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Abstract  The frequency-dependence of electrical characteristics of quantum device components was researched. There 
were two types of nanostructures: quantum wire and junction nanostructures between two quantum wires with different 
cross sections. It is shown that conductivity of the first nanostructure is decreased with growth of the frequency and 
conductivity of the second nanostructure is increased with growth of the frequency. 
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1. Introduction 
Interest to electrical characteristics of quantum wires is 

caused by new physical effects which are observed in 
one-dimensional conductors[1,2] and also by prospects of 
high-frequency applications of devices based on quantum 
wires[3,4]. 

The consecutive analysis of frequency-dependence of 
quantum device characteristics can be conducted in the 
framework of a multiphase model of charge transport[4,5]. 
The model was successfully applied in order to calculate the 
characteristics of resonant-tunneling diodes and devices 
based on quantum wires[6,7].  

In this paper, it is shown that frequency-dependence of 
one-dimensional electronic gas conductivity is determined 
by the frequency properties of the hydrodynamic velocity of 
electrons.  

In quantum devices, the junction between quantum wires 
with d ifferent cross-sections can be used as a source of 
nonequilib rium electrons[4,7]. Nonequilibrium effects lead 
to specific dependence of such junction conductivity from 
frequency of external signal.  

2. Electric Current in Quantum Devices 
The equation for the hydrodynamic velocity of electron 

v(x,λ) can be written as[4]  
(∂/∂t+(u(t,r,λ),∇))v(t,r,λ)+v(t,r,λ)/τ(λ)=-∇F(t,r,λ)/m*. (1) 
Here, the index λ  numbers the possible electron states, τ(λ) 

and F(t,r,λ) - are the electron momentum relaxation time and  
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electron chemical potential in λ-state. Other values, which 
are included in the equation (1) are determined as follows:  

u(t,r,λ) = j(t,r,λ)/ρ(t,r,λ), 
ρ(t,r,λ) = Ψ*(t,r,λ)Ψ(t,r ,λ),  

j(t,r,λ) = -(iћ/2m*)(Ψ*(t,r,λ)∇Ψ(t,r,λ) –  
- (∇Ψ*(t,r,λ))Ψ(t,r,λ)),             (2) 

where ħ - is the Planck constant and electron wave functions 
Ψ(t,r,λ) satisfy Schrödinger’s equation 

iħ∂Ψ(t,r,λ)/∂t+(ћ2/2)(∇,(m*-1∇Ψ(t,r,λ)) -  
– U(t,r)Ψ (t,r,λ)=0,              (3) 

in which m* is the electron effect ive mass, and potential 
U(t,r) is determined by the expression 

U(t,r) = Uext(r) - eϕ(t,r).             (4) 
In expression (4), Uext(r) - is the built-in potential caused, 

for example, by the b reaks of band gaps of heterostructures, e 
- is the electronic charge and ϕ(t,r) - is the self-consistent 
electric  potential calculated by Poisson’s equation 

(∇,ε∇ϕ(t,r)) = e(n(t,r) – Nint(r)),        (5) 
Where eNint(r) - is a density of doping charge.  
The equation (5) is fair at characteristic frequencies that 

are a lot of smaller than  
νc = c/L, 

where c – is the speed of light, and L – is the typical size of 
structure. For modern and perspective electronic devices, the 
following estimation is right  

L ~ 10-7 – 10-5 cm. 
It means that the equation (5) is fair for frequencies 

smaller than 1014 Hz.  
Electron concentration n(x) and density of electron flow 

n(t,r) are calculated as the sums of corresponding values in 
λ-states  

n(t,r) = ∑λn(t,r,λ), n(t,r) = ∑λn(t,r,λ),     (6) 
where  

n(t,r,λ) = ρ(t,r ,λ)f(s(t,r,λ)), n(t,r ,λ) = j(t,r ,λ)f(s(t,r,λ)). (7) 
f(s) = (exp(s) + 1)-1,               (8) 

and  
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s(t,r,λ) =[E(t,r,λ) – F(t,r,λ) - m*(u(t,r,λ),v(t ,r,λ))]/kT.  
Energy E(t,r ,λ) is calculated by the formula 

E(t,r,λ)=(iћ/2)(Ψ*(t,r,λ)∂Ψ(t,r,λ)/∂t  -  
– (∂Ψ*(t,r,λ)/∂t)Ψ(t ,r,λ))/ρ(t,r,λ).      (10) 

where k - is the Boltzmann constant, T – is the absolute 
temperature, which in this article is a constant.   

