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Abstract  In this paper, we present a general expression originating from quantum-mechanical perturbation treatment of 
electronic intensities and Hamiltonian operators for the system (HA and HB) of an absorber and a perturber respectively. The 
expression is related to the Longuet-Higgins’ definition of solute-solvent interaction and fitted into linear regression mode for 
the determination of transition polarizabilities of 9H-xanthene, 9H-xathone and 9H-xanthione. The result conforms to those 
earlier obtained when all possible interaction modes are considered. 
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1. Introduction 
Various authors have studied the solvent perturbation ef-

fects on the electronic intensity of a system consisting ab-
sorbing solute molecules. For instance, Weigang[1] applied a 
second order quantum-mechanical perturbation theory to 
develop a quanta theory based on the assumption of a 
spherical cavity, Lorentz field modification of the photon 
field and the Onsager reaction field for the solute. A similar 
work by Liptay[2] utilized the modified Onsager-Böttcher 
reaction field in his formulation. Robinson[3] formulated a 
theory for a single perturber at a fixed inter-nuclear distance 
with the solute and presented the mechanism by which the 
forbidden electronic intensity is enhanced by solvent per-
turbation. Bayliss and Will-Johnson[4] adapted Linder’s[5] 
treatment of dispersion interaction between the solute and 
solvent by a rapidly oscillating electric field to formulate 
‘‘field simulation model’’. 

Linder and Abdulnur[6], in their formalism applied 
quantum-statistical perturbation method to account for the 
translational fluctuations in fluid. Abe[7] applied Onsager 
cavity field model to derive expression which relates the 
oscillator strength in solution to that in vapour phase. Myer 
and Birge[8] utilized quantum-mechanical perturbation 
method to derive the expression that relates the oscillator 
intensity to the transition moment of an unperturbed cylin-
drical solute. 

In this paper, rigorous and general expression that accom 
modates solvent perturbation of electronic intensity parame- 
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ters such as stark terms, Einstein coefficient, transition 
moment, oscillator strength etc was derived and employed in 
the linear regression mode for the determination of molecu-
lar transition polarizability. 

2. Objectives 
The objectives are to: 
i. Derive expression from the perturbation of electronic 

intensities as an alternative to those derived from the per-
turbation of transition energies. 

ii. Applying the derived equation for the determination of 
transition polarizabilities of some molecules. 

Use modified Onsager-Abe-Iweibo reaction field model to 
calculate the oscillator strength, f, in vapour phase 

3. Methods 
Experimental 

9H-xanthene, 9H-xanthone and 9H-xanthione, n-hexane, 
cyclohexane are the products of Tokyo Kasei (Japan), and 
are of spectroscopic grade. Methanol, ethanol, n-butanol, 
dichloromethane, chloroform, 1, 4-dioxane, acetonitrile, 
tetrachloromethane were obtained from the British Drug 
House Ltd and were distilled several times. 

Electronic absorption spectra were measured at room 
temperature using Schimadzu UV-1650 double beam spec-
trophotometer coupled with UV-probe® 2.31 version, oper-
ated in the wavelength region 190-500nm. Stock solutions of 
each compounds dissolved in different solvents were pre-
pared in 5ml standard flasks and are in the concentration 
range 10-5-10-6M. The quartz cells used were of 1.0cm in 
optical path. The other experimental conditions are has been 
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described previously by Iweibo et al[9]. 
Theoretical Derivation 

Consider an ensemble of molecules of two types; type A 
being the solute or absorber and type B the solvent or per-
turber. The Hamiltonian operator for the system (A, B) is 
described by 

Hs = Ha + Hb + V             (1) 
where Ha is a function of electronic and nuclear coordi-

nates of A and Hb those of molecules B, V is the energy 
operator and a function of molecule A and B, and the dis-
tance between them. The distance between A and B assumed 
to be a weak one and the distance apart of A and B is such 
that no electron exchange can occur between the solute and 
solvent. The zero-order wave function of the system can then 
be adequately described by the orthogonal set of product 
wave functions, αiBk, which are solutions of the pertinent 
Schrodinger equation. The effect of solute-solvent interac-
tion, V, is that the zero-order wave function, described by 
αiβk, is modified by the perturbation to the form 

,

( )i o s i o poio p o
p i

pkio p k ikio i k
p i k o k o

C

C C

α β α β α β

α β α β
≠

≠ ≠ ≠

= +

               + +

∑

∑ ∑
     (2) 

Equation (2) depicts the case of the excited state wave 
function, in which α refers to the solute and β to the solvent. 
The ground state equivalent of the wave function in Equation 
(2) is obtained by replacing i and o in the expression for the 
excited state wave function. 
Assuming that the dipole moments operator is given 
by  

µs = µa + µb                           (3) 
where µa and µb are the dipole moments of the solute and 

solvent respectively, then the complete transition moment is 
given by 

0
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In Equation (4), the higher order terms containing C2 and 
CC have been neglected on the premise that such terms 
contribute virtually little or nothing to the C terms because 
the denominator of each C term is much larger than its nu-
merator. 

