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Abstract  Atomic force microscopy with attached carbon nanotube is an ideal tool in nano scale imaging, for its high 
precision caused by small tip diameter and high flexibility of carbon nanotube. In this paper sensitivity analysis of a tap-
ping-mode atomic force microscopy (AFM) with large aspect ratio carbon nanotubes (CNT) probe tips is investigated. A 
finite-element method is used for vibration analysis of a continuous beam model of an AFM cantilever and vibration am-
plitude is extracted in different excitation frequencies and different tip separations from sample surface and the effect of 
nanotube characteristics such as its length, bending stiffness & tilt angle on dynamic behavior of AFM is examined. The 
results show that decreasing the CNT length or increasing the CNT bending stiffness or the number of CNT layouts, increases 
the resonance frequency, but its effect is small. The results also show that using stiffer nanotubes removes the possibility of 
buckling in the range of the frequencies close the natural frequency of the cantilever. This can cause more stability due to less 
buckling. Sensitivity analysis helps better choosing of the carbon nanotube characteristics. 
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1. Introduction 
Tapping-mode atomic force microscopy is an advanced 

method for imaging in nano scale. Carbon nanotubes were 
used as probe tips first by Dai et al[1]. They are potentially 
ideal atomic force microscopy probes due to their 
well-defined geometry, robust mechanical properties, and in 
the case of single-walled nanotubes (SWNTs), diameters 
approaching the size of small organic molecules[2]. The idea 
of using carbon nanotubes as atomic force microscopy tips 
has been recently concerned by the scientists because of their 
well characteristics and the less damage they cause to the 
sample. Besides the benefits of using carbon nanotubes as 
AFM tips there are some difficulties too. One of them is the 
hardness of attaching a CNT on the tip of an AFM and the 
other major problem is the little information about the dy-
namic and static behavior of nanotubes and the effects they 
cause on the dynamics of AFMs. Some scientists, using 
simple models, have analysed the dynamic behavior caused 
by the CNTs, some have done experiments and some other 
have studied other problems concerning using the CNTs. 
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For example Chen et al elucidated fundamental factors 
that determine AFM imaging resolution using experiments 
with SWNT probes and numerical simulations[2]. Raman et 
al investigated imaging artefacts caused by adherence of 
CNT to the wall of slopes of the sample surface and its effect 
on the resolution of the resultant images[3]. E. Lee offered a 
several degrees of freedom model for controlling of an AFM 
with parallel carbon nanotubes[4]. Lee et al offered a theo-
retical model using Euler-elastic beam theory for the CNT 
connected to the probe tip and investigated the theoretical 
and experimental results[5].  

For studying the dynamic behavior of an AFM with an 
attached nanotube on the tip, S. I. Lee et al, investigated 
non-contact CNT tipped AFM by some experiments. In their 
experiments, the frequency response and the ampli-
tude-separation data for a high aspect ratio multiwalled 
carbon nanotube (MWCNT) were extracted. Higher har-
monics, corresponding to attractive and repulsive regimes, 
were measured versus frequency ranges when the CNT 
buckles dynamically. Surface imaging was done using 
MWCNT tip on SiO2 surface for validation of the imaging 
instabilities during the time the CNT was buckling[6]. Also S. 
I. Lee et al investigated nonlinear dynamics of an AFM with 
MWCNT tip experimentally and theoretically. They gave 
experimental nonlinear frequency response in tap-
ping-mode[7].  
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C. V. Nguyen et al, presented some results about stability 
and lateral resolution of carbon nanotubes[8] and Snow et al, 
studied the factors which specify imaging stability with 
single-walled carbon nanotube  (SWCNT) tipped AFMs. 
They used a numerical method for investigation of 
non-contact imaging and studied the effects of the vertical 
alignment of CNT with respect to the sample surface and 
also the CNT length on amplitude-separation diagram[9].  

Some scientists have studied the friction of CNT on the 
surface for example, B. Bhushan et al carried out a com-
prehensive investigation of adhesion, friction and wear of a 
MWCNT tip, SWCNT tip and MWCNT arrays[10] while H. 
Lua et al quantitatively investigated sliding friction and 
adhesion properties of vertically aligned multi-walled carbon 
nanotube arrays and fluoro-nanodiamond films on glass 
substrate using AFM[11].  