In the limit  of s mall v(t,r ,λ) when the condition is right  
|E(t,r ,λ)| >> m*|(u(t,r,λ),v(t,r ,λ))|, 

expression for flow density will become 
n(t,r)≈∑λj(t,r,λ)f(s0(t,r,λ)) -  

- m*∑λj(t,r,λ)(u(t,r ,λ),v(t,r,λ))f’(s0(t,r,λ)),   (11) 
where 

s0(t,r,λ) =[E(t,r,λ) – F(t ,r,λ)]/kT, f’(s) = ∂f/∂s < 0. 
As a rule in applied tasks for every λ  there will be such λ1 

that 
E(t,r,λ) = E(t,r ,λ1) and j(t,r ,λ) = -j(t,r,λ1).  

In this case  
n(t,r,λ) + n(t,r,λ1) = j(t,r ,λ)(f(s(t,r,λ)) - f(s(t,r,λ1))) ≈ 

≈ j(t,r,λ){(f(s0(t,r,λ)) - f(s0(t,r,λ1))) –  
- m*(kT)-1(j(t,r,λ),[v(t,r,λ)f’(s0(t,r,λ))/ρ(t,r,λ) +  

+ v(t,r ,λ1)f’(s0(t,r,λ1))/ρ(t,r,λ1)])}.     (12) 
In expression (12), the first composed has a linear 

dependence on the microscopic flow j(t,r,λ) and the second 
composed has a quadratic dependence of this value.  

In a limit when 
|v(t,r,λ)| = 0 

we will receive  
n(t,r) = ∑λj(t,r,λ){f(s0(t,r,E(t,r ,λ),Fl(t,r,λ))) -  

- f(s0(t,r,E(t,r,λ),Fr(t,r,λ)))}.        (13) 
Here, summation on λ1 was replaced by  equivalent 

summation on λ and designated as 
Fl(t,r,λ) = F(t,r,λ), Fr(t,r,λ) = F(t,r ,λ1). 

The distribution functions within brackets in the formula 
(13) differ only by the values of chemical potentials at the 
local chemical equilibrium when 

Fl(t,r,λ) = Fr(t,r ,λ) 
the flow density is zero. Thus, expression (13) describes a 
flow generated by local chemical nonequilib rium of charge 
particles. The well-known formula for a tunnel current[8] 
follows from the ratio (13).  

In case of a local chemical equilib rium, when the 
difference between chemical potentials of λ-phases may be 
neglected taking into account the formula (12) for the flow 
density, the following expression occurs 

n(t,r)=-m*(kT)-1∑λj(t,r,λ)(j(t,r,λ), 
[vl(t,r,λ)f’(s0l(t,r,λ))/ρl(t,r,λ) +  
+ vr(t,r ,λ)f’(s0r(t,r,λ))/ρr(t,r,λ)]).       (14) 

Here, summation by indexes λ and λ1 is replaced by 
summation by index λ for the "left electrons" marked by 
index l and the "right electrons" marked by index r.  

The length of chemical potentials of different electrons 
relaxation to local chemical equilibrium is defined by the 
formula 

Lrel(λ) = (ħτ(λ)/m*)1/2.            (15) 
Size of Lrel is different for different materials. It is equal to 

about 10 nanometers for Si, 24 nanometers for GaAs and 72 

nanometers for InSb. Where structures are larger than Lrel it 
is possible to conclude that the electrons are in  a state of local 
chemical equilibrium.  

From the considered formulas, it follows that the current 
in electronic devices is created by two factors: deviations of 
electronic gas from the local chemical equilibrium and at 
nonzero values of hydrodynamic velocity of electrons. 
According to formula (1), the nonzero  values v(t,r,λ) are 
caused by gradients of chemical potentials F(t,r,λ), that are 
deviations from chemical equilibrium of electronic gas in 
various spatial points. Thus, it is possible to conclude that the 
electronic current is the consequence of the nonequilibrium 
phenomena in electronic gas.  

