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Abstract  This paper deals with the optimal allocation of an ocean space for the purposes of fishing and ecotourism 
management. Here we have considered that one portion of the region to be used for ecotourism and rest of the portion to be 
used for fishery management. Our main aim of the problem is to optimize the total profit earned from both fishery and 
ecotourism and for this purpose we have used optimal control technique. Some necessary and sufficient conditions are 
established for the existence of different equilib ria, their stability and Hopf bifurcations of this optimal control problem. It is 
observed that the result depend strongly on different catch rate functions of the fishery. 
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1. Introduction 
The excessive and unsustainable exploitation o f our 

marine resources has led to the promotion of marine reserves 
as a fishery management tool. Marine p rotected areas (MPAs) 
where fishing is restricted or proh ibited, can offer for the 
recovery of exploited stock and fishery enhancement. The 
objectives pursued can generally be classified under one of 
the three following catagories: ecosystem preservation, the 
management of commercial fisheries and (or) development 
of recreational activit ies. But to the authors’ knowledge there 
is no such work on ecotourism management in the marine 
reserved portion. But we do think that it is quiet more 
beneficial to the society if we create ecotourism in the 
reserved portion of the ocean with the fishery management in 
the other portion. 

Conrad (1999) showed that, in the absence of ecological 
uncertainity and in the context of optimal harvesting, 
reserves generate no economic benefits to fishermen. Such 
result coincides with the perspective of many fishermen and 
also some economists. However Luke et al. (1998) asserted 
that MPAs can be viewed  as a kind of insurance against 
scientific uncertainity, stock assessments or regulation errors. 
Kar and Matsuda (2008) consider a bioeconomic model of a 
single species fishery with a marine reserve. Their study 
examines the impact of the creation of the marine protested 
areas (MPAs), from both economic and b iological 
perspect ives. In  part icu lar, they  exa mined  the effects of   
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protected patches and harvesting on resource populations. 
They conclude that the protected patches are an effective 
means of conserving resource populations, even though 
extinction can not be p revented in all cases. Hartmann et  al. 
(2007) investigatede the economic optimality of 
implementing an MPA to get more in formative data about 
fish population, thereby arrising a better management 
strategy. Powell et al. (2002), examined the contribution of 
fully protected tropical marine reserves to fishery 
enhancement by modelling marine reserves fishery linkages. 
The consequences of reserve establishment on the long run 
equilibrium fish biomass and fishery catch levels are 
evaluated. They also concluded that marine reserves are an 
important component of sustainable tropical fisheries 
management and reserves will be most effective when 
coupled with fishing effort controls in adjacent fisheries.[1] 
In their books Clark (1990) and Kot (2001) present 
mathematical study of population ecology with  harvesting. 
Recently Kar and Chakraborty (2009) describes marine 
reserves and its consequences as a fisheries management tool. 
But to the authours knowledge no attempt has been made to 
consider the ecotourism management in the reserved portion 
of the fishery. [2] 

In our present work we div ide the total region i.e. total 
available ocean spaces into two reg ions: one is the fishing 
zone and the other one is no fishing zone. The no fishing 
zone should be used for the ecotourism purpose by arranging 
boating, some water sports etc. Also it is possible to make the 
region for ecotouris m purpose in  another way. In  a 
comparative higher reg ion of a sea or big lake can be made 
man-made island where eco-touris m should be taken p lace 
by means of tourism, gardening, aquarium etc. It is very 
useful that the investment cost for the creation of ecotourism 
is quiet high though thereafter the cost will be less than that 
of the fishery.  
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Figure 1.  Conseptual diagram of an ocean region allocated for harvesting zone and ecotourism zone 

For modelling purpose let us assume that L  be the total 
ocean area where both fishing and eco-tourism are done and 
s  be the portion where only ecotourism takes place. Thus 
obviously the total region for eco-tourism would be 
proportional to s  and hence it is taken as as  with a  is a 
positive parameter. Also let r  be the intrinsic growth rate of 
the population species in the fishery system and )(th  be 
their catching rate. Obviously the carrying capacity for this 
population would be .asL −  Hence our mathematical 
model of the single species population is: 

h
asL

xrx
dt
dx

−
−

− )(1=        (1.1) 

Let z  be the total amount of investment applied for 
eco-tourism purpose. Now if β  be the proportion parameter 

i.e. if the portion [0,1])(∈β  of the total investment cost 
used for preparing the non fishing zone for eco-tourism zone. 
The next amount of investment i.e. z)(1 β−  is applied to 
make some kind of publicity among the tourists so that they 
are attracted to visit that place. Now we reconstruct our 
mathematical model as follows: 