One major factor which affects the dynamics of nanotubes, 
is their bending and buckling behavior. H. W. Yap et al 
prepared some experiments with individual multiwall carbon 
nanotubes with different ranges of aspect ratios. The nano-
tubes were subjected to cyclic axial compression in large 
strains using atomic force microscopy. Distinct elastic 
buckling and post buckling phenomena were observed re-
producibly and were ascribed to Euler, asymmetric shell 
buckling (i.e., kinking), and symmetric shell buckling[12]. 

For all advantages of carbon nanotubes, an investigation 
of CNT tipped AFM dynamics is considerable. As pointed 
researchers investigated CNT tipped AFM theoretically or 
experimentally for their stability, lateral resolution, imaging 
artefacts, buckling behavior and bifurcation or tried to offer 
an appropriate model for dynamic simulation and contact 
force between CNT & sample surface, but obviously further 
investigation is still needed for clarifying CNT effect on 
dynamic behaviour of AFMs. Researchers have done ex-
periments each with a special kind of carbon nanotube which 
helps investigation of CNT effect on AFM, but an appropri-
ate sensitivity analysis of the effects of carbon nanotube on 
tapping-mode AFM has not been done.  

In this paper sensitivity analysis of nanotube characteris-
tics on tipping-mode AFM dynamics is noticed which was 
not done in the previous researches. It has been done theo-
retically and regarding to researchers’ experimental analyses. 
Changing nanotube characteristics affect buckling behavior 
or critical buckling force, these factors besides AFM char-
acteristics like its stiffness, excitation amplitude and fre-
quency can change the behavior of Dynamic mode AFM. 
Dynamic mode AFM should be excited in its resonance 
frequency and attaching a nanotube on the tip of AFM 
changes the resonance frequency. Buckling resistance of the 
nanotube can make different changes on the resonance fre-
quency or amplitude. Also the geometry of the CNT affects 
the imaging resolution, stability, the force transferred to the 
sample and in the result the damage which is caused on the 
sample. In this paper studying of these effects is attended. 
This knowledge will help an appropriate choice for the ge-
ometry and characteristics of nanotube.  

2. Theoretical Analysis 
An experiment was done for tip deflection versus 

tip-sample separation by[7] for an AFM with MWCNT tip. 
Their results showed that the complex nature of the 
tip–sample interaction at various separations can cause the 
MWCNT to buckle as well as slip, slide, and adhere to the 
surface of the sample depending on the tip–sample separa-
tion. These effects were demonstrated by measuring the 
static force–distance curve which records the force on the 
MWCNT tip as a function of the z travel (vertical) distance. 
As the tip approaches the surface, the cantilever first snaps 
into contact with the sample and then deflects linearly as the 
CNT tip pushes against the surface. After that the cantilever 
exhibits a nonlinear deflection by increasing Z, indicating a 
buckling of the MWCNT tip and then near constant canti-
lever deflection indicates that the deformation is directed 
into MWCNT buckling rather than producing additional 
cantilever deflection. After ∼800 nm of indentation, there is 
a sudden decrease in cantilever deflection, suggesting that 
the MWCNT has slipped on the Highly Oriented Pyrolytic 
Graphite (HOPG) surface. 

For analysing this system, first it is necessary to define the 
contact force applied on the cantilever. For simplification it 
is possible to assume that:  

1- The CNT mass is infinitesimal compared to that of the 
probe, so the lateral inertia of the CNT is neglected.  

2- The CNT deforms quasi-statically during tip-sample 
impact.  

3- The effect of nanotube vibration is neglected, so it is 
assumed that in the same excitation frequency and tip sepa-
ration, the CNT tip impacts the same point in each cycle.  

 
Figure 1.  (a) Schematic diagram of AFM cantilever with CNT tip. The 
angle between probe and horizontal axis is α and the angle between CNT & 
normal axis is β. Separation of CNT tip from sample is z. Lateral deflection 
of the probe is parallel to axis of w. (b) Diagram of the forces normal to the 
cantilever (Fnormal), tangent to the cantilever (Ftang) and the moment (M). 

For defining the force applied on the cantilever, it is pos-
sible to simulate it as a function of distance[7].  

1- In the separations larger than intermolecular distance 
(a0) the interaction force is carbon-carbon van der waals 
force (Fvdw) which can be approximated as the van der waals 
force between a sphere with radius equal to CNT radius and a 
plane.  
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Here HC-C is the carbon-carbon Hamakar constant, R is the 
CNT tip radius and z is transient tip–sample separation. 