3. Frequency-Dependence of 
Hydrodynamic Velocity 

In case when  
(∂/∂t + (u(t,r,λ),∇))v(t ,r,λ) = 0 

the equation (1) has the solution  
v(t,r,λ) = -τ(λ)∇F(t,r ,λ)/m*.           (16) 

Substitution of expression (16) to the formula (14) results 
to the Ohm’s law in the differential form and to well-known 
formulas for mobility and conductivity of electronic gas.  

Let's assume that the potential difference changing in time 
under the harmonious law with cyclic frequency ω is applied 
to a spatially homogeneous sample. In this case, the gradient 
of chemical potential in the sample may be presented as 

∇F = eE0cos(ωt).                 (17) 
where E0 – is a certain constant field.  

In view of spatial uniformity from (1) we shall receive 
v(t,λ)= -[eτ(λ)/m*(1 + ω2τ2(λ))]E0(cos(ωt) + 

+ ωτ(λ)sin(ωt)).             (18) 
From (18), it follows that as well as in case of classical 

theory, the frequency-dependence of electronic gas 
conductivity becomes essential at  

ω > ωτ(λ) = 1/τ(λ).              (19) 
For mesoscopic structures, the momentum relaxation time 

is about 10-13 s and the factor ωτ is necessary to take into 
account when the frequencies are more than 1 THz. 
Comparing expressions (13) and (16), we can  see that 
increase of frequency results in decrease of conductivity 
(growth of resistance) of electronic gas.  

In the development of expression (18), no assumptions 
about quantum dimensions of electronic gas were made. It 
means that formulas (18) and (19) are fair for quantum wires, 
which represent one-dimensional conductors.  

4. Frequency Influence to Resistance of 
Junction between Quantum Wires 

For the decision of this problem, it is necessary to consider 
the transport equations for different electronic phases which 
according to[4,5] look like 

∂n(t,r,λ)/∂t + (∇,n(t,r ,λ)) = -ћ-1∑λ’(F(t,r,λ) –  
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- F(t,r,λ‘))(n(t,r,λ)Γλλ’ + n(t,r,λ‘)Γλ’λ).     (20) 
Here, values Гλλ’ and Гλ’λ - are the probabilit ies of 

transitions between λ and λ’-states.  
In the simplest case, when only deviations from the local 

chemical equilibrium between "left" and "right" 
electrons[4,7] are taken into account, from (20) we shall 
receive the system of two equations 
∂nl(t,r)/∂t + (∇,nl(t,r))= -γћ-1(Fl(t,r) - Fr(t,r))(nl(t,r)+nr(t,r)),  

∂nr(t,r)/∂t + (∇,nr(t,r))= -γћ-1(Fr(t,r) -  
- Fl(t,r))(nr(t,r)+nl(t,r)).           (21) 

Here: γ is some positive dimensionless constant.  

 
Figure 1.  The Relaxation Quantum Diode as an example of a quantum 
device that used the junction between two Conducted Channels of Quantum 
Wires as a base of functioning 

Let's consider that lengths of conducting channels of 
quantum wires (see Figure 1) Ll.r are much  greater their 
cross-section sizes L┴

l,r 
L┴

l,r << Ll,r. 
Let's in addition put that lengths L┴

l,r are not less than the 
length of relaxation of electronic gas to the state of local 
chemical equilibrium  

Ll,r ≥ Lrel. 
Having made the assumptions, the nonequilibrium 

electronic gas is localized in the area of junction between 
quantum wires of different cross-sections (see Figure 2 and 
Figure 3). For the difference of chemical potentials 

F- = Fl – Fr                 (22) 
we receive the approximat ive equation 

-α+(x)∂F-/∂t +(∇,((σ+
2-σ-

2)/σ+)∇F-) = (τ0)-1F-n+ +  
+ 2kT(I,∇(σ-/σ+)),            (23) 

where 
α+ = αl + αr, σ+ = σl + σr, σ- = σl – σr, αl,r(x) 

= -∑λρl,r(x,λ)f’l,r(x,λ) > 0, 
σl,r(x) = -∑λτl,r(λ)ρl,r(x,λ)f’l,r(x,λ)(ul,r(x,λ),ul,r(x,λ)) >0, 

τ0 = ħ/4γkT, n+ = nl + nr, I = nl + nr . 