= (1 )

=

dx xrx h
dt L as
ds z
dt

β

− −
−     （1.2）  

with the conditions .<<],0,[,=(0) 0 ∞−∈ aaazss  

Obviously the secondary cost i.e. z)(1 β−  will be 
proportional to the income due to the eco-tourism. Moreover 
the income due to the eco-tourism will be prportional to the 
area where eco-tourism is done. Thus we may take the total 
income due to the eco-tourism as .)(12 szp β−  Next we 
calculate the total amount of profit due to the fishery system. 
Let us assume that E  be the harvesting effort, c  be the cost 

for each unit of harvesting and 1p  be the selling price of 
each unit of fish due to the harvesting. Thus total economic 
rent or profit due to the fishery management is: .1 cEhp −  
In figure 1, we present a conceptual diagram of the 
considered system. 

Moreover there is a cost which is known as "adjustment 
cost" (see Stollery (1986), Feichtinger and Sorger (1986), 
Vilchez et al (2004) etc.) is taken as the quadratic function of 
the variable .z  This adjustment cost can be interpreted as the 
cost initiat ing with the cost due to the eco-tourism. This cost 
is taken as quadratic function of the variable z  since over 
investment for the eco-tourism may be the cause for the loss 
in both eco-tourism and harvesting. Now we form the 
optimal control problem with the fo llowing Jacobian  

),)(1(max= 2
210

zcEszphpeJ t
z

αβδ −−−+−∞
∫ (1.3) 

subject to the differential equations (1.2). 
Here δ  is the discount rate associated with the infinite 

horizon optimal control problem. Clearly (1.3) is an optimal 
control problem with two state variables namely x  and s  
and one control variable namely .z  We use Pontryagain's 
maximum princip le to solve the above optimal control 
problem. At first we form ,H  the current value Hamiltonian 
of our problem as fo llows:  

   (1.4) 

 where 1µ  and 2µ  are co-state variables. 

Now from the optimality condition we have, 0=z
H
∂
∂  

which gives, 0=2 22 µα +− zsp  i.e.  
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Also we get the transversality conditions of the system as 
follows:  

.=

,=

2
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dt
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−
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Now together with the state equations and the 
transversality equations we can write our system as a 
combination of four first order differential equations from 
which we can get the required solution of our system. Now 
these equations are as follows: 

            (1.6) 

Our paper is organized in the following way. The sections 
2, 3 and 4 deal with  the analysis of the system for three 
different harvesting functions namely, Schaefer catching 
function, Cobb-Douglous catching function and 
Michaelis–Menten type of harvesting respectively. In  section 
5, we give some numerical simulations and in the last section 
we draw some conclusions from our throughout analysis.  

2. Analysis for )(=)( tqExth  

Schaefer (1957) introduce the harvesting form as 
catch-per-unit effort . For this here we take harvesting in the 
form )(=)( tqExth  where q is the catchibility coefficient. 
Using the optimality condition, we have from (1.6) the 
reduced four first order differential equations as follows: 

  (2.1) 

Now we try to find the non-negative equilib ria o f the 
system of differential equations (2.1). Clearly we see that 
there may be two equilib ria of the system (2.1). One is 

0),),/(0,(0, 11 qErqEpP −+δ  and other is 

),,,,( **
1

**
2 szxP µ  where 2P  is given by as follows: 

   (2.2) 

For both economical and biological context the necessary 
and sufficient condition for the existance of the above 
equilibrium is given by ./ qrE <  If qrE />  then the 
density of the population x  will be negative and so there 
will be no population in the system. This case may be 
occured due to the over harvesing than the population 
intrinsic growth rate and in this case the system will be 
collapsed. So to  remain the system alive we must take the 
harvesting effort, E  less than ./qr  

2.1. Stability Analysis of the System. 

In this subsection we now describe the local stability and 
bifurcation of our system around two equilib ria 1P  and 2P  
in the following theorems. 

