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Abstract  The association of a return level with a return period and vice-versa is a fundamental engineering requirement, 
as it helps determine the design flow to be assigned to a given infrastructure. To this end, the production of isohyets of various 
frequencies in map form is an essential practical tool, and a frequency analysis is required before such maps can be produced. 
Six sites corresponding to the six provincial capitals of Madagascar were taken as examples in this work and two nested time 
series (1970-2023 and 2000-2023) of maximum annual rainfall were studied. The results showed the presence of trends due 
to climate change in these time series, trends which may be contrary to each other depending on the time series considered 
and for the same city. The extreme value distribution models (GEV and Gumbel) were first applied in a stationary context 
(constant parameters) and then in a non-stationary context (location parameter and scale parameter varying as a function of 
time). Stationary models have produced unrealistic and inconsistent results, due in part to the dependence on the sample size 
and the failure to take account of trends in the time series studied. Non-stationary models have produced much more realistic 
results, but in which the one-to-one relationship between return period and return level is called into question by the 
introduction of the notion of risk. 
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1. Introduction 
Since the publication of the first IPCC (Intergovernmental 

Panel on Climate Change) report in 1993, many studies 
have been carried out on the global hydrological cycle [1] 
and climate model projections have predicted an increase in 
extreme precipitation events almost everywhere on the planet 
(for example, [2-3]). It was also shown that the increase in 
extreme events played a major role in the increase in total 
annual precipitation [4]. 

Madagascar is no exception to this global trend. Indeed, 
because of its position in the south-western basin of the 
Indian Ocean, the island of Madagascar is at the end of the 
path of cyclones that form in the eastern part of this ocean, 
making it a prime target. It has also been noted that over the 
last two decades, more and more cyclones have also been 
originating from the west of Madagascar, in the Mozambique 
Channel, and these cyclones have been just as devastating 
as those originating in the Indian Ocean in areas that were 
previously relatively spared. The rains and winds brought by 
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these meteors have increased in intensity, causing a great 
deal of damage and loss of life. According to a 2016 World 
Bank report [5], over the period 2000-2015 alone, the passage 
of these meteors and the floods that followed caused almost 
USD 4.159 billion in damage and 1,651 deaths, not to mention 
the more than 2.5 million people affected and made homeless 
during this period. 

Of the various types of damage caused by cyclones, the 
first is to road infrastructure, the impact of which is catastrophic 
for already poor populations. When roads are cut off, inflation 
rises immediately [5], not to mention the delays and cost  
of reconstruction. The Madagascar Roads Authority (ARM: 
Autorité Routière de Madagascar) spent €9.6 million just  
to repair national roads, and only for 2 cyclones in 2012: 
Giovanna (February 2012) and Irina (March 2012) [6].   
In addition to these road infrastructures, other production 
infrastructures such as hydro-agricultural dams, canals and 
irrigation works have also been destroyed, resulting in economic 
losses for the population, 85% of whom are farmers in 
Madagascar. 

Much of this damage could have been avoided if the 
infrastructures had been built with a design flow that took 
into account the return period flows corresponding to the 
purpose of the structures. However, the virtual absence of 
flow data makes this task impossible. This is why we have 
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to turn to rainfall, which is a little more abundantly 
available. Subsequently, knowing the value of a maximum 
rainfall 𝑃𝑃𝑇𝑇 of 24H and return period 𝑇𝑇, a design flow can 
be estimated using a runoff-flow model, i.e., for example, 
determining a maximum discharge 𝑄𝑄𝑇𝑇 of the same return 
period using a formula for calculating the maximum intensity 
corresponding to the characteristics of the catchment concerned 
(e.g., Rational Method). Presenting this maximum rainfall 
for a given return period in the form of a map makes the 
task even easier, because all you have to do is read the 
frequency isohyet on the map that passes through the target 
site (or do a little interpolation if the target site is located 
between two isohyets). This would significantly reduce the 
time it would take to estimate design rainfall in ungauged 
areas, with many applications such as flood risk assessment 
and mitigation, environmental impact assessments, land use 
planning, river restoration and hydraulic structure design, etc. 