 
Figure 2.  The Potential Relief for electrons in Relaxation Quantum Diode 
(V = 0) 

 
Figure 3.  Function F- in Relaxation Quantum Diode (V = 0,066 V) 

Value τ0 is relaxat ion time of electronic gas to the state of 
local chemical equilibrium. 

From the equation (23), it fo llows that the source of 
electronic gas nonequilibrium state is the current that flows 
perpendicularly to boundaries of areas with different 
conductivities σl,r. Having made the assumptions, the 
equation (23) is  a singularly perturbed[9]. In a stationary 
case, its approximate decision looks like 

F- ≈ F0 = - ħ(I,∇(σ-/σ+))/2γn+.         (24) 
As shown in[4], the value F0 is connected with the voltage 

drop in the device by the formula 
V ≈ -F0/e. 

Thus, to within boundary effects[4], the rat io (24) defines 
the current-voltage characteristic (CVC) of junction between 
quantum wires with different thickness.  

In a one-dimensional approximation, when the total 
electron flow is constant for CVC of junction, we shall 
receive the formula 

V = J(ħ/e2)/2γdn+.             (25) 
Here 

J = eI = const                 (26) 
- is current density through the junction, d is the effective 
width of the junction. Value 

rj = (ħ/e2)/2γdn+              (27) 
- is a specific resistance of the junction between two  quantum 
wires with different cross-sections (dimension of rj - is 
Ω*cm2).  

 
Figure 4.  Current – Voltage Characteristic of junction between two 
Quantum Wires with different cross-sections 

Figure 4 shows a typical CVC of such a junction. 
Exponential growth of current density demonstrated in the 
direct (right) part of the CVC is caused by exponential 
growth in the number of "left electrons" under conditions of 
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voltage increasing and a corresponding decrease in potential 
barriers for electrons (see Figure 5). Similarly, under 
conditions of negative voltage, the potential barrier for 
electrons increases (see Figure 6), and the current does not 
practically flow through the junction. 

 

Figure 5.  The Potential Relief for electrons in Relaxation Quantum Diode 
(V = 0,066 V) 

If the junction is connected to the AC source, which 
provides the current density 

J = J0cos(ωt),                     (28) 
then for the CVC from the equation (23) taking into account 
(25), (26) and (27), the expression occurs 

V=J0rj(cos(ωt)+ωτ0(α+/n+)sin(ωt))/(1+(ωτ0(α+/n+))2). (29) 
Non-stationary effects become essential at 

ω > ω0 = 1/τ0 = 4γkT/ħ.           (30) 
An increase of frequency results in a decrease in junction 

resistance. Within the limit  
ω >> ω0  

the estimation is fair 
V ≈ J0rjsin(ωt))/ωτ0(α+/n+)).            (31) 

Voltage appears to be phase-shifted by π/2 in  relation to 
current and effective specific resistance of the junction tends 
to zero with growth of frequency.  

 
Figure 6.  The Potential Relief for electrons in Relaxation Quantum Diode 
(V = -0,066 V). 

At room temperature, the specified effects become 
essential if the frequencies exceed 1 THz. If temperature is 
decreased, the threshold determined by ratio (30) is 
decreased linearly. If temperature equals to 30 K, then 

frequency effects need to be considered at 10 GHz already. 

5. Conclusions 
In this paper, it is shown that the frequency of an external 

signal ω influences conductivity of quantum wires and 
devices based on them.  

Conductivity of the conducting channel of a quantum wire 
is decreased linearly with the growth of ω.  

For the junction between two conducting channels of 
quantum wires with different cross-sections, the inverse 
relationship is a representative one. Conductivity of such a 
junction is increased linearly with growth of the frequency, 
and resistance tends to zero if frequency tends to infinity. 
Similar frequency-dependence should be characteristic for a 
junction between the contact area and the conducting 
channel of a quantum wire.  
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