Theorem 1. The system (2.1) is unstable around the 
equilibrium .1P  

Proof. The characteristic equation to the system (2.1) at its 
equilibrium 1P  is given by: 

0=)
2
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i.e. the eigenvalues are given by: 
qErqEr +−+− δλλ =),(= 21  and 

)./)(12(
2
1= 2

2
3,4 αδβδδλ −−± p  Since the real 

part of 3,4λ  are positive hence we may conclude that the 

system (2.1) is unstable at the equilibrium .1P   
Next we shall study the local stability criterion of the 

system (2.1) at the equilibrium .2P  For th is we now try to 

find the characteristic roots of (2.1) at .2P  After some 
simple manipulation we get the characteristic  equation of 
(2.1) at 2P  as  
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Now let us calculate the value of .321 aaa −  

We have, 31121321 = aaaAaaa ++−− δ  where 

Aaa −221 =  and ).(= 1331 δ+− aAaa  

Thus for *= aa  where *a  is the positive value of a  of 
the equation δ)/(= 31211 aaaA +  we have, 

0.=321 aaa −   
Now we are in a position to state the following two 

theorems related to the local stability and Hopf bifurcation to 
the system (2.1) which can  be easily  proved by using 
Routh-Hurwitz criterion. 

Theorem 2. The system (2.1) is locally asymptotically 
stable at 2P  if 0>321 aaa −  and 

0>)( 2
143213 aaaaaa −−  hold provided 

1,2,3,4)=(0,> iai . 
Theorem 3. The system (2.1) undergoes through a Hopf 

bifurcation at the equilibrium 2P  for .= *aa  

2.2. Influence of S ome Important Parameters to the 

Equilibrium 2P  

We now intend to see the influence of some important 
parameters namely rEa ,,  and δ  at the equilibrium level 
of the system (2.1). 

We see that 0)(<)(=
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Thus at the equilibrium 2P  the value of x  
decreases(increases) as the parameter a  increases(decreases) 
where as the value of s  increases(decreases) as a  
increases(decreases) although a  has no effect on the 
shadow price .1µ  
Also, 

0),(<)(=
*

r
asLq

E
x −

−
∂
∂

 

0)(>
)(
)(= 2

1
*
1

qEr
rqp

E −+
+

∂
∂

δ
δµ

 

and  

.
)(

)})(3()(){(= 2
2

1
*

qErpr
qErqErqErqEqEraqp

E
s

−+
−+−+−−

∂
∂

δδ
δ  

It is obvious that 0)(>
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Thus it is concluded that at ,2P  x  decreases(increases) 

and *
1µ  increases(decreases) as E  increases(decreases) 

where as in ),(0, 1EE∈  s  increases(decreases) and for 

),/,( 1 qrEE∈  s  decreases(increases) as E  
increases(decreases). 
Next, 
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r
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r
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∂
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Thus we conclude, at ,2P  x  and s  both 

increases(decreases) where as the shadow price 1µ  
decreases(increases) as the intrinsic growth rate r  
increases(decreases). 

Ult imately, 0)(<
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Thus at 2P  both 1µ  and s  decreases(increases) as the 
parameter δ  increases(decreases) although δ  has no 
influence on the population density .x  

3. Analysis of the System for 

Cobb-Douglous Catching Function 

2= qEh  

Again using the optimality condition 0=/ zH ∂∂  we 
get the reduced form of system of differential equations (1.6) 
as follows: 
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(3.1) 

Next we try to find all possible non-negative equilibria of 
the above system by making the right hand side of above 
equation (3.1) equals to zero. Clearly the system (3.1) has 
three different equilib ria and among them the first two are 
respectively ,0,0,0)(4 xP  and ,0,0,0)ˆ(41 xP  where x  
and x̂  are the roots of the equation 

0.=22 LqErLxrx +−  The rest equilibrium is given by 

),,,0,( 15 sxP ′′′ µ  where ,2=
2
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′

r
qEx  
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a
s  Now both equilib ria 4P  and 41P  

are either feasible or imaginary depending on the nature of 
.x′  If 04 ≥− qErL  then both equilibria 4P  and 41P  are 

feasible otherwise they are imaginary. Now both the 
equilibria 4P  and 41P  has only biological impact since the 
population are able to survive. On the otherhand these 
equilibria have no economic meaning due to the aqualture 
and only economic profit may be gained by the harvesting. 

3.1. Stability Analysis 
In this section we shall discuss the stability of the system 

(3.1) at different equilibria. In the following theorem we 
study the local stability of the system around 4P  and .41P
Next we study the same around .5P  

Theorem 4. The system (3.1) is unstable around both the 
equilibria 4P and .41P  

Proof. The characteristic equation to the system (3.1) at  
the equilibrium 4P  is given by: 
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Since here 1b  is negative then using Routh-Hurwitz 
criterion for stability we may say that at least one eigenvalue 
of the system (3.1) at the equilibrium 4P  is positive. Hence 

the system is unstable around .4P  Similarly rep lacing x  by 

x̂  in the characteristing equation (3.2) we can obtain the 
characteristic equation of (3.1) around .41P  The coefficient 
of third degree term of that characteristic equation also will 
be 0).(<2δ−  Thus with the help of previous argument 

we can conclude that the equilibrium 41P  is also unstable. 
Hence the theorem. 