The present study is part of an attempt to update this  
type of isohyet globally, with the most recent values for  
the whole of Madagascar dating from 1993 [7]. Indeed, 
with the climate change that has occurred in recent decades, 
this update seemed more than necessary. In addition, the 
extensive research carried out in this field has led to the 
development of new methods, the implementation of which 
is facilitated by various numerical technologies that are now 
widely available. The present article is the first in a series of 
two dealing essentially with return periods and return levels 
with non-stationary models, while the second article concerns 
the development of frequency isohyets themselves. 

Recently, many researchers have already pointed out  
the need to use non-stationary models to calculate return 
periods, particularly if we want to take climate change into 
account [8-15]. Indeed, in the context of climate change, 
comparative studies carried out by various researchers have 
shown that non-stationary distributions outperform stationary 
distributions [16-19]. 

Another problem that arises when studying extreme 
rainfall is the size of the time series to be used to obtain 
reliable estimates [1,20]. In fact, since time immemorial, at 
least in Madagascar, a certain value with a single return 
period has always been assigned to a given extreme rainfall 
event and vice versa, i.e. derived from stationary models. 
But this approach is questionable because, as will be shown 
below, the use of stationary models gives completely 
different return periods for the same rainfall depending on 
the size of the sample treated. However, it is difficult to 
know what length of series to use to obtain reliable results. 
All we know is that, logically, the longer the series, the 
better the statistical modelling should be. In this article, we 
use two overlapping time series, 1970-2023 (54 years) and 
2000-2023 (24 years), to show that the trends are completely 
different depending on which series is considered. 

In the entire study, 132 points were used to measure 
maximum annual rainfall, but due to lack of space, only the 
study and results for 6 measuring points corresponding to 
the six provincial capitals of Madagascar are presented in 
this article (Figure 1). 

2. Materials 
2.1. Rainfall Data 

Given the scarcity of data covering the whole of 
Madagascar and available over a long period, we used 
gridded daily rainfall data downloaded from the 
https://giovanni.gsfc.nasa.gov/ website. To compile daily 
precipitation data from 1970 to 2023, we used GLDAS 
(1970 to 2000), TRMM (2001 to 2019) and GPM (2020 to 
2023) data.  

 

Figure 1.  Left: Location of the 132 measurement points. Right: the six 
provincial capitals 

The sites concerned were distributed almost randomly, 
with at least 1 site in each of the island's 119 districts 
(Figure 1). For the analysis in this article, the following 
daily rainfall series were considered: 1970 to 2023 (n = 54 
years) and 2000 to 2023 (n = 24 years). 

2.2. Calculation Tools 

All the calculations for this study were carried out using 
the free software R 4.3.2 (https://www.r-project.org/ ) with 
the corresponding packages, in particular the extRemes 
package [21] and its dependencies. 

3. Methodology 
3.1. Preliminary Analyses 

As a preliminary analysis, the maximum daily 
precipitation was determined for each of the two series of 
annual precipitation maxima (1970-2023 and 2000-2023). 
The homogeneity of these two series was then assessed 
using the Mann-Whitney test. Finally, trends were identified 
using the Mann-Kendall test [12], while Pettitt's non-parametric 
algorithm [22] was used to determine the year of the trend 
break. For each of these three tests, the p-value at the 5% 
level was used to determine the results. A linear regression 
was also calculated for each of these two series. 

Where there is an absence of homogeneity or where the 
presence of a trend is confirmed, this constitutes a valid 
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hypothesis for introducing non-stationarity into the estimation 
[12,23]. 

