotor’s rotating centreline. In 
other words rotational unbalance results when the axis of 
rotation of a rotor system is not coincident with the principal 
axis of inert ia. This eccentricity occurs whenever there is 
geometric, material and property asymmetry about a rotor’s 
rotational axis. Unbalance in rotating machinery  causes 
dynamic forces that bring about vibration and intensification 
of stresses at the bearing and other receivers. 

 When unbalance appears to be in a single axial p lane such 
that the principal axis of rotation is displaced parallel to the 
geometric centreline, static unbalance results. In other cases 
called  dynamic unbalance non -zero  coup le s et -up  by 
cen t rifugal fo rces  occur at  the bearings [2]. Dynamic 
unbalance will result when the principal axis o f rotation and 
geometric centreline are neither parallel nor touching or 
when it appears that unbalance occur in multip le axial p lanes. 
Engineers deal with unbalance by addition or removal of 
matter such that the geometric axis of rotation approaches 
the principal axis of rotation in alignment and proximity.  
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Static unbalance is corrected by addition or removal of  
correction weight in the plane of the unbalance while 
dynamic unbalance is corrected by addition  of two 
appropriate weights in two arb itrarily chosen planes[2, 3].  

There are many causes of unbalance in rotating machinery. 
Any form of eccentricity and non-uniformity  in  a machine 
element causes unbalance. During manufacturing process 
imperfections such as density variation, porosity and 
blowholes occur. Human error in manufacturing process 
results in fabrication errors like eccentric machined part, 
misaligned assembly and misshapen castings. Cumulative 
assembly tolerance is also one of the causes of rotating 
unbalance. Rotating machinery in operation that is originally 
balanced with t ime becomes unbalanced due to distorting 
rotational stresses and temperature changes. Necessary 
features like keys, key ways, bolts, nuts, rivets, welds and 
cranks added to practical machines increases the propensity 
to unbalance. Accumulation of deposits in a running 
mach ine plays a negative role in the balancing condition of 
the machine. In a corrosive environment the rotor shape may 
get compromised leading to unbalance. Increasing rotational 
speed increases the risks associated with both unbalance and 
whirling[1]. Unbalance in rotating mach inery almost 
certainly occurs due to upper limit  placed on the degree of 
manufacturing precision by human erro r. 

Unbalance causes sustained vibrations in rotating 
mach inery. Unbalanced forces in a rotating machinery are 
harmonic of form 𝐹𝐹 = 𝑚𝑚𝜔𝜔2𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  thus producing 
harmonically fluctuating fat igue stresses which  causes 
aggravated damages to the rotating shafts, bearings, 
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mounting frames, foundation and sometimes neighbouring 
mach inery. Noise is one of the undesirable attributes of 
unbalance. Vibrations in rotating machinery get transmitted 
to the human operator and causes discomfort. The following 
effects on the human operator have been observed at various 
operating frequency ranges: motion sickness (0.1-1Hz), 
blurring vision (2-20Hz), speech disturbance (1-20Hz), 
interference with tasks (0.5-20Hz) and after-fatigue 
(0.2-15Hz) as seen in[3]. Unbalance and sequel vibrations 
increase the cost of running an industry in terms of reduced 
mach ine life, reduce duration between outages, increased 
spare parts stock , increased inefficiency and imprecision of 
produced parts . It becomes clear that unbalance must be 
dealt with from the stand-point of problems stemming from 
it. 

Through creative practice, engineers try to minimize the 
effects of harmfu l phenomena that cannot be eliminated. 
Rotational unbalance is one of such phenomena but 
fortunately it could be minimize to levels where it does not 
present as a major source of p roblem for the mach inery and 
the operators. The source-path-receiver concept could be 
utilized in managing the vibrations induced by unbalance. 
Vibrat ion is considered to be handled at the source when 
balancing procedures are carried out on the unbalanced 
rotor[3]. When design and incorporations are carried out to 
minimize the effect of vibration on the receivers, v ibration 
will be considered controlled at the receiver. Vibration 
control at the receiver could be achieved by natural 
frequency design, damping, introduction of vibration 
isolators and introduction of dynamic v ibration absorbers. 
Method of natural frequency was used to preclude the 
possibility of resonance in a build ing frame by designing the 
frame to have a natural frequency above the highest 

operational speed of a mounted motor[4, 5, 6]. If rotating 
mach inery has a low natural frequency then resonance and 
instability may present a source of concern depending on the 
speed of start-up. A slow start-up requires damping to deal 
with any possible resonance especially in situation where 
whirling is an added concern.  