In the next theorem we will study the stability of the other 
equilibrium 5P  of the system (3.1) 

Theorem 5. The system (3.1) is unstable around the 
equilibrium .5P   

Proof. The characteristic equation of the system (3.1) at  
the equilibrium 5P  can be written as follows: 
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The characteristic equation (3.3) shows us that at least one 
eigen value of this characteristic equation is positive (using 
Routh Hurwitz critiaria fo r a polynomial equation of degree 
four). Hence the system (3.1) is unstable around its 
equilibrium .5P  Hence the theorem.  

Note. It  is evident that if the catching would  be of the form 
of Cobb-Douglous production function then always ststem 
would be unstable around its all possible feasible equilibria.  

4. Analysis for )(
)(=)( tnxmE

tqExth
+

 

Here we take the catching function of Michaelis–Menten 
type i.e. of the form )/(= nxmEqExh +  where q is the 
catchibility coefficient and nm,  are the Michaelis–Menten 
constants. So from (1.6) we have the four first order 
differential equations which can be deduced for harvesting 
by Michaelis–Menten type by using the optimal conditions 
are as follows: 
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(4.1) 

Next we try to find the possible non-negative equilibria of 
the system (4.1) by making right hand side of system (4.1) 
equal to zero. We are interested about the interior 
equilibrium of the system (4.1) although we always have 

0=z  at the equilibrium. So let us denote the non zero 

value of sx ,, 1µ  at the interio r equilib rium of the system 

(4.1). Let ),0,,( 11113 sxP µ  where 1x  is the positive root 
of the equation  

   (4.2) 

where, 
),(= 2

4
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Clearly a sufficient condition that (4.2) has only one 
positive root is 0<52 AA  and 0>43 AA  hold 

simultaneously. Also 2
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Thus the equilibrium ),0,,( 11113 sxP µ  is always 
nonnegative if (4.2) has one positive root and 

)}.({>}){( 111 nxmErxrnxEqmrL ++−   

4.1. Stability Analysis 

Here we now discuss the criteria for local stability and 
examine if there will be any b ifurcat ion at the equilibrium 

),0,,( 11113 sxP µ  of the system (4.1). The characteristic 

equation to the system (4.1) around its equilibrium 
),0,,( 11113 sxP µ  is given by:  

  (4.3) 

where  
,)(2= 2

6161 BnmqExqEBB +−− δ  
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2
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2
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Next  we use the well known Routh-Hurwitz criteria to 
find the nature of the stability of the system around its 
equilibrium .3P  For this at first we define the fo llowing 
quantities: 

,= 11 BJ  ,= 3212 BBBJ −  

.= 4
2

1
2
33213 BBBBBBJ −−  

Now we state the following theorem in connection with 
the local stability criteria to the system (4.1) around its 
equilibrium po int 3P  which can be proved by using the well 
known Routh-Hurwitz criterion for the local stability. 

Theorem 6. If all of 2431 ,,, JBBB  and 3J  are 
positive then the system (4.1) is locally asymptotically stable 
around 3P  where as if at least one of them is negative then 

the system (4.1) is unstable around .3P   

5. Numerical Simulation 
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Figure 2.  Graph of the population biomass for 105,1,0.1,=a  
respectively where x  is taken along the horizontal axis and the increment 
of x is taken along the verticle axis 

In this section we not only verify our analytical results 
through computer simulation but also we present some 
realistic phenomena for d ifferent parameter values. 

First we check the population biomass level for d ifferent 
value of the parameter a which is associated with the 
eco-tourism reg ion .s  For the simulation purpose we take 

100=1.1,= Lr  and four d ifferent values of a  namely 

51,0.1,  and 10  with fixed value of s  as 5  units. In 
figure 2, we present the phenomena and see that higher 
values of a  makes to decrease population biomass quickly. 

Next we draw the graph for population growth curve and 
different catching function for different effort. Here for 
simulation we take, 

0.01.=0.1,=0.2,=5,=100,=3.1,= nmqaLr
 Also we take a fixed value of 5.=s  In figure 3, 4 and 5 we 
represent these phenomena for different effort and different 
harvesting rate respectively. 

