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Abstract  Yield stability of twelve selected tomato genotypes was estimated in this study using the Additive Main 

Effect and Multiplicative Interaction (AMMI) and Genotype main effect and Genotype x Environment Interaction (GGE) 

biplot analyses. The objectives of the study were to evaluate the yield of selected tomato genotypes over successive years 

and under varying climatic conditions and to identify tomato genotypes with high stability and adaptability for yield across 

the test environments. The genotypes were evaluated at National Horticultural Research Institute, Ibadan, Nigeria during 

the wet and dry seasons of the years 2016, 2017 and 2018 creating a four year-season environments. The experiment was 

laid out in a randomized complete block design with three replications. A plot size of 2.5 m x 0.6 m was used. Data were 

collected on plant height, number of leaves per plant, number of branches per plant, number of fruits per plant, fruit weight 

per plant and unit fruit weight. Analysis of variance showed that there was significant difference for environments, 

genotypes and genotype by environment interaction, an indication of variation in the performance of the genotypes across 

environments. Significant AMMI and GGE biplot analyses indicated that the genotypes evaluated were not consistent in 

performance across seasons and years. Based on stability statistics, stable tomato genotypes with high yield can be bred for 

in future breeding programmes. The NHSL23 ranked highest in yield and is considered as the best candidate for production 

across environments. The most stable genotype was NHSL21 while NHSL26 was the most adaptable genotype across the 

four environments. 
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1. Introduction 

Tomato (Lycopersicum esculentum L.) is widely 

cultivated across the globe due to its edible fruit [1] and its 

service as important inputs for food industries [2]. It is of 

high commercial value because of its high nutritive value 

[3]. It is composed of several species [4] which performed 

differently across locations. Therefore, multi-location  

trials must be carried out to ascertain stability across 

environments [5].  

Mostly, results obtained reflect variations in yield of 

tomato from one location to another in which the genotype 

with best performance in one location often shows 

inconsistency in other locations. This is due to interaction 

between  genotypes  and  the environment  [6].  The  
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environment has a great influence on the expression of 

quantitative traits and this affects genotypes when grown  

in different environments. Whenever genotypes grown in 

different environments differ in their performance across 

environments, there is Genotype x Environment (G x E) 

interaction and this can affect response to selection. In a 

situation when a set of genotypes does not change across 

environments, it is called non-crossover interaction [7]. 

Cultivars can bring about good performance when grown 

under a wide range of environments, thereby giving them 

broad adaptation, or narrow (specific) adaptation under 

specific growing conditions [8]. Differences in genetic 

structure also contribute to G x E interaction (GEI) due   

to different characteristics of variety type with low 

heterogeneity or heterozygosity [9]. 

The most important characteristic of a genotype before  

it can be released is yield stability [10,11]. Yield stability 

refers to the ability of a genotype to withstand variability  

in yield over a wide range of environmental conditions 

while adaptation is the ability of a genotype to perform well 
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across a wide range of geographical regions with varying 

climatic conditions [12]. Genotypic adaptation is usually 

quantified using yield-response. GEI affects the expression 

of a genotype phenotypically, and this leads to the use    

of stability analysis to evaluate the performance of the 

genotypes across varying testing environments for better 

selection by plant breeders [12]. 

The two most powerful statistical tools for 

multi–environment trial (MET) data analysis by researchers 

are the additive main effects and multiplicative interaction 

(AMMI) model and the genotype main effect plus genotype 

× environment interaction (GGE) biplot methodology [5]. 

[5] further identified the major disadvantage of the AMMI 

model to be its insensitivity to the most important part of 

the crossover GEI. Some of the disadvantages of the AMMI 

model have, however, been taken care of by the GGE biplot 

methodology. Among other numerous advantages, the GGE 

biplot methodology is proficient in identifying the best 

genotype in a particular environment, as well as the most 

suitable environment for each genotype [5]. 

The GGE biplot methodology has recently gained 

popularity because of its ability to analyze an array of data 

using two-way structure [13]. Similarly, AMMI model has 

been used of recent due to the fact that it combines the 

classical additive main effects model for G x E interaction 

with the multiplicative components into an integral least 

square analysis which has led to its effectiveness in 

selection of stable genotypes [14]. It fits the additive main 

effect of genotypes and environments using analysis of 

variance and then describes the non-additive parts and the 

GEI using principal component analysis (PCA) [13]. The 

utilization of the GGE biplot technique for the analysis of 

trait and quantitative trait loci interactions in barley was 

described by [15]. 