Unbalance is normally determined experimentally. The 
magnitude and location of balancing force is normally 
determined graphically. This graphical approach to double 
plane balancing is a long process that requires high level of 
expertise. It is difficult-to-understand, difficult -to-use and 
error prone. A number of analytical equations (equations (10, 
11 and 12)) are generated in this work to overcome the 
challenges of graphical approach to double plane balancing. 

2. Analytical Equations to Rotational 
Balancing 

2.1. Single Plane Balancing  

Unbalanced mass could come in the form of mach ine 
elements such as discs that have their centre of mass not 
coinciding with the geometric centre. Unbalance in such a 
mach ine element could quickly be noticed by it being 
mounted on a rigid  shaft that is in turn mounted on a pair of 
low friction bearings and rotated in a given direction. If a 
mark g iven to the disc settles at the same location in 
successive rotations then there is unbalance. The magnitude 
and location of this unbalance could then be determined by 
running the rotor at a constant speed and measuring either of 
the reactions at the bearings. Such an arrangement is as 
shown figure1 below; 

 
Figure 1.  A Single plane balancing problem 
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Figure 2.  Experimental set-up for single plane balancing 

Moments taken about bearing 2 results in 
𝐹𝐹1 𝑙𝑙 = 𝑚𝑚𝜔𝜔2𝑟𝑟𝑙𝑙2                (1a) 
𝑚𝑚𝑚𝑚 = 𝐹𝐹1𝑙𝑙

𝜔𝜔2 𝑙𝑙2
                 (1b) 

Where the unbalance 𝑚𝑚𝑚𝑚  could be calculated from 
equation (1b) being that every other variable is known. The 
unbalance is corrected by adding a mass such that the 
original unbalance is cancelled. The unbalance could also be 
corrected by removing (drilling say) a mass at the location of 
the unbalance. 

2.1.1. Sing le Plane Balancing Using Vibration Analyzer 

The use of vibration analyzer helps to avoid the unreliable 
trial and error method of single plane balancing. An 
experimental set-up utilizing the vibration analyzer is as 
shown in figure2. In order to use the vibration analyzer for 
single plane balancing a summary of the procedure as seen 
in[3, 7] is presented in steps that follows; 
● Coincident phase marks are made on the rotor and 

stator while the rotor is static. 
●  A vibration p ick-up is place in  contact with the 

disc-carrying bearing that is placed between the rotor and the 
stator. 
●  The vibration analyzer is set at a frequency that 

corresponds with the angular velocity at  which the test is run. 
● The rotor is run at the test speed𝜔𝜔. 
● Vibrat ion signal 𝐴𝐴𝑢𝑢  caused by the original unbalance 

as displayed by the indicating meter of the vibration analyzer 
is taken note of. 

●  Under a stroboscope light fired by the vibrat ion 
analyzer at its set frequency the reference mark on the rotor 
appears stationary with a phase lag 𝜃𝜃 and taken note of 

●The rotor is stopped, a known trial weight 𝑊𝑊 attached 
to it and the foregoing steps repeated to obtain vibration 
amplitude 𝐴𝐴𝑢𝑢+𝑊𝑊  at a phase lag 𝜑𝜑  due to combined 
unbalance of rotor and trial weight. 

