
Microelectronics and Solid State Electronics 2014, 3(1): 1-10 
DOI: 10.5923/j.msse.20140301.01 

Modeling of PHEMTs for Superior Switch 
Transconductance Profile 

Christopher Liessner*, Samson Mil’shtein 

Electrical and Computing Engineering, University of Massachusetts, Lowell, USA 

 

Abstract  A high, flat transconductance profile for RF FET switches has been typically considered best for good switch 
performance. However, analysis shows that a sharp, peaked profile would serve better for switches while a flat profile is 
optimal for amplifiers. Using Silvaco Atlas, suggested minor variations to a typical pHEMT structure can result in a 
transconductance profile more conducive to superior switch performance are presented. 
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1. Introduction 
Pseudomorphic High Electron Mobility Transistors 

(pHEMTs) are commonly utilized as microwave switches for 
many growing transmit / receive (t/r) applications, such as 
hand-held wireless communication devices, including cell 
phones, tablets, and GPS systems [1-9]. As the 
communication architectures evolve, so do the requirements 
of the components that make up those systems, requiring 
higher frequencies and corresponding bandwidths while 
simultaneously delivering greater linearity [1, 5, 7-9]. Much 
effort over the past several years to improve switch linearity 
have focused on pHEMTs in particular. This is due to their 
inherently lower noise and higher linearity characteristics 
than a standard MESFET [1, 10, 35, 36] as well as better 
integration than diodes [10, 11, 37]. To date, all modeling of 
pHEMTs has been done viewing the transistor as simply a 
microwave device or as an amplifier [12-34]. This paper will 
introduce a new way of viewing the parameters of a FET 
switch, specifically a pHEMT, and suggest specific 
modifications that, along with state-of-the-art switch design 
methods, will provide additional improvement to linearity. 

2. Background 
Researchers have been working steadily to improve 

pHEMT linearity, and several approaches have been 
successful. In 2005, Yueh-Chin Lin et.al. found that the 
IP3/PDC ratio can be improved by doping in channel or the 
Schottky layer of an InGaP/InGaAs pHEMT [38]. These  
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doping changes yield to a broader transconductance curve in 
both cases, but channel doping resulted in higher gm while 
the Schottky layer doping resulted in a flatter curve. 
Interestingly, the original δ-doping profile, used for 
comparison, resulted in the highest, sharpest gm shape. Thus 
their approach to linearity, while good for amplifiers, was a 
step backward for switches. Mil’shtein and Liessner, et. al., 
proposed both shifted gate and field plate solutions [39–41] 
in 2006. H. C. Chiu, et.al adjusted the doping ratios of a 
double heterojunction pHEMT to improve linearity and 
current density in 2007 [42]. While this increased the gm, it 
did not provide an ideal switch profile. Y.S. Lin, et.al. 
demonstrated in 2011 that by passivating the surface of the 
AlGaAs barrier with ammonium polysulfide, they improved 
the gm by over 16%, and also achieved a slightly sharper 
transconductance profile [43]. The effects of passivating the 
surface has improved switching-speed performance in earlier 
studies as well [44]. The theory behind the passivation is that 
it ideally removes the dangling surface state potentials. The 
author notes here that for a switch where Coff is critical, care 
must be made in choosing a passivation with the lowest 
dielectric constant.  

Despite the linearity improvements made on pHEMTs in 
general, a major source of non-linearity in switch 
applications is the modulation of the gate voltage – in both 
states. This occurs due the coupling of the RF signal from the 
source and drain onto the gate. Caverly originally noted the 
distortion happening during the ON state of a MESFET [45]. 
This source of nonlinearity in switches is due to the variation 
of the ON state resistance (Ron). In practice, the control 
signal that determines the state of the switch often has ripple, 
noise, and/or unintended modulation on it. While this is well 
understood in the industry, and there has been some work to 
minimize this effect [45-47], these authors have found no 
previous effort to create a FET switch with a 
transconductance profile that differs from a good amplifier. 
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Many models used for FET switches are often the same as 
used for amplifiers; the basic FET structure is the same 
[19-34]. The only difference is that a switch wants to operate 
exclusively in the saturated region and most amplifier 
applications prefer the linear region. Nonetheless, good 
amplifier characteristics are perceived as being good for 
switches as well, particularly high operating current and high, 
flat transconductance (gm) [1, 48-51]. 

3. Theory 
It is proposed that the basic I-V characteristics and the 

transconductance for a switch should be different from an 
amplifier for maximized switch performance. In an ideal 
amplifier, the device should be linear – that is the drain 
current should change linearly with the gate voltage in the 
active region. For an ideal switch, the device should be 
highly non-linear; either it is in the ON state or the OFF state 
with minimal transition of the gate voltage. Both 
applications want to maximize the operating current (Ids). For 
amplifiers it is for higher power, and for switches it is for 
lower Ron; the difference is in how the device achieves its Ids. 
This is exactly what the transconductance profile describes. 
As mentioned earlier, previous researchers have chosen the 
same optimal profile for amplifiers and switches – that is a 

high, flat transconductance. What is proposed is that an 
impulse-shaped transconductance is ideal for improving 
switch linearity. The following six figures have been derived 
by the authors using MATLAB. These have been based upon 
typical pHEMT devices with 0.5μm gate, 1mm periphery, 
approximately 1.3Ω Ron at Vgs = 0V. Transconductance was 
calculated at Vds = 3V. Figure 1 shows an example of the Ron 
characteristic for a typical pHEMT used as an amplifier. 
These authors have found no literature that separates good 
pHEMT amplifier performance from good switch 
performance – in fact a good pHEMT design is considered to 
be good for all applications. This is not true if an excellent 
switch design is truly required of pHEMTs (or any FET 
device).  Refer to Figure 2 as an example of a near ideal 
FET switch Ron characteristic. 