3.2. Extreme Value Distributions 

The frequency analysis of extreme maximum values is 
based on the Fisher-Tippet Theorem (1928), which states 
that the distribution of maxima, suitably normalised, 
behaves in the limit as a Generalized Extreme Value (GEV) 
distribution, independently of the distribution from which 
the sample data comes. The family of models of the GEV 
distribution can be written as [24,25]: 

 𝐺𝐺(𝑧𝑧) = exp �− �1 + 𝜉𝜉 �𝑧𝑧−𝜇𝜇
𝜎𝜎
��
−1/𝜉𝜉

� (1) 

defined on the set {𝑧𝑧 ; 1 + 𝜉𝜉(𝑧𝑧 − 𝜇𝜇)/𝜎𝜎 > 0} and where the 
parameters satisfy −∞ < 𝜇𝜇 < +∞ , 𝜎𝜎 > 0  and −∞ <
𝜉𝜉 < +∞. 𝜇𝜇, 𝜎𝜎 and 𝜉𝜉 are the location parameter, the scale 
parameter and the shape parameter, respectively. 

The GEV distribution leads to the special cases of a 
Fréchet distribution (𝜉𝜉 > 0), a Weibull distribution (𝜉𝜉 < 0) 
and a Gumbel distribution (𝜉𝜉 = 0). The latter case is in fact 
the limit of the GEV distribution when 𝜉𝜉 ⟶ 0, in which 
case [24,25]: 

 𝐺𝐺(𝑧𝑧) = exp �−exp �−�𝑧𝑧−𝜇𝜇
𝜎𝜎
��� , −∞ < 𝑧𝑧 < +∞ (2) 

It should be noted that the POT (Peak Over Threshold) 
method was not chosen for this study because of the need 
for a hypothesis that could be subjective in order to assess 
the threshold to be applied. Consequently, the BM (Blocks 
Maxima) method was used in this study. This method is 
widely used in the literature and has given excellent results 
[26]. To determine the distribution model (GEV or Gumbel) 
and therefore the three parameters 𝜇𝜇, 𝜎𝜎 and 𝜉𝜉, the Maximum 
Likelihood Estimation (MLE) method had been used. 

It is worth remembering that thanks to the inference of 
the shape parameter 𝜉𝜉, it is the data itself that determines 
the type of distribution (Fréchet, Gumbel or Weibull) and 
that it is not necessary to fix the family of distributions a 
priori [27]. 

3.3. Determination of Quantiles Corresponding to 
Return Levels 

The return level 𝑧𝑧𝑝𝑝  expected to be exceeded on average 
once during the return period 𝑇𝑇 = 1/𝑝𝑝 years, distinguishing 
the GEV distribution from the Gumbel distribution, is given 
by [24]: 

 𝑧𝑧𝑝𝑝 = �
𝜇𝜇 − 𝜎𝜎

𝜉𝜉
�1 − 𝑦𝑦𝑝𝑝

−𝜉𝜉� for 𝜉𝜉 ≠ 0

𝜇𝜇 − 𝜎𝜎 log 𝑦𝑦𝑝𝑝 for 𝜉𝜉 = 0
� (3) 

with 𝑦𝑦𝑝𝑝 = − log(1 − 𝑝𝑝) .  This return period 𝑧𝑧𝑝𝑝  is the 
value of the daily rainfall with a return period 𝑇𝑇 that is 
assigned to each of the sites in the area of interest. 

3.4. Stationary Models 

For each of the two series, the above distribution models 
(equations (1) and (2)) had been applied in the stationary 
case i.e. assuming that the parameters 𝜇𝜇, 𝜎𝜎 and 𝜉𝜉 are all 

constant. 
 AICc = −2ℓ�(𝜃𝜃) + 2𝑝𝑝 (4) 

where ℓ�(𝜃𝜃) is the maximised value of the log-likelihood 
for a model 𝜃𝜃 containing 𝑝𝑝 parameters. 

3.5. Non-Stationary Models 

The stationarity assumption that data are independent and 
identically distributed with constant properties over time 
does not correspond to the variations induced by climate 
change. Indeed, it has been widely demonstrated that natural 
climate variability or variability due to anthropogenic causes 
mean that extreme hydroclimatic series are not stationary 
but vary over time [29-31,15]. 