2- As the CNT tip approaches the surface, the repulsive 
interaction force increases and causes the CNT to be com-
pressed and finally buckled ( 0z ≤ ). For calculating this 
buckle force, it is possible to use euler-elastica force equa-
tion which expresses the force as a function of deflection. In 
this paper, buckling force function is determined by work-
ing-model software, which gives normal and tangent forces 
and the moment. Figure 2 shows the schematic model made 
in working model for calculating forces and moment. If the 
CNT doesn’t slide on the sample surface, it is possible to 
assume that the CNT tip is jointed on the sample surface and, 
in its other side, due to the vibration of the cantilever, it is 
sliding in a direction parallel to w axis, normal to the AFM 
cantilever (Fig. 1). We cause the CNT to buckle a little in 
different values and then save the values of the reaction 
forces and moment applied on the cantilever by the CNT, 
calculated by the software. These reaction forces are normal 
force ( normal CNTF − ), tangential force ( tan g CNTF − ) and moment 
( CNTM ). Finally diagram of the forces and moment versus 
buckling amount is obtained. These diagrams are approxi-
mately linear. Equations (2), (3), and (4) are linear ap-
proximations of the CNT force & moment versus deflection 
curves. Figure 3 shows the linear approximated equations for 
these forces and the moment. It is important to mention that 
we let the nanotube to buckle just a little, because more 
buckling causes instability.  

normal CNT v vF K z f− = − +            (2) 

tan g CNT h hF K z f− = − +             (3) 

CNT t tM K z f= − +               (4) 

vK , vf , hK , hf , tK and tf  are the coefficients of the 
approximated linear equations for normal CNTF − , tan g CNTF −  and 

CNTM .  
3- In the range 00 z a< ≤ , the interaction normal force 

( N MF − ) and tangential force ( T MF − ) are approximated as a 
quadratic polynomial which interpolates between force 
functions discussed above[7]. In this range moment is zero.  

02 2
0 0

1 ( cos ( ))
6N M v v v v
HRF K z f K a f

a a
α− = − + + − − +   (5) 

02 2
0 0

1 ( sin ( ))
6T M h h h h
HRF K z f K a f

a a
α− = − + + − − +   (6) 

Considering the angle between probe and horizontal axis α 
(figure 1), the interaction force can be expressed as below, 
the normal force ( )z(Fnormal ) is 
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The tangential force ( )z(F gtan ) is 
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And the moment (M(z)) is  
0
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0
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a z
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         (9) 

 
Figure 2.  Schematic model made in working model for calculating forces 
and moment. P & Q are normal and tangential forces applied on CNT tip 
from sample. normal CNTF − , tan g CNTF − and CNTM are normal and tangen-

tial reaction forces & moment caused by CNT applied on the cantilever.  

 
Figure 3.  Approximated linear functions for normal force 
( 2 /normal CNTF L EI− ), tangential force ( 2

tan /g CNTF L EI− ) and moment 

( EI/LM CNT ). 

The governing equation for cantilever vibration is 
4 2

4 2
( , ) ( , ) ( , ) ( , )w x t w x t w x tEI c A F x t

tx t
ρ∂ ∂ ∂

+ + =
∂∂ ∂

     (10) 

Where w(x, t) is the cantilever lateral displacement, E is 
the Young’s modulus of the cantilever, ρ is the mass density, 
A is the cross section area of the cantilever, I is the moment 
of inertia about lateral axis and c is the damping coefficient. 
The boundary conditions for the cantilever are 

0( , ) | 0,xw x t = =  0( , ) | 0,xw x t =′ =  

( , ) | 0,y x LEI w x t =′′ =  and ( , ) | 0.y x LEI w x t =′′′ =  
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)t,x(F  is the interaction force between the sample and 
cantilever which was discussed in equations (7), (8) & (9). 

For solving the governing equation with finite-element 
method the cantilever is divided by beam elements and the 
tip is modelled as a rigid cone. At each node of the beam 
element, there are two degrees of freedom, one is the trans-
lation displacement and the other is the rotation angle, and so 
the element nodal displacement vector is[13-14] 

{ }1 1 2 2, , , TW w wθ θ=              (11) 
The corresponding element nodal force vector, consisting 

of shear force and moment at each node, is 

{ }1 1 2 2, , , TF F M F M=              (12) 
For each element the vibration equation and the boundary 

conditions are expressed as Equations (13), (14), and (15) 
where x is the coordinate along the cantilever and Le is the 
length of the element[13].  