A typical vector diagram is constructed as shown in 
figure3  

The vector 𝐴𝐴𝑊𝑊  which is the unbalance due to the trial  
weight and the angle 𝛼𝛼 which is the angle between 𝐴𝐴𝑊𝑊  and 
𝐴𝐴𝑢𝑢  are seen from the vector diagram to be 

  (2a) 

𝛼𝛼 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �𝐴𝐴𝑢𝑢+𝑊𝑊
2 −𝐴𝐴𝑢𝑢2−𝐴𝐴𝑊𝑊

2

2𝐴𝐴𝑢𝑢𝐴𝐴𝑊𝑊
�          (2b) 

It is assumed that at constant radial distance vibration 
amplitude is proportional to magnitude of unbalance 
producing it. The magnitude of the original unbalance 
becomes 

𝑊𝑊𝑢𝑢 = �𝐴𝐴𝑢𝑢
𝐴𝐴𝑊𝑊
�𝑊𝑊               (3) 

For complete static balance a balancing force 𝐹𝐹𝐵𝐵  of same 
magnitude as 𝑊𝑊𝑢𝑢  will be placed at the same rad ial d istance 
as W and at an angle 180 − 𝛼𝛼 counter clockwise from 𝐴𝐴𝑊𝑊 . 

 
Figure 3.  Vector diagram for single plane balancing 

Example1: in order to determine the unbalance in a 
grinding wheel, rotating clockwise at 2400rpm, a v ibration 
analyzer is used and amplitude of 4mils and a phase angle of 
45 degrees are observed with the original unbalance. When 
trial weight W=4 oz is added at 20 degrees clockwise from 
the phase mark, the amplitude becomes 8mils and the phase 
angle 145 degrees if the phase marks are measured from the 
right hand horizontal, calculate the magnitude and location 
of the necessary balancing weight[3]. 

Solution: Given data; 𝜔𝜔 = 2400𝑟𝑟𝑟𝑟𝑟𝑟, 𝐴𝐴𝑢𝑢 = 4𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝜃𝜃 =
45𝑜𝑜  ,𝑊𝑊 = 4𝑜𝑜𝑜𝑜 , 𝜑𝜑 = 145𝑜𝑜 , 𝐴𝐴𝑢𝑢+𝑊𝑊 = 8𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   

Using equation (2a)  

 
From equation (3) 

𝑊𝑊𝑢𝑢 = �
4

9.545
� 4 = 1.6802𝑜𝑜𝑜𝑜  

𝛼𝛼 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
82 − 42 − 9.5452

2 × 4 × 9.545
� = 124.37 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

180𝑂𝑂 − 𝛼𝛼 = 55.6𝑂𝑂 
Since the derivation is made and vector diagram drawn 

assuming counter clockwise rotation thus the balancing 
weight must be added 55.6 degrees clockwise of the position 
of the trial weight. For static balancing the weight 1.6802 oz 
must be added at (55.6+20=75.6) degrees clockwise of the 
right horizontal.  
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Figure 4.  Double plane balancing problem 

 
Figure 5.  Illustration of a double plane balancing problem 

2.2. Double Plane Balancing  
Single plane balancing is approved to be satisfactory for 

rotors of thin rigid disc type but unreliable for rotors of 
elongated rigid body type[3]. For rotors of latter type double 
plane balancing is recommended and consists of proper 
addition of appropriate weights in any two planes[8, 9]. 
Another name for double plane balancing is dynamic 
balancing since it results in the cancellat ion of both 
unbalanced forces and moments[9]. Another practical 
situation that needs dynamic balancing is the case where 
known eccentric masses are positioned round a rotor in 
different planes and each mass 𝑚𝑚𝑖𝑖  exists at an axial, radial, 
and angular location 𝑙𝑙𝑖𝑖(relative to reference plane), 𝑟𝑟𝑖𝑖  and 
𝜃𝜃𝑖𝑖 (relative to one o f the unbalanced masses) respectively. If 
the arbitrarily chosen planes are (1) and (2) as shown in 
figure4 and the rotor is to be dynamically balanced by 
placing two masses 𝑚𝑚𝑏𝑏1  and 𝑚𝑚𝑏𝑏2  at radii 𝑟𝑟𝑏𝑏1  and 𝑟𝑟𝑏𝑏2  at 
angular locations 𝜃𝜃𝑏𝑏1  and 𝜃𝜃𝑏𝑏2  in the chosen planes then the 
following derivation follow. The total unbalanced becomes 
𝐹⃗𝐹
𝜔𝜔2 = �𝑚𝑚𝑖𝑖 𝑟𝑟𝑖𝑖 𝑒𝑒𝑗𝑗 𝜃𝜃𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑛𝑛

 

= ∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 + 𝑗𝑗 ∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛

𝑖𝑖 =𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑒𝑒𝑗𝑗𝑗𝑗     (4) 
Introduction of balancing masses at their planes will result 

in static balance according to the equation; 

�𝑚𝑚𝑖𝑖𝜔𝜔2𝑟𝑟𝑖𝑖 𝑒𝑒𝑗𝑗 𝜃𝜃𝑖𝑖
𝑛𝑛

𝑖𝑖=𝑛𝑛

+ 𝑚𝑚𝑏𝑏1𝜔𝜔2𝑟𝑟𝑏𝑏1𝑒𝑒𝑗𝑗 𝜃𝜃𝑏𝑏1 + 𝑚𝑚𝑏𝑏2𝜔𝜔2𝑟𝑟𝑏𝑏2 𝑒𝑒𝑗𝑗 𝜃𝜃𝑏𝑏2  

= 0                                         (5) 

Equation(5) results in the two equations 
∑ 𝑚𝑚𝑖𝑖 𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 + 𝑚𝑚𝑏𝑏1𝑟𝑟𝑏𝑏1 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑏𝑏1 + 𝑚𝑚𝑏𝑏2 𝑟𝑟𝑏𝑏2 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑏𝑏2 = 0 (6a) 
∑ 𝑚𝑚𝑖𝑖 𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 + 𝑚𝑚𝑏𝑏1 𝑟𝑟𝑏𝑏1 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑏𝑏1 + 𝑚𝑚𝑏𝑏2 𝑟𝑟𝑏𝑏2 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑏𝑏2 = 0(6b) 
Moments taken about the reference plane while assuming 

that that the balancing mass 𝑚𝑚𝑏𝑏1  lies on it g ives  
∑ 𝜔𝜔2𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖 𝑙𝑙𝑖𝑖𝑒𝑒𝑗𝑗𝜃𝜃𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 +𝑚𝑚𝑏𝑏2𝜔𝜔2𝑟𝑟𝑏𝑏2𝑒𝑒𝑗𝑗𝜃𝜃𝑏𝑏2 = 0   (7) 

This results in the two equations 

𝑚𝑚𝑏𝑏2𝑟𝑟𝑏𝑏2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑏𝑏2 = −∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖

𝑙𝑙
      (8a) 

𝑚𝑚𝑏𝑏2𝑟𝑟𝑏𝑏2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑏𝑏2 = −∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖

𝑙𝑙
      (8b) 

From the equations(6 and 8) the following equations 

𝑚𝑚𝑏𝑏1𝑟𝑟𝑏𝑏1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑏𝑏1 = ∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖

𝑙𝑙
− ∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛

𝑖𝑖=𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 (9a) 

𝑚𝑚𝑏𝑏1𝑟𝑟𝑏𝑏1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑏𝑏1 = ∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖

𝑙𝑙
− ∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛

𝑖𝑖=𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 (9b) 

are derived. Divid ing equation(8b) with equation(8a) 
gives 

𝜃𝜃𝑏𝑏2 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖
𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖

∑ 𝑚𝑚𝑖𝑖 𝑟𝑟𝑖𝑖
𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖

�          (10) 

Div iding equation(9b) with equation(9a) gives 

𝜃𝜃𝑏𝑏1 = 𝑡𝑡𝑡𝑡𝑛𝑛−1 �
∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖
𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖

𝑙𝑙 −∑ 𝑚𝑚𝑖𝑖 𝑟𝑟𝑖𝑖
𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖

∑ 𝑚𝑚 𝑖𝑖𝑟𝑟𝑖𝑖
𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖

𝑙𝑙 −∑ 𝑚𝑚𝑖𝑖 𝑟𝑟𝑖𝑖
𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖

�    (11) 

From equations(8-11) it becomes that 

𝑚𝑚𝑏𝑏2𝑟𝑟𝑏𝑏2 = −∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑏𝑏2

= −∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑏𝑏2

    (12a) 
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𝑚𝑚𝑏𝑏1𝑟𝑟𝑏𝑏1 =
�
∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖

𝑙𝑙 − ∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 �

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑏𝑏1
 

=
�∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖

𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖

𝑙𝑙 −∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖�

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑏𝑏1
     (12b) 

With equations (10-12) dynamic balancing can be 
achieved. 