In most studies of non-stationary extreme value models 
in the literature, the distribution models are still the GEV 
(equation (1)) or Gumbel (equation (2)) models but it is the 
parameters 𝜇𝜇, 𝜎𝜎 and 𝜉𝜉 that are no longer constant but are 
variable as a function of time and possibly other covariates 
[24]. However, to account for variability and trends in 
extreme values, it is customary to formulate the location 
parameter 𝜇𝜇 and the scale parameter 𝜎𝜎 as a function of 
time while keeping the shape parameter 𝜉𝜉 constant (e.g. 
[32,17,18,12,15]. Also in most cases, the location and scale 
parameters are formulated as a linear function of time 
according to: 

 𝜇𝜇(𝑡𝑡) = 𝜇𝜇0 + 𝜇𝜇1𝑡𝑡 (5) 
 𝜎𝜎(𝑡𝑡) = 𝜎𝜎0 + 𝜎𝜎1𝑡𝑡 (6) 

where 𝜇𝜇0, 𝜇𝜇1, 𝜎𝜎0 and 𝜎𝜎1 are parameters to be determined 
by regression. 

Polynomial models with higher degrees could have been 
used, but it has been shown that such models exhibit 
excessive fluctuations and the forecasts obtained are highly 
inaccurate [33]. 

The computations of these non-stationary models were 
carried out with the extRemes R package and the authors of 
this package [21] recommend introducing the time covariate 
in the following standardised form: 

 𝑥𝑥𝑖𝑖 = 𝑡𝑡𝑖𝑖−𝑚𝑚
𝑠𝑠

 (7) 

where 𝑚𝑚 and 𝑠𝑠 are respectively the mean and standard 
deviation of the time covariate. 

Table 1.  Names of non-stationary models 

Notation 𝜇𝜇0 𝜇𝜇1 𝜎𝜎0 𝜎𝜎1 

GEV000 cte 0 cte 0 

GEV100 cte cte cte 0 

GEV010 cte 0 cte cte 

GEV110 cte cte cte cte 

Gumbel000 cte 0 cte 0 

Gumbel100 cte cte cte 0 

Gumbel010 cte 0 cte cte 

Gumbel110 cte cte cte cte 

Eight possible models were determined by combining  
the values of 𝜇𝜇0, 𝜇𝜇1, 𝜎𝜎0 and 𝜎𝜎1. In all these models, the 
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interception parameters 𝜇𝜇0 = cte and 𝜎𝜎0 = cte, only the 
slope parameters 𝜇𝜇1  and 𝜎𝜎1  change. Table 1 gives the 
notations that will be used for the results. 

For more effective statistical modelling, and therefore 
with a maximum sample size, only the 1970-2023 series  
(n = 54 years) was considered for the non-stationary models. 
And as with the stationary models, the best model for a 
given city was chosen on the basis of the AIC criterion. 

3.6. Return Levels for Non-Stationary Models 
Once the non-stationary model was established, the 

return levels were calculated with equations (3) but as the 
parameters 𝜇𝜇  and 𝜎𝜎  are time-varying, the return levels 
should also normally be time-varying. As this does not 
make practical sense, a second probability level has been 
introduced for each calculated return level. This probability 
level can be regarded as the risk level for the return period 
under consideration. 

4. Results and Discussion 
4.1. Maximum Daily Rainfall 1970-2023 

By simple inspection, Figure 2 shows the maximum 
annual 24H rainfall for each of the cities studied. 

Figure 2 shows that the peaks all occurred after the year 
2000, i.e. in the second half of the period under consideration. 
The cases of Antsiranana and Antananarivo deserve particular 
attention in that the peaks occurred almost at the end of a 
period of more than 50 years. This is certainly linked to the 

recent environmental degradation of the regions in which 
these two towns are located, but further studies are needed 
to confirm this. 

4.2. Results of Tests for Homogeneity,  
Trends and Break Year 

For the 1970-2023 series, the results of homogeneity tests 
(Mann-Whitney test) and trend tests (Mann-Kendall test) as 
well as Pettitt tests for the presence of a break year are 
shown in Table 2. 