There has been high demand of tomato especially in 

African due its high nutritive content and daily consumption 

in human diet. Therefore, crop improvement programme 

must be on the increase. In any crop improvement 

programme, performance of the promising genotypes across 

different growing areas of the crop and climatic conditions 

must be evaluated. This is to ascertain the genotypes with 

high yield and stability in performance under different 

environmental conditions. Hence, it becomes important to 

use the two tools complementarily in order to achieve the 

best result in a MET study. The objectives of the study were 

to evaluate the yield of selected tomato genotypes over 

successive years and under varying climatic conditions (wet 

and dry seasons) and to identify tomato genotypes with high 

stability and adaptability for yield across test environments. 

2. Materials and Methods 

The experiment was conducted at the Vegetable Research 

Field of the National Horticultural Research Institute 

(NIHORT), Ibadan, Nigeria, situated on Latitude 07° 

24.204’’N and Longitude 03° 50.895’’E, at an altitude of 178 

m above sea level. Twelve tomato genotypes selected based 

on yield and resistance to Fusarium wilt disease were used 

for this study. The seeds were drilled into nursery trays 

filled with steam sterilized top soil and watered at two days 

interval for four weeks. Compost manure was applied    

to the field at the rate of 1.4 tons/ha at one week before 

transplanting to allow decomposition of the compost 

material and for nutrients to be readily available in the soil 

for plant use. The experiment was arranged in a randomized 

complete block design with three replicates during the wet 

and dry seasons of the year 2016, 2017 and 2018 creating a 

four year-season environments. A plot size of 2.5 m x 0.6 m 

and a spacing of 0.5 m x 0.6 m were used. Weeding was 

carried out at two weeks interval while Cypermethrine 

insecticide (10% E.C.) was applied at 10-days interval for 

four consecutive times. Data were collected on plant height, 

number of leaves per plant, number of branches per plant, 

number of fruits per plant, fruit weight per plant and unit 

fruit weight. The pooled data were subjected to analysis  

of variance while the stability, adaptability and performance 

of the tomato genotypes across the four year-season 

environments in derived savannah area of Ibadan, Nigeria 

were also determined. 

These yield data were subjected to AMMI analysis using 

Statistical Analysis Software (SAS). 

The linear model for AMMI, according to [16] is: 

Yij= µ + Gi + Ej +  λkαijγij
 + eij 

  Yij = the yield of the ith genotype in the jth environment; 

  µ = the grand mean; 

  Gi and Ej = the deviation of the ith genotype and the jth 

environment from the grand mean respectively; 

  k = the square root of the eigen value of the PCA axis 

k; 

  αik and γjk = the principal component scores of the ith 

genotype and the jth environment, respectively, for PCA 

axis k;  

  eij = the error term 

GGE Biplot analysis: Singular Value Decomposition 

(SVD) of the first two principal components were used to fit 

the GGE biplot model [15]. 

The linear model of GGE biplot is: 

Yij= µ + βj + λ1ξi1ηj1 + λ2ξi2ηj2+ξij 

  Yij is the trait mean for genotype i in environment j; 

  μ is the grand mean; 

  βj is the main effect of environment j; μ + βj being the 

mean yield across all genotypes in environment j; 

  λ1 and λ2 are the singular values (SV) for the first  

and second principal components (PC1 and PC2), 

respectively; 

  ξi1 and ξi2 are eigenvectors of genotype i for PC1 and 

PC2, respectively;  

  ηj1 and ηj2 are eigenvectors of environment j for PC1 

and PC2, respectively; 

  ξij is the residual associated with genotype i in 

environment j [17]. 
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3. Results  

The combined analysis of variance revealed highly 

significant differences (p ≤ 0.01) for environments, 

genotypes and genotype by environment interaction 

indicating differences in performance of genotypes across 

environments (Table 1). The application of AMMI model in 

partitioning of G x E indicated that the first two principal 

component axes scores were statistically significant. The 

AMMI analysis reported in Table 2 and Fig. 1 showed that 

the first two principal component axes (PCA 1 and PCA 2) 

explained 49.7% and 44.5% of the total variation. 