Example2: weights 2lb, 4lb, and 3lb are located at radii 
2in., 3in., and 1in. in the planes C, D, E, respectively, on a 
shaft supported at bearings B and F as shown below. Find the 
weights and angular locations of the two balancing weights 
to be placed in the end planes A and G so that dynamic load 
on the bearings will be zero[3]. 

Solution: If angular positions are measured relat ive to 
mass in plane C then 

�𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 = −5.21345𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

�𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 = 6.594457𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

�𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑛𝑛

𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 = −455.95𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖2  

�𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑛𝑛

𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 = 306.936𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖2  

∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛 𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖

𝑙𝑙
−�𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 = 0.82922  

∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖 =𝑛𝑛 𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖

𝑙𝑙
−�𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 = −3.6432 

From equations (10-12) the solution becomes 

𝜃𝜃𝑏𝑏1 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
−3.6432
0.82922

� = 282.8𝑜𝑜, 𝑚𝑚𝑏𝑏1 𝑟𝑟𝑏𝑏1  

=
0.82922
𝑐𝑐𝑐𝑐𝑐𝑐282.8

= 3.743𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

And  
𝜃𝜃𝑏𝑏2 = 326.1𝑜𝑜, 𝑚𝑚𝑏𝑏2 𝑟𝑟𝑏𝑏2 = 5.29𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

If the radial position 𝑟𝑟𝑏𝑏1 = 𝑟𝑟𝑏𝑏2 = 2′′  are chosen then a 
mass of 1.8715lb at 282.8 degrees and 2.645lb at 326.1 
degrees are needed in planes A and G respectively. 

2.2.1. Double Plane Balancing Using Vibration Analyzer 

The key idea here is that the overall unbalance can be 
replaced by two unbalanced weights 𝑈𝑈��⃗ 𝐿𝐿 and 𝑈𝑈��⃗𝑅𝑅  at the left  
and right planes respectively of the unbalance[3]. The same 
procedure as carried  out for the case of 
single-plane-balancing is executed with a fundamental 

difference that two trial weights 𝑊𝑊���⃗𝐿𝐿  and 𝑊𝑊���⃗𝑅𝑅  are 
exclusively added to the left and right plane respectively. 
Figure6 below is illustrative of the experimental set-up.  

It amounts to more experimental convenience during 
attachment of trial weights to choose two planes at the end of 
the rotor. Each of the unbalances 𝑈𝑈��⃗𝐿𝐿  and 𝑈𝑈��⃗𝑅𝑅  has forced 
vibration effects on the two bearings that support the shaft 
that carry the rotor. The deduction from the last sentence is 
that vibration at bearing “i” due to excitations 𝑈𝑈��⃗ 𝐿𝐿 and 𝑈𝑈��⃗𝑅𝑅  as 
measured by the vibration analyzer is  

𝑉𝑉�⃗𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑈𝑈��⃗𝐿𝐿 + 𝐴𝐴𝑖𝑖𝑖𝑖 𝑈𝑈��⃗𝑅𝑅             (13) 
Where equation(13) is to be seen from the vector point of 

view since there is always a phase lag  between excitation and 
response. The coefficients 𝐴𝐴𝑖𝑖𝑖𝑖  where 𝑗𝑗 = 𝐿𝐿 or 𝑅𝑅  captures 
the effect on vibrat ion at bearing 𝑖𝑖 due to excitation at  the 
plane 𝑗𝑗. Using equation (13) the measure of vibrat ions at the 
bearings due to original unbalance at the operating speed of 
the rotor is 

𝑉𝑉�⃗𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈��⃗𝐿𝐿 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈��⃗ 𝑅𝑅 
𝑉𝑉�⃗𝐵𝐵 = 𝐴𝐴𝐵𝐵𝐵𝐵𝑈𝑈��⃗ 𝐿𝐿 + 𝐴𝐴𝐵𝐵𝐵𝐵𝑈𝑈��⃗ 𝑅𝑅  