Table 2.  p-values of homogeneity tests, trend tests and break year 
(1970-2023) 

City 
Homogeneity 

p-value 
Mann-Kendall 

test p-value 

Pettitt 
test 

p-value 

Break 
year 

Antsiranana 1.67E-10 1.20E-03 2.81E-03 1998 

Mahajanga 1.67E-10 9.26E-05 2.96E-06 1996 

Toamasina 1.67E-10 1.00E-05 5.36E-07 1997 

Antananarivo 1.67E-10 2.34E-03 6.35E-04 1997 

Fianarantsoa 1.67E-10 8.18E-05 1.05E-05 1997 

Toliara 1.67E-10 8.09E-02 3.66E-02 1994 

At the 5% significance level, the p-values in Table 2 
show that the 1970-2023 annual maximum precipitation 
series for each of the cities considered are non-homogeneous, 
all show a trend and have a break year given in the last 
column of Table 2. This break year also confirms the results 
for the date of appearance of the maximum (all after the 
year 2000). 

 

 

Figure 2.  Maximum annual rainfall series 1970-2023 with marking of maximum events and date of occurrence 
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Figures 3 shows these trends and a linear fit for the 
1970-2023 and 2000-2023 series for the six cities studied. 
In these figures, blue line is a linear regression while red line 
is a local polynomial adjustment (loess). 

Figures 3 shows that only Antsiranana shows an increasing 
linear trend for both the 1970-2023 and 2000-2023 series. 
For Fianarantsoa, the trend is upwards when considering  
the 1970-2023 series, and this trend is practically constant 
when considering the 2000-2023 series. For the other 
remaining cities (Mahajanga, Toamasina, Antananarivo and 
Toliara), the trend is upward for the 1970-2023 series, but is 
completely reversed when the 2000-2023 series is considered. 

These changes in trend can also be explained by the fact 
that the 2000-2023 series occurs after the break year (Table 
2). These few examples demonstrate the importance of the 
time series studied in relation to climate change, which can 

lead to very different results. 

4.3. Stationary Model Results 

For the cities concerned, the best stationary models with 
their respective parameters are shown in Table 3. 

Table 3 shows that for the 2000-2023 series, all the best 
models are Gumbel models (𝜉𝜉 = 0) while for the 1970-2023 
series, two series resulted in a GEV distribution (𝜉𝜉 ≠ 0). 
The small number of cases (six in this case) does not allow 
us to jump to the conclusion that the shorter the series, the 
more the shape parameter 𝜉𝜉 tends towards zero. Moreover, 
four of the six cases in the long series 1970-2023 also gave 
a Gumbel distribution. 

With regard to the return levels corresponding to 
different return periods, Table 4 gives the values found after 
applying equations (3). 

 

 

 

Figure 3.  Comparison of trends for the 1970-2023 and 2000-2023 series for provincial capitals 

 

Table 3.  Best models and parameters obtained for stationary cases 

 1970-2023 2000-2023 
City Model 𝜇𝜇 𝜎𝜎 𝜉𝜉 Model 𝜇𝜇 𝜎𝜎 𝜉𝜉 

Antsiranana Gumbel 64.827 25.809  Gumbel 80.242 33.342  

Mahajanga Gumbel 75.706 23.523  Gumbel 100.010 18.307  

Toamasina GEV 77.448 34.212 0.4483 Gumbel 134.557 56.811  

Antananarivo Gumbel 52.760 17.427  Gumbel 65.031 20.183  

Fianarantsoa Gumbel 58.000 23.590  Gumbel 79.607 24.005  

Toliara GEV 49.163 16.124 0.2389 Gumbel 58.312 21.517  
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Table 4.  Return levels for different return periods as a function of the series studied (stationary cases) 

 ANTSIRANANA MAHAJANGA TOAMASINA 

T [years] 1970-2023 2000-2023 1970-2023 2000-2023 1970-2023 2000-2023 

10 122.9 155.3 128.6 141.2 210.4 262.4 

25 147.4 186.9 150.9 158.6 321.3 316.3 

50 165.5 210.3 167.5 171.4 439.9 356.2 

100 183.6 233.6 183.9 184.2 601.2 395.9 

200 201.5 256.8 200.3 197.0 820.8 435.4 

 ANTANANARIVO FIANARANTSOA TOLIARA 

T [years] 1970-2023 2000-2023 1970-2023 2000-2023 1970-2023 2000-2023 

10 92.0 110.4 111.1 133.6 97.2 106.7 

25 108.5 129.6 133.5 156.4 126.6 127.1 

50 120.8 143.8 150.0 173.3 153.1 142.3 

100 132.9 157.9 166.5 190.0 184.2 157.3 

200 145.1 171.9 182.9 206.7 220.8 172.3 

 