Table 1.  Combined Analysis of Variance for fruit yield of 12 genotypes 
grown in four environments 

Source of Variation 
Degree of 

Freedom 

Sum of 

Square 

Mean 

Square 

Block*Environment 8 2587.99 323.50 

Genotype 11 9269.26 842.66** 

Environment 3 42856.13 14285.38** 

Genotype*Environment 33 19705.79 597.15** 

Error 88 16798.47 190.89 

** = significant at p<0.001 probability level 

Both axes accounted for 94.2% of the existing diversity. 

The mean fruit yield of genotypes ranged from 16.24 

tons/ha for Genotype 14 (NHSL14) to 45.82 tons/ha for 

Genotype 23 (NHSL23) while the mean fruit yield of 

environment ranged from 6.23 tons/ha for Environment 2 to 

50.82 tons/ha for Environment 1 (Table 2). 

The Vector-view of the AMMI biplot for fruit yield 

showing the relationship between genotypes and the test 

environments is presented in Figure 1 and it revealed that 

NHSL26 ranked first across the test environments. 

Genotypes NHSL2, NHSL20 and NHSL21 were the closest 

to the origin of the biplot, and are, therefore, adjudged to be 

the most stable among the high yielders. However, genotype 

NHSL2 had a mean yield of 30.16 tons/ha which is greater 

than the overall mean yield of genotypes (29.84 tons/ha) 

while NHSL20 had a mean yield of 25.20 tons/ha and 

genotype NHSL21 had a mean yield of 27.26 tons/ha,    

and these values were lower than the overall mean yield   

of genotypes. This disqualifies genotypes NHSL20 and 

NHSL21 from being a candidate genotype for selection. 

On the other hand, genotypes NHSL11, NHSL12, 

NHSL23 and NHSL26 with mean yield higher than the 

overall mean yield of genotypes, and genotype NHSL19 

whose mean yield was lower than the overall mean yield 

were identified as the most unstable genotypes. 

Genotypes NHSL4, NHSL7, NHSL13 and NHSL14 

present intermediate stability. Of the four test environments, 

E2 had the shortest vector, and closest to the biplot origin. 

Also, an acute angle was observed between Environments 

E2 and E4 (where genotypes NHSL7 and NHSL11 were 

found), and this showed that they were closely related 

(judging from the positive correlation ween them). However, 

obtuse angles were observed between Environments E1 and 

E4, E1 and E3, and E2 and bet E3, and this showed that 

they were slightly negatively correlated (according to the 

rule of the equation: ‘rij = cos αij’, where r = the correlation 

coefficient between the ith and jth environments, while    

αij = the angle between the vectors of the ith and jth 

environments). 

Table 2.  Yield for 12 tomato genotypes grown in four environments, their mean values and first PCA scores from AMMI analysis 

S/№ Genotype 
Yield (tons/ha) Genotype 

Mean 

Yield 

rank (Y) 

First 

PCA 

Second 

PCA E1 E2 E3 E4 

1 G2 50.72 4.31 50.50 15.11 30.16 6 -0.14 -1.62 

2 G4 39.39 10.67 57.56 26.17 33.45 4 -2.30 -0.89 

3 G7 35.33 3.28 41.39 33.56 28.39 7 -1.94 1.27 

4 G11 34.44 13.75 57.83 49.94 38.99 3 -3.79 1.50 

5 G12 69.94 1.33 21.08 30.33 30.67 5 3.27 2.15 

6 G13 54.50 7.17 29.42 14.14 26.31 9 1.61 0.23 

7 G14 36.67 2.5 14.83 10.94 16.24 12 0.74 1.55 

8 G19 34.83 1.11 57.39 9.67 25.75 10 -2.09 -2.53 

9 G20 43.33 1.06 14.61 41.78 25.20 11 0.34 4.36 

10 G21 43.61 5.00 46.11 14.33 27.26 8 -0.62 -1.14 

11 G23 90.39 17.67 52.83 22.39 45.82 1 3.67 -1.69 

12 G26 76.67 6.89 69.17 21.89 43.66 2 1.24 -3.18 

 Environment Mean 50.82 6.23 42.73 24.19     

 First PCA 6.26 -0.50 -3.61 -2.15 
 

 
 