Which put in matrix form becomes 

�𝑉𝑉
�⃗𝐴𝐴
𝑉𝑉�⃗𝐵𝐵
� = �𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴𝐵𝐵𝐵𝐵
� �𝑈𝑈

��⃗𝐿𝐿
𝑈𝑈��⃗ 𝑅𝑅
�           (14) 

With a known trial weight 𝑊𝑊���⃗𝐿𝐿  added at know angular and 
radial location on plane 𝐿𝐿 and the same procedure repeated 
the equation that results is 

𝑉𝑉�⃗𝐴𝐴
′

= 𝐴𝐴𝐴𝐴𝐴𝐴(𝑈𝑈��⃗𝐿𝐿 + 𝑊𝑊���⃗𝐿𝐿 ) + 𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈��⃗𝑅𝑅  
𝑉𝑉�⃗𝐵𝐵

′
= 𝐴𝐴𝐵𝐵𝐵𝐵(𝑈𝑈��⃗𝐿𝐿 + 𝑊𝑊���⃗𝐿𝐿 ) + 𝐴𝐴𝐵𝐵𝐵𝐵𝑈𝑈��⃗ 𝑅𝑅  

�𝑉𝑉
�⃗𝐴𝐴
′

𝑉𝑉�⃗𝐵𝐵
′ � = �𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴𝐵𝐵𝐵𝐵
� �𝑈𝑈

��⃗𝐿𝐿
𝑈𝑈��⃗ 𝑅𝑅
� + �𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐵𝐵𝐵𝐵
�𝑊𝑊���⃗𝐿𝐿    (15) 

Equations (13) and (14) taken together gives 

�𝑉𝑉
�⃗𝐴𝐴
′

𝑉𝑉�⃗𝐵𝐵
′ � = �𝑉𝑉

�⃗𝐴𝐴
𝑉𝑉�⃗𝐵𝐵
� + �𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐵𝐵𝐵𝐵
�𝑊𝑊���⃗𝐿𝐿           (16) 

Re-arranging gives 

�𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐵𝐵𝐵𝐵

� = �
�𝑉𝑉�⃗𝐴𝐴

′
− 𝑉𝑉�⃗𝐴𝐴 � 𝑊𝑊���⃗𝐿𝐿�

�𝑉𝑉�⃗𝐵𝐵
′
− 𝑉𝑉�⃗𝐵𝐵 � 𝑊𝑊���⃗𝐿𝐿�

�         (17) 

A known trial weight 𝑊𝑊���⃗𝑅𝑅  added at know angular and 
radial location on plane 𝑅𝑅 and the same procedure repeated 
results in a similar equation 

�𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐵𝐵𝐵𝐵

� = �
�𝑉𝑉�⃗𝐴𝐴

′′
− 𝑉𝑉�⃗𝐴𝐴� 𝑊𝑊���⃗𝑅𝑅�

�𝑉𝑉�⃗𝐵𝐵
′′
− 𝑉𝑉�⃗𝐵𝐵 � 𝑊𝑊���⃗𝑅𝑅�

�        (18) 

Equation (14) upon the substitution of equations (17) and 
(3.f) gives 

�𝑉𝑉
�⃗𝐴𝐴
𝑉𝑉�⃗𝐵𝐵
� = �

�𝑉𝑉�⃗𝐴𝐴
′
− 𝑉𝑉�⃗𝐴𝐴� 𝑊𝑊���⃗𝐿𝐿� �𝑉𝑉�⃗𝐴𝐴

′′
− 𝑉𝑉�⃗𝐴𝐴� 𝑊𝑊���⃗𝑅𝑅�

�𝑉𝑉�⃗𝐵𝐵
′
− 𝑉𝑉�⃗𝐵𝐵 � 𝑊𝑊���⃗𝐿𝐿� �𝑉𝑉�⃗𝐵𝐵

′′
− 𝑉𝑉�⃗𝐵𝐵 � 𝑊𝑊���⃗𝑅𝑅�

� �𝑈𝑈
��⃗𝐿𝐿
𝑈𝑈��⃗ 𝑅𝑅
� 
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Figure 6.  Experimental set-up for dynamic balancing 