 

Figure 4.  Variability of return periods according to time series for stationary models. The return level points corresponding to return periods of 10, 25, 50, 
100 and 200 years are indicated 

 
Table 4 shows that the return periods for the 2000-2023 

series (the shortest) are higher than those for the 1970-2023 
series (the longest) for cities with the best Gumbel 
distribution (see also Table 3). However, the situation is 
reversed for the GEV models (Toamasina and Toliara   
for 1970-2023) from high return periods (𝑇𝑇 ≥ 50 years) 
onwards.  

The results in Table 4 are more clearly visible when 
plotted on a graph (Figure 4). 

With these models, the return periods of the maximum 
annual daily rainfall for each city were calculated by 
considering them in a 1970-2023 series and then in a 
2000-2023 series, and the results are shown in Table 5. 

Table 5.  Return period of P24H max according to the series studied 
(stationary cases) 

City P24Hmax T 1970-2023 T 2000-2023 

Antsiranana 235.05 732.3 104.4 

Mahajanga 160.48 37.2 27.7 

Toamasina 337.77 27.9 36.3 

Antananarivo 153.83 330.7 81.9 

Fianarantsoa 154.43 60.1 23.1 

Toliara 179.00 89.7 273.3 

Although the results in Table 5 are consistent with the 
return level curves obtained by modelling with stationary 
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GEV and/or Gumbel models (Figure 5), they present 
several inconsistencies with existing practical results. The 
most glaring is probably the fact that the same return level 
(for example 235.05 mm at Antsiranana) can have return 
periods as far apart as 732.3 years and 104.4 years with the 
two time series considered. The same applies to the other 
towns. When the return period values are fairly close (case 
of Toamasina), these values are abnormally low.  

Figure 5 shows the example of Antananarivo, where the 
maximum rainfall on 22/01/2022 caused controversy over 
the value of the corresponding return period: 

These results demonstrate the dependence of the return 
period on the size of the time series for stationary models. 
Moreover, with the plotting position method, the empirical 
probability 𝑝𝑝 of excess is calculated by empirical formulae 
in which the size 𝑛𝑛  of the time series appears in the 
denominator, as for example [34] : 

 WEIBULL ∶ 𝑝𝑝 = 𝑟𝑟
𝑛𝑛+1

 ; HAZEN ∶ 𝑝𝑝 = 𝑟𝑟−0.5
𝑛𝑛

 (8) 

𝑟𝑟 being the rank of the sample values in descending 
order. The corresponding return period being calculated as 
𝑇𝑇 = 1/𝑝𝑝 , this return period increases when the size 𝑛𝑛 
increases. 

As for the abnormally high values when we are in the 
presence of a GEV distribution, this can be explained by the 
fact that Gumbel models have an exponential growth 
towards infinity whereas GEV models have a power growth 
towards infinity. Expressed in terms of regression equations, 
we would therefore obtain equations of the form: 

 𝑃𝑃 = 𝑎𝑎 ln 𝑇𝑇 + 𝑏𝑏 ⇒ 𝑇𝑇 = exp�𝑃𝑃−𝑏𝑏
𝑎𝑎
� (9) 

 𝑃𝑃 = 𝑎𝑎𝑇𝑇𝑏𝑏  ⇒ 𝑇𝑇 = �𝑃𝑃
𝑎𝑎
�

1/𝑏𝑏
 (10) 

for a Gumbel distribution and a GEV distribution, 
respectively, and where 𝑎𝑎 and 𝑏𝑏 are regression constants 
to be determined and 𝑃𝑃 and 𝑇𝑇 denote the corresponding 
precipitation and return period, respectively. 