Analysis of each term on the right-hand side of Equation 
(4) indicates that many terms or components of terms vanish 
by virtue of the orthogonality of the wave functions in the 
overlap integrals that multiply such terms and by virtue of 
the cancellation due to the addition of terms such as C00i0µboo 
and Ci000µboo as shown in table 1. Under this condition 
Equation (4) reduces to Equation (5). 
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Table 1.  Multiplicative table of mixing coefficients of C terms 

 o oα β  i oα β  p oα β  o kα β  i kα β  p kα β  

( )o oα β  1 ioooC  poooC  okooC  ikooC  pkooC  

( )i o sα β  ooioC  1 poioC  okioC  ikioC  pkioC  

In equation (5), the notation has been simplified such that 
µaio = 0i aα µ α〈 〉 which is the transition moment of the solute 
from ground state 0α to the excited iα . 

Introducing Longuet-Higgins’[10] rigorous definition of 
the electrostatic interaction energy given as 
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where Pa(ra) is the charge density at the point ra and Pb(rb) 
that at the point rb. In order to expand each C perturbation 
term in Equation (5) and solve them in terms of molecular 

properties, V is approximated to 3
a bV

r
µ µ−

= . This, for ex-

ample, permits the solution of the term 
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where rab is the sum of the ratio of the solute molecule and 
that of the solvent molecule. Further analysis is simplified by 
pairing such solved terms, namely; terms two and three on 
one hand and terms four and five on the other hand in 
Equation (5) to give  
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Dividing and multiplying the second term on the right 
hand side of equation (10) with 3/2 and with 2

bkoE∆  respec-
tively, equation (9) becomes 
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0aiµ  is the transition moment of the solute and bkoµ  is 
the transition moment of the solvent, aioE∆  is the transition 
energy or ionization potential of the solute and bkoE∆ is the 
corresponding one for the solvent molecule. ∆α- the transi-
tion polarizability is defined by the term in the circular 
brackets in Equation (9) and (10). 

Using Labhart[11], and Donath[12] formalism, Equation 
(10) can be transformed into Equation (11) by equating 0aiµ  

to 
1
2

aiof  i.e. 
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where 
1
2

( )aio vf  and 
1
2

( )aio sf  are the root of the oscillator 
strength in vapour phase and solution respectively 

aio
bko

E
E

∆
∆ . 

1
2K  is the root of Einstein coefficient. 

For the purpose of this study, Equation (11) is rearranged 
into the following convenient linear regression forms. 
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The dependent variables are 
1 1
2 2

( ) ( )( )aio s aio vf f−  and
1 1
2 2

( ) ( )

1

aio s aio vf f
X
−

 in Equations (12 and 13), respectively; 

and the independent variables are X1, X2 in equation (12) 

and 2

1

X
X

 in equation (13). These two equations satisfy the 

statistical criterion for regression or graphical analysis and 
the slopes give the values of ∆α.  
In the present study, solvent parameters such as molar re-

fraction and polarizability were fitted into the model using 
Clausius-Mossotti’s expression[13]. The electronic intensi-
ties as defined by oscillator strength and Einstein coefficient 
in solution and vapour phase were determined using the 
modified Onsager-Abe-Iweibo reaction field model[14] and 
the expression that relate oscillator strengths in solution to 
those in vapour phase was adopted as presented by Abe and 
Iweibo[15]. The molecular data for the generation of ∆

1
2

aiof , 

X1, X2 and 2

1

X
X

 for graphical analysis is shown in table 2 

Figure 1 represents the graphical details of representative 
plots of 9H-xanthene, 9H-xanthone and 9H-xanthione in 
various solvents according to equation 13. It is obvious that 
by setting 0booµ =  in equation 11 (the condition applicable 
to studies in non-polar solvent), the transition polarizability 
of an electronic transition can in principle be determined in 
non-polar solvent alone. In practice, however, as can be seen 
in table 2, the range of data covered by the independent 
variables (X2 and 2

1

X
X

) in non polar solvent is so small that 

large uncertainties attend such determinations. Although, a 
much larger range is spanned by the independent variables if 
polar solvents are used, it can be seen in table 2 that addi-
tional data in non polar solvents may still be needed for a 
reliable determination by regression and graphical analysis. 