Table  1.  Data obtained for a two-plane balancing problem 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 5 4 1000 1800 

𝑊𝑊𝐿𝐿 = 2𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 300  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 6.5 4.5 1200 1400 

𝑊𝑊𝑅𝑅 = 2𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 00  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 6 7 900 600 
 

Upon the process of matrix inversion the solution becomes 

�𝑈𝑈
��⃗ 𝐿𝐿
𝑈𝑈��⃗ 𝑅𝑅
� = �

�𝑉𝑉�⃗𝐴𝐴
′
− 𝑉𝑉�⃗𝐴𝐴� 𝑊𝑊��� 𝐿⃗𝐿� �𝑉𝑉�⃗𝐴𝐴

′′
− 𝑉𝑉�⃗𝐴𝐴� 𝑊𝑊���𝑅⃗𝑅�

�𝑉𝑉�⃗𝐵𝐵
′
− 𝑉𝑉�⃗𝐵𝐵� 𝑊𝑊��� 𝐿⃗𝐿� �𝑉𝑉�⃗𝐵𝐵

′′
− 𝑉𝑉�⃗𝐵𝐵 � 𝑊𝑊���𝑅⃗𝑅�

�

−1

�𝑉𝑉
�⃗𝐴𝐴
𝑉𝑉�⃗𝐵𝐵
�  (19) 

This gives the original unbalance in the rotor which at this 
point is balanced by placing weights 𝐵𝐵�⃗𝑗𝑗  of equal magnitude 
but 1800  out of phase with 𝑈𝑈��⃗ 𝑗𝑗 at the same radial location as 
𝑊𝑊���⃗𝑗𝑗  where𝑗𝑗 = 𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅. At this point a MATLAB program 

that turns out the vector �
𝑈𝑈��⃗ 𝐿𝐿
𝑈𝑈��⃗𝑅𝑅
�  when relevant data are 

imputed is presented and has the general form 
≫  𝑉𝑉𝐴𝐴 =? ; 𝜃𝜃𝐴𝐴 =? ;  𝑉𝑉�⃗𝐴𝐴 = 𝑉𝑉𝐴𝐴 𝑒𝑒𝑗𝑗 𝜃𝜃𝐴𝐴 ; 𝑉𝑉𝐵𝐵 =? ;  𝜃𝜃𝐵𝐵 =? ; 
𝑉𝑉�⃗𝐵𝐵 = 𝑉𝑉𝐵𝐵 𝑒𝑒𝑗𝑗 𝜃𝜃𝐵𝐵 ; 𝑉𝑉𝐴𝐴′ =? ;  𝜃𝜃𝐴𝐴′ =? ; 𝑉𝑉�⃗𝐴𝐴′ = 𝑉𝑉𝐴𝐴′ 𝑒𝑒𝑗𝑗 𝜃𝜃𝐴𝐴

′
; 

𝑉𝑉𝐵𝐵′ =? ; 𝜃𝜃𝐵𝐵′ =? ;  𝑉𝑉�⃗𝐵𝐵′ = 𝑉𝑉𝐵𝐵′ 𝑒𝑒𝑗𝑗 𝜃𝜃𝐵𝐵
′

;  𝑉𝑉𝐴𝐴′′ =? ; 𝜃𝜃𝐴𝐴′′ =? ;  
𝑉𝑉�⃗𝐴𝐴′′ = 𝑉𝑉𝐴𝐴′′ 𝑒𝑒𝑗𝑗 𝜃𝜃𝐴𝐴

′′
; 𝑉𝑉𝐵𝐵′′ =? ; 𝜃𝜃𝐵𝐵′′ =? ;  𝑉𝑉�⃗𝐵𝐵′′ = 𝑉𝑉𝐵𝐵′′ 𝑒𝑒𝑗𝑗 𝜃𝜃𝐵𝐵

′′
;  