 

 Second PCA -1.06 0.94 -5.04 5.16     

PCA= Principal component axes; E = Environment;  

E1 = Dry season 1 (2016); E2 = Wet season 1 (2017); E3 = Dry season 2 (2017); E4 = Wet season 2 (2018); G2 = NHSL2;    

G4 = NHSL4; G7 = NHSL7; G11 = NHSL11; G12 = NHSL12; G13 = NHSL13; G14 = NHSL14; G19 = NHSL19; G20 = 

NHSL20; G21 = NHSL21; G23 = NHSL23; G26 = NHSL26 
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Figure 1.  Vector-view of the AMMI biplot of fruit yield showing the 

relationship between genotypes and the test environments 

Figure 2 presents the AMMI biplot showing main 

(genotype and environments average yield) effects and 

interactions as PC1 scores. Genotypes and environments 

situated at the right hand of the graph revealed yield  

levels that were above the overall average. Genotype 

NHSL23 was the highest yielder and it interacted well with 

environment E1 while genotype NHSL26 was the second 

overall best but it did not interact well with E1. Genotypes 

NHSL4 and NHSL11 are high yielding and adaptable to 

environment E3 while genotypes NHSL2, NHSL7, 

NHSL21 and NHSL19 were low yielding but well adapted 

to environments E2 and E4. Genotypes NHSL12, NHSL13, 

NHSL14 and NHSL20 did not have any environment    

and were therefore poor performers across the tests 

environments. 

 

Figure 2.  AMMI biplot showing main (genotype and environments 

average yields) effects and interaction as PC 1 scores 

Figure 3 shows the average-environment axis (AEA) 

view based on the mean performance and stability of the 

genotypes. Genotype NHSL26 recorded the highest mean 

yield, followed by NHSL23, NHSL2, NHSL4 and NHSL19 

while NHSL14 had the lowest mean yield, followed by 

NHSL20. Genotype NHSL11 was found to have a mean 

yield similar to the overall mean. The GGE biplot showing 

the discriminating and representativeness view of the test 

environments was presented in Figure 4. Environment E2 

had the smallest acute angle with the AEA, followed by E3, 

and then E1. Environment E4 had an obtuse angle with the 

AEA. 

 

Figure 3.  The average-environment axis (AEA) view to show the mean 

performance and stability of the genotypes 

 

Figure 4.  GGE Biplot showing the discrimination and representativeness 

view of the test environments (with Average-Environment-Axis (AEA)) 

The most discriminating environment is the one that is 

most informative. This is measured by the concentric circles 
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on the biplot origin which help us to determine how long 

the environment–vector is, and this length is proportional to 

the standard deviation found in the respective environments 

[17]. Therefore, environments E1 and E3 were identified as 

the most discriminating environments while environments 

E2 and E4 were the least discriminating (non-informative). 

The polygon view (which displays “which-won-where”) 

of the GGE biplot analysis of 12 tomato genotypes tested   

in four environments is shown in Figure 5. It displays  

which genotype performed best in which environment. This 

polygon is formed by connecting the genotypes that are 

furthest away from the origin of the biplot in such a way 

that other genotypes fall within the polygon. From the 

origin, a perpendicular line was drawn to each side of    

the polygon in which each line extends out of the   

polygon, dividing it into five resultant sectors. Whenever 

environments fall into different sectors, different genotypes 

won in different sectors while a crossover G x E pattern is 

in place (Figure 5). 
 

 

Figure 5.  The polygon view (which-won-where) of the GGE biplot 

analysis of 12 tomato genotypes tested in four environments 

The winning genotype of any environment or set of 

environments is therefore the genotype at the vertex of each 

sector. However, a vertex genotype where no environment 

exists is considered to be the poorest performer in that   

test environment. In environment E1, NHSL23 was the 

winning genotype; NHSL26 was the winner in 

environments E2 and E3 while NHSL11 was the best 

performer in environment E4. However, NHSL12 and 

NHSL14 were vertex genotypes in sectors with no 

environment and were therefore referred to as poor 

performers in the test environments. All other genotypes 

that do not fall on the vertices or close to the vertices were 

not adaptable to any of the environments. The genotypes 

that were close to the origin of y-axis were more stable than 

those far away. 