4. Results 

Table 2.  Oscillator strengths in solution, Molar refraction, polarizability, solvent dipole moment and approximate molecular radii of 9H-xanthene, 
9H-xanthone and 9H-xanthione 

9H-xanthene 9H-xanthone 9H-xanthione 

 Methanol Ethanol Chloroform Methanol Ethanol Chloroform Methanol Ethanol Chloroform 

1
2

( )aio sf           

0 1S Sf →

 
0.021 0.023 0.048 0.092 0.092 0.140 0.019 0.029 0.024 

0 2S Sf →  0.156 0.153 0.297 0.169 0.231 0.264 0.058 0.100 0.080 

0 3S Sf →  0.715 0.781 0.596 0.808 0.809 0.829 0.114 0.219 0.128 

0 4S Sf →  - - - 0.390 0.554 - 0.414 0.807 1.040 

0 5S Sf →  - - - - - - 0.249 0.777 - 

rab(x 10-8 cm) 4.50 4.51 4.84 4.62 4.63 3.74 4.73 4.75 3.84 

α (x10-24 cm3) 18.6 20.3 12.9 19.7 21.8 13.9 21.6 23.6 14.9 

R(x10-24 cm3) 77.9 85.0 54.0 82.5 91.3 58.2 90.5 98.9 62.4 

booµ (D) 1.70 1.69 1.01 1.70 1.69 1.01 1.70 1.69 1.01 
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Figure 1.  Plots of data on intensity perturbation of the transitions of 9H- 
xanthene  ̶̶̶̶  ̶̶  ̶̶̶̶  ̶̶ , 9H-xanthone ——— and 9H-xanthione …-… in (a) 
ethanol (▪) (b) Chloroform (*) (c) methanol (▲) 

5. Discussion 
Oscillator strength of the electronic transitions 
From table 2, the intensities of electronic transitions 

in the compounds follow the expected pattern: for 

example, in 9H-xanthene 3 2 1s s s s s so o of f f→ → →> >  was 
observed, whereas in 9H-xanthone and 9H-xanthione, 
it was 3 4 2 1s s s s s s s so o o of f f f→ → → →> > >  and 4 5s s s so of f→ →> >

3 2 1s s s s s so o of f f→ → →> >  respectively. This implies that the 
higher the value of f, the more allowed the transition. 

From table 3, the transition polarizabilities for the 
three absorption bands observed in 9H-xanthene follow 
the trend: ( ) ( ) ( )0 1 0 2 0 3s s s s s sα α α→ → →∆ < ∆ < ∆ , the trend for 

the four bands observed in 9H-xanthone is 
( ) ( ) ( ) ( )0 1 0 2 0 4 0 3s s s s s s s sα α α α→ → → →∆ < ∆ < ∆ < ∆ , and the trend 

observed in 9H-xanthione with five absorption bands is 
( ) ( ) ( ) ( ) ( )0 1 0 2 0 3 0 5 0 4s s s s s s s s s sα α α α α→ → → → →∆ < ∆ < ∆ < ∆ < ∆  
The transition polarizabilities increases with energy 

of the state, the trends above is in line with the sub-
mission of Hirschfelder et al, [16] and Chongwain and 
Iweibo[17] and is supported by the approximate theory 
which relate the polarizability α  of any state ij to the 
transition frequency ijω between the state i and j, and 

the oscillator strength ijf  by 
2

ij
ij

e ijj

fe
m

α
ω

= ∑  

where e and em denote the electronic charge and mass 
respectively, and ijω = 2πυij denoting the circular frequency. 
These trends are reflective of the oscillator strength values 
for these transitions, and also confirms the positive correla-
tion between the transition polarizabilities (∆α) and the 
integral Einstein coefficient B. 

Table 3.  Summary of values for transition polarizability for the observed 
bands 

Compounds and Transitions ∆α (x 10-24cm3) 
Xanthene 
S0 → S1 

S0 → S2 

S0 → S3 

 
10.2 
17.6 
48.3 

Xanthone 
S0 → S1 

S0 → S2 

S0 → S3 

S0 → S4 

 
19.5 
25.2 
53.6 
27.3 

Xanthione 
S0 → S1 

S0 → S2 

S0 → S3 

S0 → S4 

S0 → S5 

 
11.1 
10.6 
24.3 
79.9 
43.7 

Besides, in line with the free electron molecular orbital 
(FEMO) theory, the polarizability is proportional to the 
molecular volume (i.e. ∆α α a3, where ‘a’ denotes molecular 
radii). Consequently, compounds with larger molecular radii 
show greater transition polarizability. For instance, the mo-
lecular radii increase from xanthene to xanthone and to 
xanthione, so do the transition polarizability. The present 
analysis agrees favourably with those Abe and Iweibo[18] 
and reconfirms the earlier result of Abe et al, [19] but dis-
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agrees with that of Morales[20]. This marked difference 
probably arises because Morales considered only the dis-
persion forces in deriving his expression while the present 
study takes into consideration all possible interaction modes. 

6. Conclusions 
The transition polarizabilities determined for the com-

pounds in this paper are being determined for the first time, it 
is expected that the results obtained will form a database or 
used for comparison with the results of future determination 
by electro-optical or other methods. 

Originating from quantum-mechanical perturbation of 
electronic intensity, the derived expression in this paper gave 
low values of oscillator strength in vapour phase compared 
to those in solution and this reinforces the phenomenon of 
intensity enhancement of absorbing molecules by solvents. 
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