Although the results obtained above are fairly consistent 
with the literature as a whole on the subject, it is worth 
noting a contrary result in a recently published article [27] 
in which, for a return period of 100 years and with the 
1951-2020 (70-year) and 1991-2020 (30-year) series, it was 
rather the shorter time series that provided higher return 
level values. It should be noted that the authors of the article 
were themselves surprised by these results, and we believe 
that this is probably a special case. 

The conclusion that can be drawn for stationary models is 
that they are intimately dependent on the length of the time 
series studied and give completely different or even 
unrealistic results for return levels and/or return periods. 
When the series is long and includes non-stationarity effects 
such as trends due to climate change, as is the case here, 
stationary models are no longer reliable [12,14]. 

4.4. Results for Non-Stationary Models 

It should be remembered that in the non-stationary case, 
only the 1970-2023 series are analysed. Thus, by applying 
equations (1) and (2) for the definition of the distributions 
but with the parameters varying as a function of time as 
indicated by equations (5), (6) and (7), the best model having 
been chosen according to the AIC criterion (equation (8)), 
the results gave Table 6. 
 

 

Figure 5.  Case of Antananarivo for stationary models but for different time series 

Table 6.  Best non-stationary model and parameter values 

City Model 𝜇𝜇0 𝜇𝜇1 𝜎𝜎0 𝜎𝜎1 𝜉𝜉 

Antsiranana Gumbel110 65.994 10.792 24.288 5.509 
 

Mahajanga Gumbel100 78.369 14.132 18.157 
  

Toamasina GEV110 88.334 23.509 34.529 15.663 0.1652 

Antananarivo Gumbel110 53.814 8.203 16.123 4.351 
 

Fianarantsoa Gumbel110 59.950 13.262 20.358 3.096 
 

Toliara GEV000 49.163 
 

16.124 
 

0.2389 
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As already indicated in Section 3.6, the return levels for a 
non-stationary model depend on the probability with which 
the quantile is calculated. The results are shown in Table 7.  

It can be seen from Table 7 that the values of the return 
levels 𝑧𝑧𝑝𝑝  for a given return period 𝑇𝑇 are identical for the 

town of Toliara because the best model for this town is a 
stationary GEV (Table 6). 

The results in Table 7 are easier to read in graphical form 
(Figure 6). 

Table 7.  Return level by town for different return periods and different risk levels (non-stationary cases) 

 
P24H (mm) ANTSIRANANA P24H (mm) MAHAJANGA 

T [year] 25% 50% 75% 90% 100% 25% 50% 75% 90% 100% 

10 101.1 120.7 140.2 151.9 159.7 107.3 119.2 131.1 138.3 143.0 

25 119.7 143.7 167.6 182.0 191.5 124.5 136.4 148.3 155.5 160.2 

50 133.6 160.8 188.0 204.3 215.1 137.3 149.2 161.1 168.3 173.0 

100 147.3 177.7 208.2 226.4 238.6 150.0 161.9 173.8 180.9 185.7 

200 161.0 194.6 228.3 248.5 261.9 162.6 174.5 186.4 193.6 198.3 

 
P24H (mm) TOAMASINA P24H (mm) ANTANANARIVO 

T [year] 25% 50% 75% 90% 100% 25% 50% 75% 90% 100% 

10 126.7 182.4 238.2 271.7 294.0 74.9 90.1 105.3 114.3 120.4 

25 158.4 233.8 309.2 354.5 384.6 86.8 105.4 124.0 135.2 142.6 

50 185.4 277.5 369.6 424.9 461.7 95.5 116.7 137.9 150.7 159.1 

100 215.5 326.2 436.9 503.3 547.6 104.2 128.0 151.7 166.0 175.5 

200 249.1 380.6 512.1 591.0 643.6 112.9 139.2 165.5 181.3 191.8 

 
P24H (mm) FIANARANTSOA P24H (mm) TOLIARA 

T [year] 25% 50% 75% 90% 100% 25% 50% 75% 90% 100% 

10 88.7 105.8 122.8 133.0 139.8 97.2 97.2 97.2 97.2 97.2 

25 105.6 125.1 144.6 156.3 164.1 126.6 126.6 126.6 126.6 126.6 

50 118.0 139.4 160.7 173.5 182.1 153.1 153.1 153.1 153.1 153.1 

100 130.4 153.6 176.8 190.7 199.9 184.2 184.2 184.2 184.2 184.2 

200 142.8 167.8 192.7 207.7 217.7 220.8 220.8 220.8 220.8 220.8 

 