3 2
1 2 3 4( )w x C x C x C x C= + + +            (13) 
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Here iC are 
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So w(x,t) can be defined as the product of a vector N by the 
element displacement vector (Vector N is defined in the 
appendix).  

( , )w x t NW=                  (16) 
( , )w x t NW
t

∂
=

∂
                  (17) 

( , )w x t N W
x x
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=
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             (18) 

The elemental mass, and stiffness matrixes can be defined 
as Equations (19) and (20).  

( )
0

Le
T

eM A N N dxρ= ∫             (19) 

2 2

2 2
0

L Te

e
N NK EI dx
x x

  ∂ ∂
=     ∂ ∂  
∫          (20) 

The governing equation for the beam element can be 
written in matrix form as: 

e e eM W K W F+ =               (21) 
Fe is the applied force vector on each element. By assem-

bling the mass and elasticity matrixes, the total equations can 
be found. The final matrix will be a (2n+2)*(2n+2) matrix. 
The force vector is zero in each node except for the first node 
and the node that the tip is connected. The forces and mo-

ment in the node of the tip is the interaction forces and 
moment between probe and sample surface which was dis-
cussed before. The cantilever is excited by a piezoelectric 
exciter by a frequent voltage in the first node. The piezo-
electric has a great mass in comparison to the cantilever, so 
the vibration inertial forces of the cantilever are negligible in 
comparison to the inertia of the piezoelectric holder. So 
when the holder is excited with a frequent voltage and a 
constant amplitude (Asp), it causes the cantilever to vibrate 
by the holder with a constant amplitude. Thereby for the first 
node we have 

1 sin( )spw A tω=                (22) 

1 0θ =                    (23) 
Here ω is the excitation frequency. Then we should con-

vert the equations into standard form of finite element equa-
tions. Because θ=0, the second row and second column of the 
matrixes can be omitted and the first row can be separated 
from the total matrix. The first row of the matrix is the 
equation from which F1 can be found and we don't need, so 
the equation belongs to the first row of the matrix, can be 
omitted from the total equations. The term belonging to 
{ } 1514131 w,....k,k,k  is transferred to the right side of the equa-
tion and is added to the force vector. The same action is done 
for mass matrix too. So we have a 2n*2n matrix equation as: 

[ ] [ ]
22

2 22 *2 2 *2

2 2

31 312

2 1 41 1 41

2 2 2

n n n n

n n

n n n
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K M
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M w k w m
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   
   

    
     − −     
     
     





 



  

    (24) 

The resultant standard form equations can be solved. The 
probe tip has a shape like a cone or a pyramid and of the 
same material of the cantilever. For adding the effect of the 
probe tip mass in the mass matrix, the probe tip is assumed as 
a connected rigid cone with the height H, mass mtip, density ρ, 
inertial moment about lateral axis passed from mass centre 
I , tip curvature radius of Rcone, base circle radius of r and 
distance between mass centre and the cantilever of Hmc and 
belonging to a node which is located in a distance from the 
end of the probe and with two degrees of freedom, vertical 
displacement and rotation. Hmc, mass and gyration radius 
about the lateral axis (gr) is[15]. 

2

2 2

/ 4

/ 3

3 / 20 1/10

mc

tip

tip tip

tip

H H

m R H

I m r m H

Igr
m

π ρ

=

=

= +

=

       (25) 

Now we write the equation for the equilibrium of the 
forces applied on the cone and calculate the moment about 
the mass centre (Figure 4).  
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Figure 4.  Free body diagram of the forces interacted on tip probe cone 

In these terms, FV is the vertical interaction force, FH is the 
horizontal interaction force, FV-tip, FH-tip, Ttip are the reaction 
forces due to the vertical and horizontal forces and the mo-
ment applied on the tip probe cone. Because θ is small, other 
accelerations are negligible. By simplification, we get equa-
tions (27) & (28) and then add the specified terms to mass 
matrix and force vector. Ttip and Ftip are two elements of 
force vector and in the fact are the external forces. 