4. Discussion 

The objective of most crop breeders is to develop 

varieties that will perform consistently well across multiple 

environments. The highly significant differences for 

environments, genotypes and GEI implied that the four 

environments significantly influenced the expression of the 

GEI and the genetic diversity that existed among the 

genotypes. It also implied that the environments were able 

to discriminate among the genotypes. Thus, it is possible to 

make a selection of stable genotypes from among the 

genotypes used. Similar results have also been obtained in 

tomato genotypes [18,19], as well as other crops such as 

rice [16,10], bread wheat [20] and sugarcane [21,22]. The 

fact that there was a significant GEI effect in the present 

study indicated that the genotypes evaluated were not 

consistent in performance across environments and the 

magnitude of the GEI needs to be determined [23]. This 

could be the reason why half of the genotypes evaluated had 

mean values above the overall genotype mean while the 

remaining half had values below the overall mean. Thus, 

the GEI was successfully partitioned by using the AMMI 

model, and this indicated that the first two principal 

component axes scores were significant and accounted for 

94% of the total variation. 

Adaptability is the ability of a genotype to perform well 

across a wide range of geographical regions with varying 

climatic conditions while yield stability refers to ability of a 

genotype to withstand variability in yield over a wide range 

of environmental conditions [24,12]. The IPCA biplot 

scores are an indication of genotype stability. The greater 

the IPCA scores, either negative or positive, the more 

adapted a genotype to a particular environment [25].    

The high (though both positive and negative) scores of 

genotypes such as NHSL23, NHSL11, NHSL12 and 

NHSL4 explain the reason why they ranked first and second 

in the test environments, hence their potentials for being 

selected as high yielding and adaptable genotypes in the  

test environments. This is congruent with the work of   

[17]. Furthermore, an overview of the IPCA scores  

reflects a disproportionate response of the genotypes.  

Thus, the genotypes are ranked differently in each of    

the environments [16]. This implies that a crossover type of 

GEI exists and it is useful for specific adaptation, [24,17]. 

In the AEA biplot view, the single–arrowed line (AEA 

abscissa) points to the genotype with the highest mean yield 

across environments while the double-arrowed line (AEA 

ordinate) points to greater dissimilarity (or poorer stability) 

in any of the two directions. According to [26], the higher 

the projection of a genotype from AEA coordinate axis, the 

lower the stability of the genotype and the greater the 

interaction with the environment. An ideal genotype should 

possess both high mean yield and high stability across the 

test environments. Hence, genotype NHSL26 was the ideal 

genotype showing higher yield across all the environments; 

NHSL2 was the most stable followed by NHSL21 while 

NHSL12 was the most unstable genotype. 
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The genotype performance and stability can be seen  

from the GGE biplot, which is a graphical representation  

of the association between genotypes and environments 

[17]. The high percentage of total variation observed for 

principal component axes, PC 1 and PC 2 indicated that  

the biplot  is suitable and adequate for the approximation 

of environment-centered data. The fact that genotype 

NHSL23 had the longest vector indicated that it was most 

unstable but adaptable to an environment. This suggests that 

it can be recommended for specific environment and is 

among the environmentally most responsive genotype. 

Genotypes NHSL2 and NHSL21 that have vectors closest 

to the origin of the biplot, making them among the 

environmentally least responsive and can therefore be used 

in breeding for wider adaptation or stable performance 

across environments. However, due to the relatively low 

mean yield of genotype NHSL21, genotype NHSL 2 is 

chosen in preference over it. The presence of more than one 

mega-environment in the study indicates that the four sites 

differ significantly from one another in terms of 

discriminating capacity. This is in conformity with the work 

of [27]. 

The biplot further shows the discriminating and 

representativeness view of the test environments and this 

unveils the similarities among test environments in 

discriminating the genotypes. This is better achieved   

with the aid of the line (Average-Environment Axis (AEA)) 

that passes through the average environment and the  

biplot origin [17]. The test environment with the smaller 

angle with AEA is more representative than other test 

environments. Also, the longer an environment vector is, 

the more discriminating (informative) it is [28,17]. Thus, in 

the present study, environment E2 was adjudged the most 

representative environment because it had the smallest 

acute angle with the AEA. This implies that it represented 

the average environment. Similar results were obtained in a 

study on paddy by [28]. Also, environment E1 was the  

most informative, providing more information about    

the genotypes in that environment, and can be used      

as test environment. Due to the discriminating and 

non-representativeness of E1 and E3 as test environments, 

they can be used for selecting specifically adapted 

genotypes if the target environments can be partitioned into 

mega-environments. 