Figure 6.  Estimates of return periods for maximum rainfall using non-stationary models (1970-2023 series) according to risk level 
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The interpretation of Table 7 is a little confusing because 
we are used to having a single value of the return level 𝑧𝑧𝑝𝑝  
for a return period 𝑇𝑇 whereas Table 7 shows that for the 
same value of the return period, we have different values 
according to the probability values (25%, 50%, 75%, 90% 
and 100%). These are in fact the uncertainty limits of the 
return periods derived from the a posteriori probabilities 
[35], which can also be considered as the risk level [12]. 

Because of the difficulty of interpreting them in the 
non-stationary context, several researchers have proposed 
abandoning the terms "return level" and "return period" and 
instead talking about quantiles [36] or the probability of 
occurrence in a given year [37]. In any case, the concept of 
return period merits serious revision in the non-stationary 
case [12]. 

To remain in the tradition of a single return period to be 
used in infrastructure design, for example, some authors 
propose the value of the third quartile (75%) for the final 
return level [12]. However, for the remainder of this work 
and in the second article, we have chosen to consider two 
levels of risk: a median level of risk (50%) and a high level 
of risk (90%). It will then be up to the user to choose what 
he feels is consistent with reality in the field. 

5. Conclusions 
From a set of 132 measurement points, six sites corresponding 

to Madagascar's provincial capitals were studied in terms  
of maximum annual daily rainfall for two time series: 
1970-2023 (54 years) and 2000-2023 (24 years). Firstly, it 
was shown that there are trends in each of these series for 
the six towns, trends that can be attributed to climate 
change. Next, the break year was determined, and this break 
year was between 1996 and 1998, except for the city of 
Toliara, where the break year occurred in 1994. Using the 
annual maxima method (Maxima Blocks), stationary 
models of the distribution of extreme values were first 
applied to each of the two series, which showed that the 
best models were all Gumbel models for the 2000-2023 
series and that there had been two GEV models for the 
1970-2023 series, these two GEV models corresponding to 
the cities of Toamasina and Toliara. Calculated for return 
periods of 10, 25, 50, 100 and 200 years, the return levels 
obtained for these stationary models had given unrealistic 
and inconsistent values depending strongly on the size of 
the sample treated. 

Next, non-stationary models were defined for the 
1970-2023 series, the non-stationarity being translated by 
linear functions of time of the parameters of location 𝜇𝜇 and 
scale 𝜎𝜎  which led to eight possible models. The best 
models obtained were used to calculate the different return 
levels corresponding to different return periods and, 
similarly, the return periods corresponding to the maximum 
observed rainfall were determined. Some authors then 
indicated that the notion of return period no longer had 
much meaning and that it should be associated with risk 
levels. 

However, a question that we believe to be fundamental 
remains unanswered: with or without stationarity, i.e. with 
or without taking the trend into account, what is the 
optimum size for the time series of extreme precipitation so 
that the modelling produces reliable results that are worthy 
of confidence? Without directly answering the question, a 
justification was provided by Gentilucci et al, 2023 [27], 
who stated that the dependence of the return value calculated 
with the GEV method on a longer or shorter data record is 
not yet sufficiently studied in the scientific literature, 
although it could be decisive in the choice of the length of 
the time series. 

To avoid these problems with return levels and return 
periods, when sizing sensitive infrastructures or determining 
flood zones, the safest method is probably to carry out 
hydrological modelling followed by hydrodynamic modelling 
to determine the flows to be taken into account based on a 
known maximum flood event, even if it means then 
increasing the flows found. But this requires a great deal of 
effort and time. 
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