V tip v tip
Add to Add to
force mass
vector matrix

F F m w− = −              (27) 



2 2( )tip H tip mc tip
Add to Add toforce massvector matrix

T F H m H m gr θ= − × + × 



  (28) 

With mass and stiffness matrixes, natural frequencies and 
shape modes can be found. In these equations, ω is the 
natural frequency and { }iφ  is the i'th shape mode vector and 

[ ]1 2nϕ ϕΦ =   is the shape mode matrix.  
For accounting the effect of damping matrix, we have 

MW CW KW F+ + =              (29) 
If we set W=ΦP, we can normalize the equations, by 

multiplying the transpose of the shape mode matrix (Φ-1) into 
the left hand of the equation: 

{ } { } { } T
Diag Diag DiagM P C P K P F     + + = Φ     

     (30) 

Where DiagM   , DiagK   & DiagC   are diagonal mass, 
stiffness and damping matrixes. Each decoupled equation, is 
the equation of oscillation of an independent vibrator with 
natural frequency of ωn,i and damping ratio of ζi which has 
the relation ζ=1/2Q with quality factor Q.  

2
, ,2 0i i n i i n i iP P Pζ ω ω+ + =             (31) 

So the modal damping matrix is:  

, ,

( , )

0

d i d i

Diag i

m k
i jC i j Q
i j


 == 
 ≠

          (32) 

md,i and kd,i  are the elements of the diagonal mass and 
stiffness matrix. So the Damping matrix is:  

1 1( ) ( )T
DiagC C− −= Φ Φ           (33) 

The equations can be solved by Newmark method. Shape 
function N, Mass and stiffness element matrix and a brief 
discussion on Newmark method are been given in the ap-
pendix.  

3. Simulation and Results 
3.1. Simulation 

For simulation and dynamic analysis, the values of the 
properties listed in table (1) are used[7, 16 & 17]. Figure 6 
shows the frequency response of the simulation, which is 
validated with the results of experiments done in[7] (Fig. 5).  

Table 1.  The values of the properties used in simulation 

Probe width (b) 15μm 

Probe length (L) 225 μm 

Probe thickness (h) 3.179 μm 

Height of probe tip cone (h) 10 μm 

Gyration radius of probe tip cone (gr) 3.7 μm 

probe tip mass center -cantilever Distance ( mcH ) 2.5 μm 

Tip cone radius 5 nm 

Probe tip cone mass 6.02(10-13) 
kg 

Probe angle with horizontal axis (α) 15o 

Curvature radius of CNT tip (R) 5 nm 

CNT angle with vertical axis (β) 2o 

Probe elasticity modulus (Silicon) (E) 130 GPa 

Cantilever density (silicon) (ρ) 2330 Kgm-3 

Carbon-carbon Hamakar constant (HC-C) 3.19(10-19) J 

Base driving amplitude 0.32 nm 

Quality factor for the cantilever vibration (Q) 180 

The modal contact damping factor 15 
 

 
Figure 5.  Experimental results of amplitude-frequency CNT tipped AFM 
on HOPG surface in different separations[7] 
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Figure 6.  Simulated of amplitude-frequency in different separations by 
MATLAB 

3.2. Sensitivity Analysis 
Some Figures are extracted based on Euler-Elastica 

buckling force prediction by changing the CNT length, di-
ameter or tilt angle or separation from surface. For this the 
buckle force introduced before ( normal CNTF − , tan g CNTF −  &

CNTM ) is made with the new parameters of CNT length, 
diameter or tilt angle and then this force is used for extracting 
the specified Figures. As theory of Euler-Elastica is proper 
for large aspect-ratio beams, we have used parameters in a 
range which have large aspect-ratio carbon nanotubes.  

Figure 7 shows the amplitude-frequency diagram in con-
stant separation of 45 nm with three different nanotube 
lengths. As what is shown in Figure 7, decreasing the CNT 
length causes increasing of resonance frequency just a little. 
The resonance frequency is 72.5 kHz. For the nanotube with 
7500 nm length, the resonance is equal to 72.5 kHz too. This 
means that the buckling resistance is very little. For shorter 
nanotubes the buckling resistance is increased and the 
resonance is increased a little. The nanotube can imagined as 
a spring which its stiffness enlarges the total stiffness of the 
AFM. 