As can be seen, the Ron characteristic in Figure 2 is 
dramatically different from the one in Figure 1. These 
characteristics are directly related to the I-V curves of the 
FETs and their associated transconductance. Typical I-V 
curves for a depletion-mode FET can be found in Figure 3, 
with its associated Ids,Vds constant (blue) and gm curves shown in 
Figure 4. Likewise, the desired I-V curves for a near-ideal 
depletion-mode FET is displayed in Figure 5, with its 
associated Ids,Vds constant (blue) and gm curves shown in Figure 
6. 

 

Figure 1.  Example Ron characteristic for a linear amplifier 
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Figure 2.  Ron characteristic of a near ideal FET switch 

 
Figure 3.  Typical FET I-V curves 
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Figure 4.  Typical FET transconductance curve 

 
Figure 5.  Near ideal switch FET I-V curves 
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Figure 6.  Near ideal switch FET transconductance curve 

As mentioned throughout this paper, transconductance 
should be flat for an amplifier for ideal linearity; for a switch 
it should be an impulse. Another way to examine switch 
performance is to look at the region in the IV curve where the 
drain current crosses zero. In the “ON” mode of a switch, the 
source-to-drain voltage should be virtually the same. A Ron 
of zero – an ideal ON condition – implies that the 
source-to-drain are actually at equal voltages. Thus it is 
important to examine the region of Vds near zero. A flat IV 
line indicates the resistance in the channel is infinite; the 
inverse of the slope of the IV curve in that region denotes the 
Ron. The steeper the curve, the lower the ON resistance is. 
For an ideal switch, for selected values of Vgs, the IV curve 
should be flat, and then for another adjacent set of gate 
voltage values, the IV curve should be as steep as possible, 
with minimal transition of the gate voltage. For example, an 
idealized pHEMT switch would be in the ON state (i.e., steep 
IV slope) when the voltage is greater than pinch-off on the 
gate terminal. Then, as soon as the gate voltage goes below 
the pinch-off voltage, the switch should be in the OFF state. 

4. Simulations  
Using electric field tailoring as pioneered by S. Mil’shtein, 

it is possible to shape the profile of the transconductance [48, 
49]. One way to accomplish this is to vary the doping 
concentrations under in the channel. To create a modified 
electric field under the gate without changing the effective 
field elsewhere, and without using multiple gates, it was 

postulated that varying the concentration of available carriers 
– immediately under the gate – would work. Silvaco Atlas 
was used to create and simulate a pHEMT with varied 
doping under the gate. Figure 7 presents a cross-sectional 
image of the pHEMT model. 

Three simulation cases are presented here: 1) a baseline 
model for comparison, 2) a version with reduced delta 
doping under the gate, and 3) a version with increased delta 
doping under the gate. The baseline doping was 8e18 cm-3. 
The reduced doping case had 4e18 cm-3 under the gate and 
8e18 cm-3 elsewhere. The increased doping version has 9e18 
cm-3 under the gate and 8e18 cm-3 elsewhere. All three 
models were created and simulated using Silvaco Atlas. To 
achieve the modified doping profiles on a real wafer, four 
process steps would be different, with the last three as extra 
steps: 

1. Dope the entire length at the minimum doping level. 
2. Mask the positions with the lesser doping level. 
3. Dope unmasked areas to the maximum level. 
4. Remove mask. 

5. Results  
Figures 8, 9, and 10 display the simulated I-V curves 

generated using Silvaco Atlas for the baseline model, the 
reduced doping, and the increased doping respectively. 
Figure 11 shows the transconductance profile for each 
model. 
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Figure 7.  Silvaco Atlas pHEMT model cross-section 

 

Figure 8.  Baseline pHEMT model simulated IV curves 
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Figure 9.  pHEMT model with reduced doping under gate simulated IV curves 

 

Figure 10.  pHEMT model with increased doping under gate simulated IV curves 
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Figure 11.  Tranconductance profiles of three pHEMT models 

6. Discussion  
Previous work on electric field tailoring has implied that 

there are several physical adjustments that can be made to the 
pHEMT structure to make the transconductance profile as 
sharp as possible. Of the three simulated models presented, 
the one with increased doping under the gate shows a higher 
and sharper transconductance profile, and a lower Ron than 
either the baseline version or the model with reduced doping 
under the gate. The peak transconductance for the increased 
doping model measures at 212mS, whereas the model with 
reduced doping and the baseline are at 201mS and 190ms 
respectively. Ron for the increased doping model is calculated 
to be 1.54 ohms, whereas the baseline model and reduced 
doping model report 1.67 ohms and 1.7 ohms respectively. 
The profile is also shifted somewhat toward a more negative 
Vgs, better centering of the peak transconductance between 
ON and OFF control voltages (typically 0V and -3V 
respectively). This, as shown through calculations is closer 
to the ideal profile for a switch. The one drawback to this 
superior pHEMT is that three extra process steps may be 
required to realize it physically. It is reasoned that the extra 
charge provided by the carriers under the gate provide the 
sharper response that is seen by the model with increased 
doping, and the narrowness of the response is due to the 
limited region in which the extra charges are available.   

7. Conclusions 
With this method, a variation in pHEMT doping is shown 

through simulation as providing a superior switch 

transconductance profile, specifically a slight increase in 
doping under the gate. This, however, comes at the price of 
additional process steps. Nonetheless, these new tools 
provide future pHEMT switch designers another path to 
improved linearity.  
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