𝑊𝑊𝐿𝐿 =? ; 𝜃𝜃𝑊𝑊𝐿𝐿 =? ; 𝑊𝑊���⃗𝐿𝐿 = 𝑊𝑊𝐿𝐿𝑒𝑒
𝑗𝑗 𝜃𝜃𝑊𝑊𝐿𝐿 ; 𝑊𝑊𝑅𝑅 =? ;  

𝜃𝜃𝑊𝑊𝑅𝑅 =? ; 𝑊𝑊���⃗𝑅𝑅 = 𝑊𝑊𝑅𝑅𝑒𝑒
𝑗𝑗 𝜃𝜃𝑊𝑊𝑅𝑅 ; 

𝐶𝐶 = �
�𝑉𝑉�⃗𝐴𝐴

′
− 𝑉𝑉�⃗𝐴𝐴 � 𝑊𝑊���⃗𝐿𝐿�  �𝑉𝑉�⃗𝐴𝐴

′′
− 𝑉𝑉�⃗𝐴𝐴 � 𝑊𝑊���⃗𝑅𝑅� ;

�𝑉𝑉�⃗𝐵𝐵
′
− 𝑉𝑉�⃗𝐵𝐵 � 𝑊𝑊���⃗𝐿𝐿�  �𝑉𝑉�⃗𝐵𝐵

′′
− 𝑉𝑉�⃗𝐵𝐵 � 𝑊𝑊���⃗𝑅𝑅�

� ; 

𝐷𝐷 = �𝑉𝑉�⃗𝐴𝐴 ;𝑉𝑉�⃗𝐵𝐵 �; 
𝑈𝑈 = 𝐶𝐶−1𝐷𝐷 
𝑈𝑈 =? 

Example3: The data obtained in a two-plane balancing 
procedure are given in a table below. Determine the 
magnitude and angular position of the balancing weights, 
assuming that all angles are measured from an  arbitrary 
phase mark and all weights are added at the same radius[3]. 

Solution: MATLAB program based on equation (19) that 
solves the problem together with the solution is as displayed 

>> a=5;Da=100;Va=a*exp(j*Da*pi/180); 
b=4;Db=180;Vb=b*exp(j*Db*pi/180); 

a1=6.5;Da1=120;Va1=a1*exp(j*Da1*pi/180); 
b1=4.5;Db1=140;Vb1=b1*exp(j*Db1*pi/180); 

wl=2;Dwl=30;Wl=wl*exp(j*Dwl*pi/180); 
wr=2;Dwr=0;Wr=wr*exp(j*Dwr*pi/180); 

va11=6;Da11=90;Va11=va11*exp(j*Da11*pi/180); 
vb11=7;Db11=60;Vb11=vb11*exp(j*Db11*pi/180); 

C=[(Va1-Va)/Wl (Va11-Va)/Wr; 
(Vb1-Vb)/Wl (Vb11-Vb)/Wr]; 

D=[Va;Vb];U=C^-1*D 
U =2.7366 - 3.2275i-1.6426 + 1.3429i 

Thus the original unbalance is 

�𝑈𝑈
��⃗ 𝐿𝐿
𝑈𝑈��⃗𝑅𝑅
� = � 2.7366 –  3.2275i

−1.6426 +  1.3429i
� 

The required balancing fo rces become 

�𝐵𝐵
�⃗ 𝐿𝐿
𝐵𝐵�⃗ 𝑅𝑅
� = �−2.7366 +  3.2275i

1.6426 −  1.3429i
� 

3. Conclusions 
It has been highlighted in this paper that rotational 

unbalance cannot be eliminated. It will amount to 
unfavourable cost to try dealing with rotational unbalance by 
investing heavily in achiev ing high precision in manufacture 
of mach ine parts. Rotating machinery in operation becomes 
increasingly unbalanced thus requires maintenance 
balancing with time. It is instructive to say that analytical 
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equations (especially equations 10, 11 and12 which are 
unique to this work) outlined in this work would be handy for 
a field engineer charged with maintenance balancing of 
rotary mach ines. Three exercises were used to illustrate the 
usefulness of the analytical equations. The presented 
MATLAB program for double plane balancing would 
facilitate conversion of measured unbalance into balancing 
solutions thus increasing productivity. 
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