 
Figure 7.  Simulation for amplitude-frequency diagram in constant sepa-
ration of 45 nm with different nanotube lengths 

Figure 8, shows amplitude-frequency diagram in the con-
stant separation of cantilever from the sample (7545 nm) 

with different nanotube lengths. Varying the CNT length 
causes the CNT tip separation changes. It is seen that de-
creasing the CNT length causes increasing the vibration 
amplitude. This shows that the cantilever separation from the 
sample is not important and just the CNT tip separation from 
sample surface determines the oscillation amplitude. In-
creasing the separation makes more freedom in the oscilla-
tion of the probe and so increases the oscillation amplitude.  

 
Figure 8.  Simulation for amplitude-frequency diagram in the constant 
separation of cantilever from the sample (7545 nm) with different nanotube 
lengths 

Figure 9 shows simulation for vibration amplitude versus 
separation from sample, with CNT length of 7500 nm and 
two different excitation frequencies of 72.4 and 72.5 KHz. 
Amplitude versus separation diagrams are important in the 
study of tapping mode AFMs, because they can represent the 
amplitude in different separations. In CNT tipped AFMs the 
amplitude is larger than the separation between the CNT tip 
and the sample and this is because of the buckling of the 
CNT.  

 
Figure 9.  Simulation for vibration amplitude versus separation from 
sample, with CNT length of 7500 nm and different excitation frequencies 

As conventional AFM (without CNT) increasing the 
separation causes increasing oscillation amplitude. Also after 
a specified separation the cantilever reaches to its maximum 
amplitude, but it is seen that in smaller separations the 
resonance amplitude in comparison with separation is larger. 
This means that in smaller separations the nanotube buckles 
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more. The linear changes of the amplitude versus separation 
are seen in both excitation frequencies. In excitation fre-
quency of 72.5 KHz, free amplitude vibration is obtained in 
farther separations related to the excitation frequency of 72.4 
KHz. Also the resonance amplitude is smaller. This can be 
noticed in the states when we don't like the CNT buckles 
much.  

Figure 10 shows amplitude versus excitation frequency 
with different nanotube radiuses of 5, 7 & 9 nm and 7500 nm 
length. Increasing the radius has caused increasing the 
resonance frequency. In other words increasing the diameter 
of the nanotube increases total stiffness of the AFM and this 
increases the resonance frequency.  

 
Figure 10.  Simulation for amplitude versus excitation frequency with 
different nanotube diameters and 7500 nm length 

Figure 11 shows the frequency response for different an-
gles between nanotube and vertical axis. It is shown that 
changes of beta in small values don't have a considerable 
effect on resonance frequency and vibration amplitude. By 
increasing beta, the vibration amplitude is increased a little. 
Larger attachment angle can cause the nanotube to buckle 
easier.  

 
Figure 11.  Simulation for frequency response for different angle between 
nanotube and vertical axis in separation of 45 nm 

Figure 12 shows simulation of the frequency response for 
a nanotube with length of 4000 nm and radius of 10 nm. It is 
seen that using stiffer nanotubes removes the possibility of 
buckling in the range of frequencies around natural fre-

quency of the cantilever. This can reduces the instability due 
to the buckling of the nanotube, although more force is 
transferred to the sample. This situation is ideal in the cases 
where we need a high aspect ratio tip and we don’t want the 
instabilities caused by the buckling of the nanotube.  

 
Figure 12.  Simulation for frequency response for a nanotube with length 
of 4000 nm and radius of 10 nm 

Totally the diagrams represent that vibration amplitude is 
more affected by the amount of excitation force (free am-
plitude vibration) and separation between CNT tip and the 
sample. Cantilever separation from sample is not so effective. 
Decreasing the CNT length, causes increasing of buckling 
critical force and increasing of the resonance frequency. 
Increasing the CNT diameter, causes increasing the reso-
nance frequency. The CNT angle is not so effective in small 
ranges of beta. Amplitude versus separation diagram shows 
the linear amount of buckling versus separation.  

Choice of CNT characteristics should be done regarding to 
buckling stiffness. Buckling stiffness may follow different 
rules for different nanotubes, nanotubes with larger aspect 
ratios, have a treatment like Euler buckling rule, but nano-
tubes with smaller aspect ratios may have shell buckling 
which makes a different behavior from Euler buckling theory. 
CNT buckling force should have a relation with cantilever 
spring force too. Some energy is lost due to buckling of the 
nanotube and friction among nanotube layers.  