However, if an environment combines both 

discriminative and representative together, such can be used 

as good test environments when selecting for generally 

adapted genotypes. In this study, there was no environment 

that combined the two characters. This negates the findings 

of [17]. 

The polygon view of the GGE biplot showed that the 

NHSL23 was the winning genotype in environment 1 (E1), 

NHSL26 in environment 2 (E2) and 3 (E3) and NHSL11 in 

environment 4 (E4) while NHSL12 and NHSL14 were the 

poor performers across the test environments. The NHSL23 

gave the best performance in all the test environments. 

5. Conclusions 

Multi-locational trials are performed to evaluate new   

or improved genotypes across multiple environments 

(locations and years) before they are promoted for release 

and commercialization. This approach helps to increase 

yield stability and determine the best genotype(s) for an 

environment. Three genotypes, NHSL23, NHSL26 and 

NHSL11 produced the highest yields in the four 

environments. Across the four environments, NHSL23 

ranked highest in terms of yield and is considered as best 

candidate for production while the most stable genotype 

was NHSL21 and NHSL26 was the most adaptable 

genotype. NHSL 26 can be considered for areas with 

moderate to low atmospheric rainfall. These genotypes can 

be evaluated in more environments to assess their 

adaptability and possible recommendation for release. 

 

REFERENCES 

[1] S.K. Kaushik, D .S.Tomar and A.K. Dixit, Evaluation of 
plant-based non-timber forest products (NTFP’S) as 
potential bioactive drugs in South-Western Nigeria. Journal 
for Clinical and Medical Research, 2011, 3: 61 – 66;  
http://www.academicjournals.org/JABSD. 

[2] U.M. Soe,. Value added food production based on farm 
produce in Myanmar Ministry of Agriculture and Irrigation, 
Myanmar, 2003. 

[3] A.H. Esminger., M.E. Esminger, J.E. Konlande, and J.R.K. 
Robson, In: The concise encyclopedia of foods and nutrition. 
CRC Press, Boca Raton, Florida, 1995, 1178 pp;  
https://doi.org/10.1002/jsfa.2740670220. 

[4] B. Guillaume and C. Malthilde, In: Genetic diversity in 
tomato (Solanum lycopersicum L.) and its wild relatives. 
Genetic Diversity in Plants. Prof. Mahmut Caliskan (Ed), 
2012, ISBN: 978-953-51-0185-7; https://www.intechopen.co
m/books/genetic-diversity-in-tomato-solanum-lycopersicum-
and-its-wild-relatives. 

[5] M. K. Osei, B. Annor, J. Adjebeng-Danquah, A. Danquah,  
E. Danquah, E. Blay, and H. Adu-Dapaah, Genotype 
Environment Interaction: A prerequisite for tomato variety 
development. In: S.T Nyaku, and A. Danquah, (Eds.). 
Recent advances in tomato breeding and production. Intech 
Open Limited, London, 2018, pp. 71 – 91;  
DOI: 10.5772/intechopen.76011;  
www.researchgate.net>publications. 

[6] A.K. Devi, M.A. Chosin, H. Triwidodo and H. Aswidinnoor, 
Genotype x environment interaction and stability analysis in 
lowland rice promising genotypes. International Journal of 
Agronomy and Agricultural Research, 2014, 5(5): 74-84. 
http://www.innspub.net. 

[7] I. Romagosa and P.N. Fox, Genotype x environment 
interaction and adaptation. In: Hayward M.D., Bosemark 
N.O., Romagosa I., Cerezo M. (eds) Plant breeding: 
Principles and prospects, 1993, pp 373 – 390;  
https://doi.org/10.1007/978-94-011-1524-7-23. 