Definition of set point is important in tapping mode for an 
appropriate application. The cantilever position should be set 
in smaller separations than the free vibration amplitude in 
order that the control system can hold the cantilever in a 
constant distance from the sample. In addition the larger the 
set point is, the better application is gotten. This is because of 
the reduction of the probability of impacts to steps and slopes 
and also the more sensitivity to the changes of distance. Set 
point choice also should be done regarded to buckling stiff-
ness and CNT length. It is proper that the separation be in a 
range where the nanotube buckles a little. This increases the 
stability of images. The larger amount of CNT buckling 
increases the possibility of the CNT slide on the sample, 
creation of friction and increase of van der waals force cre-
ated from horizontal positioning of nanotube. 

For a precise imaging, proper characteristics should be 
chosen for the nanotube. The less the diameter of the CNT is, 
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the better resolution is retained. This is because in imaging 
the tip of the cantilever should be small enough in order to 
enter into dips of surface, and if this doesn’t happen because 
of large diameter of the tip related to that of the sample dips, 
just a small noise is created. Also the more the CNT length is, 
the better imaging of large steps and trenches will be retained. 
Choice of CNT length and diameter should be done regarded 
to stability too. SWCNT has a smaller diameter, but for 
having a proper buckling force it should have a smaller 
length, so it has less possibility for buckling. However, the 
discontinuous dynamic force–distance characteristics limit 
the applicability of short SWCNT probe tips. Researches 
showed that In SWCNT vibration amplitude has a bifurca-
tion form, but in MWCNTs bifurcation is not seen[6]. 

Also in noncontact mode increasing the CNT length, 
causes the possibility of the adherence of cantilever and CNT 
to the surface[9]. This decreases the range of proper appli-
cation distances. In addition increase of vertical alignment of 
nanotube to surface causes similar effect and so in 
non-contact mode shorter nanotubes with less vertical 
alignment angles are better. This is not so important in tap-
ping-mode, because there is enough energy for tapping and 
return motion in tapping-mode. 

4. Conclusions 
Tapping-mode atomic force microscopy is an advanced 

method for imaging in nano scale. Carbon nanotubes cause 
increasing imaging resolution because of their high aspect 
ratio. For gaining a high resolution, AFM dynamics should 
be studied precisely and in this paper we tried to study the 
effects of attaching a CNT on the tip of an AFM. The results 
show that CNT tip separation from sample has the most 
effect on vibration behavior of AFM cantilever and the 
separation of probe has less effect. This is natural because of 
the range of the effects of intermolecular forces. Intermo-
lecular forces show their effect in low distances, so van der 
Waals force is modelled by a sphere with diameter equal to 
the diameter of nanotube. 

Decreasing the CNT length causes increasing of the 
buckling critical force and increasing of resonance frequency. 
Increase of the CNT diameter, causes increase of the reso-
nance frequency. The CNT angle is not so effective in small 
ranges, but greater tilt angles cause easier buckling and 
bending and so having greater vibration amplitude. In-
creasing buckling critical force causes increasing the reso-
nance frequency. In stiffer nanotubes which have larger 
critical buckling force, tapping is possible with just a little 
amount of buckle in the nanotube. This interesting charac-
teristic, besides keeping touch between the nanotube and the 
sample, which is a base specification in tapping-mode AFM 
gives the amplitude equal to the separation and so causes 
gaining more stability. Using stiffer nanotubes removes the 
possibility of buckling in the range of the frequencies around 
natural frequency of the cantilever. Although greater force is 
transferred to the sample in comparison to nanotubes with 

less critical buckling force, but instability due to nanotube 
buckling is reduced too.  

Totally in larger set-points and in stiffer nanotubes the 
amount of buckling is reduced and this can reduce the in-
stabilities due to nanotube buckling.  
Appendix 

The shape functions of the beam elements are: 
[ ]1 2 3 4( ) ( ) ( ) ( )N N x N x N x N x=      (A.1) 

Where 
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           (A.5) 

Potential and kinetic energy can be defined as functions of 
lateral displacement like (A.6) and (A.7) or as functions of 
the element nodal displacement vector like (A.8) and (A.9).  
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The governing equation can be written as 
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So mass and stiffness element matrices are 
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In Newmark method the time interval is divided into 
smaller time steps ( t∆ ) and in each step, it is assumed that 
the acceleration of each node is constant.  

( ) ( ) ( ) ( )MW t CW t KW t F t+ + =         (A.13) 
Assume ( )W t cte=  
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