http://www.academicjournals.org/JABSD
https://doi.org/10.1002/jsfa.2740670220
https://www.intechopen.com/books/genetic-diversity-in-tomato-solanum-lycopersicum-and-its-wild-relatives
https://www.intechopen.com/books/genetic-diversity-in-tomato-solanum-lycopersicum-and-its-wild-relatives
https://www.intechopen.com/books/genetic-diversity-in-tomato-solanum-lycopersicum-and-its-wild-relatives
https://www.intechopen.com/books/genetic-diversity-in-tomato-solanum-lycopersicum-and-its-wild-relatives
https://www.intechopen.com/books/genetic-diversity-in-tomato-solanum-lycopersicum-and-its-wild-relatives
http://www.innspub.net/
https://doi.org/10.1007/978-94-011-1524-7-23


78 E. T. Akinyode et al.:  Genotype x Environment Interaction of Some Selected Tomato  

(Lycopersicon esculentum L.) Genotypes Using AMMI and GGE Biplot Analyses 

 

[8] S. Ceccarelli. Wide adaptation: How wide. Euphytica, 1989; 
40: 197 – 205; https://doi.org/10.1007/BF00024512. 

[9] Becker H.C. and Leon J. Stability analysis in plant breeding, 
Plant Breeding, 1988. Paul Parey Scientific Publishers, 
Berlin and Hamburg, 101: 1-23; ISSN 0179-9541. 

[10] B.K. Joshi, K.P. Shrestha, and S. Bista, Yield stability 
analysis of promising rice genotypes in mid hills of Nepal. In: 
H.K. Shrestha, B. Chaudhary, E.M. Bhattrai, and T. Aktar, 
(Eds.). Rice research report. Proceedings of 23rd National 
Summer Crops Research Workshop, Kathmandu, NARC, 
2003, pp. 109–116; www.researchgate.net>publications. 

[11] P.A Kumar, K.R. Reddy, R.V.S.K. Reddy, S.R. Pandravada, 
and P. Saidaiah, Stability studies among tomato genotypes 
for yield and processing traits. International Journal of 
Chemistry Studies, 2019, 3(3): 17-26;  
www.chemistryjournal.in. 

[12] G.M. Heinrich, C.A. Francis and J.D. Eastin, Stability     
of grain sorghum yield components across diverse 
environments. Crop Science, 1983, 23: 209 – 212; 
https://doi.org/10.2135/cropsci1983.0011183x00230002000
4x. 

[13] O.S. Osekita, B.O. Akinyele, A.C. Odiyi and M.G. Akinwale, 
AMMI and GGE biplot analysis for evaluation of yield 
stability among selected lowland rice genotypes. Nigeria 
Journal of Genetics, 2019, 33(1): 22-29.  

[14] J.O. Ariyo and M.A. Ayo-Vaughan, Analysis of genotype x 
environment interaction of okra (Abelmoschus esculentus (L) 
Moench). Journal of Genetics and Breeding, 2000, 54 (1): 
35-40; agris.fao.org/agris-search>search ISSN: 0394-1257. 

[15] W. Yan and M.S. Kang. GGE Biplot analysis: A graphical 
analysis of multi-environment trial data and other types of 
two-way data. Agronomy Journal, 2003, 93: 1111-1118. 

[16] L.K. Bose, N.N. Jambhulkar, K. Pande, and O.N. Singh, Use 
of AMMI and other stability statistics in the simultaneous 
selection of rice genotypes for yield and stability under 
direct-seeded conditions. Chilean Journal of Agricultural 
Research, 2014, 74(1): 3–9;  
http://doi.org/10.4067/50718-58392014000100001. 

[17] W. Yan and A.D. Tinker, Biplot analysis of 
multi-environment trial data: Principles and applications. 
Can Journal of Plant Science, 2006; 86 (3): 623 – 645;  
www.ggebiplot.com. 

[18] S. Ketema, J. Geleto, Y. Alemu, G. Wondimu, M. Hinsermu, 
and T. Binalfew, Yield stability and quality performance of 
processing tomato (Lycopersicon esculentum Mill) varieties 
in the Central Rift Valley of Ethiopia. International Journal 
of Research in Agriculture and Forestry, 2017, 4 (12): 11-15; 
ISSN 2394-5907 (Print) and ISSN 2394-5915 (Online). 

[19] N.A. Muluneh, T.L. Odong, L.C. Kasozi, R. Edema, P. 
Gibson, and D. Koime, Yield stability analysis of open 

pollinated maize (Zea mays L.) and their topcross hybrids in 
Uganda. World Scientific News, 2018. 95: 75-88;  
www.worldscientificnews.com. 

[20] E. Farshadfar, N. Mahmodi, and A. Yaghotipoor, AMMI 
stability value and simultaneous estimation of yield     
and yield stability in bread wheat (Triticum aestivum L.) 
Australian Journal of Crop Science, 2011, 5(13): 1837-1844; 
ISSN 1835-2707. 

[21] R. Rea, O.D. Sousa-Vieira, A. Díaz, M. Ramón, and      
R. Briceño, Genotype by environment interaction and   
yield stability in sugarcane. Revista Facultad Nacional de 
Agronomía, 2017, 70(2): 8129-8138;  
http://dx.doi.org/10.15446/rfna.v70n2.61790  
ISSN 0304-2847. 

[22] E. Tena, F. Goshu, H. Mohamad, M. Tesfa, D. Tesfaye and 
A. Seife, Genotype × environment interaction by AMMI and 
GGE-biplot analysis for sugar yield in three crop cycles of 
sugarcane (Saccharum officinirum L.) clones in Ethiopia. 
Cogent Food & Agriculture, 2019, 5(1): 1651925; 
http://doi.org/10.1080/23311932.2019.1651925. 

[23] H.G. Gauch, H.P. Piepho and P. Annicchiarico, Statistical 
Analysis of Yield Trials by AMMI and GGE: Further 
considerations. Crop Scence, 2008, 48: 866 – 889;  
http://dx.doi.org/10.2135/cropsci2007.09.0513. 

[24] J. Adjebeng-Danquah, J. Manu-Aduening, V.E. Gracen, I.K. 
Asante and S.K. Offei, AMMI stability analysis and 
estimation of genetic parameters for growth and yield 
components in cassava in the forest and guinea savannah 
ecologies of Ghana. Hindawi International Journal of 
Agronomy, 2017. (Article ID 8075846): 1–10;  
http://doi.org/10.1155/2017/8075846. 

[25] L. Horn, H. Shimelis, F. Sarsu, L. Mwadzingeni and M.D. 
Laing, Genotype-by-environment interaction for grain yield 
among novel cowpea (Vigna unguiculata L.) selections 
derived by gamma irradiation. The Crop Journal, 2017; 
https://doi.org/10.1016/j.cj.2017.10.002. 

[26] Yang R.C., Crossa J., Cornelius P.L. and Burgueño J. 2009. 
Biplot analysis of genotype x environment interaction: 
proceed with caution. Crop Science. 49: 1564 – 1576; 
http://dx.doi.org/10.2135/cropsci2008.11.0665. 

[27] Sharifi Peyma, Aminpanah Hashem, Erfani Rahman, 
Mohaddesi Ali and Abbasian Abouzar, Evaluation of 
Genotype x Environment interaction in rice based of AMMI 
model in Iran. Science Direct. 2017, 24 (3): 173 - 180.  
www.sciencedirect.com. 

[28] C.K Das, D. Bastia, B.S. Naik, B. Kabat, M.R. Mohanty and 
S. S. Mahapatra, GGE Biplot and AMMI analysis of grain 
yield stability & adaptability behaviour of paddy (Oryza 
sativa L.) genotypes under different agroecological zones of 
Odisha. Oryza 2018, 55(4): 528-542;  
DOI: 10.5958/2249-5266.2018.00064.4. 

 

 
Copyright ©  2020 The Author(s). Published by Scientific & Academic Publishing 

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 

 

 

https://doi.org/10.1007/BF00024512
http://www.chemistryjournal.in/
https://doi.org/10.2135/cropsci1983.0011183x002300020004x
https://doi.org/10.2135/cropsci1983.0011183x002300020004x
http://doi.org/10.4067/50718-58392014000100001
http://www.ggebiplot.com/
http://www.worldscientificnews.com/
http://dx.doi.org/10.15446/rfna.v70n2.61790
http://doi.org/10.1080/23311932.2019.1651925
http://dx.doi.org/10.2135/cropsci2007.09.0513
http://doi.org/10.1155/2017/8075846
https://doi.org/10.1016/j.cj.2017.10.002
http://dx.doi.org/10.2135/cropsci2008.11.0665
http://www.sciencedirect.com/
http://creativecommons.org/licenses/by/4.0/