 
Figure 3.  Graph for catching according to Schaefer catching function 
where x  is taken along the horizontal axis and dtdx /  is taken along 
the verticle axis 

 
Figure 4.  Graph for catching according to Cobb-Douglous catching 
function where x  is taken along the horizontal axis and dtdx /  is taken 
along the verticle axis 

 
Figure 5.  Graph for catching according to Michaelis–Menten catching 
function where x  is taken along the horizontal axis and dtdx /  is taken 
along the verticle axis 

The above three figures indicate the biomass of the 
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population at the equilibrium level when we use different 
rate of harvesting. It is seen that the worst population density 
would be for catching according to Cobb-Douglus 
production function. Again catching according to the 
Michaelis–Menten rule gives the best result because here we 
can control both population biomass and total harvesting 
populations together since there are two extra control 
parameter namely nm,  in this type of harvesting. 

6. Conclusions 
For a fishery manager the management objective is to 

maximize the rent of the fishery using certain management 
tools. On the otherhand long term resource conservation is 
also very much essential for our future generation as well. 
Under this circumstences marine reserve (where fishing is 
strictly prohibited) may be considered as an essential tool for 
this management purposes. We can develop ecotourism to 
overcome d ilemma between the need for long term resource 
conservation and the immid iate necessity to provide jobs and 
income to the local population. In the present work we 
consider one portion of the available region to  be used for 
ecotourism purpose (where fishing is not permitted) and the 
rest part to be used for fishery management. Here the region 
which is considered for ecotourism purpose is not a constant 
region. In  fact this region is proportional to a particular area 
s  whose cost to make it suitable for tourism purpose is 
known. A lso the investment cost to this zone is div ided into 
two parts: one part is applied to make the zone usable for 
tourism and the rest part is used as secondary cost to make 
the zone more attractive. Obviously this secondary cost 
would be proportional to the profit earn from the tourism 
purpose. Our main aim is to maximize the total profit from 
both the fishery and ecotourism. Th is type of simultaneous 
fishery and ecotourism policy would be very helpful to 
marine areas particularly nearby of any coastal areas or bank 
of the see. The idea of simultaneous fishing and ecotourism 
help to maintain equaility in the marine population. Thus to 
describe marine ecology our analysis would be very handful. 

Here we consider three types of catch rate functions, the 
Schaefer catching function ),=( qExh  the 

Cobb-Douglous production function )=( 2qEh  and the 
Michaelis–Menten type catching which is of the form 

.)/(= nxmEqExh +  We analyze the stability of the 
systems at all feasible optimal equilibria. Among all the 
catching function the Michaelis–Menten type catching i.e. 

)/(= nxmEqExh +  is most suitable catching function 
because in this case neither population nor harvesting effort 
go to infinity. Again it is evident from our throughout 
analysis that at the optimum equilibrium level the cost for the 
eco-tourism is zero. 

When we harvest according to the Schaefer catching 
function ,= qExh  the system (2.1) gives two optimal 

equilibria, one is the population free equilibrium 1P  and 

another is .2P  If the growth rate of the population is less 
than the harvesting, then the system goes to a population free 
position and in this case system goes to the equilibrium 1P  

which is a  saddle point. A long 1P  all the trajectories except 

the trajectory along x  axis repel from .1P  The trajectory 

along x  axis attracted at 1P  due to the high harvesting rate 
as well as lower growth rate. Again  the optimal equilibrium 

2P  is conditionally locally asymptotically stable and for a 
critical value of a  the system (2.1) undergoes through a 
Hopf bifurcation.  

We see that when we use the Cobb-Douglous production 
function as the catching function then the reduced system has 
three possible non negative equilib ria depending upon some 
parametric conditions and the system is unstable in nature 
around its all of those three possible equilibria. This is 
possibly due to the rate of the harvesting as the quadratic 
function of the fishing effort. Since harvesting is occurring at 
a rate of ,2qE  the population decreases always and this 
causes the increasing of the space for eco-tourism. Thus this 
type of harvesting never stabilize the population density and 
the eco-tourism region. 

Next  when we use Michaelis–Menten type harvesting then 
the harvesting function is not only proportional to the 
harvesting effort and the stock of the population biomass but 
also it is inversely proportional to the joint effect of the 
harvesting effort and population biomass. In this type of 
Harvesting we also obtain more than one equilibria but we 
are interested to examine the system nature around the 
interior one and so we omit the others from our discussion. 
We find the local asymptotic stability criteria of the reduced 
optimal system around that interior equilib rium 3P  and see 
that it is conditionally stable there. Other functional form 
embodies like either qExh =  or 2qEh =  has the 
following defects: (i) assumes random search for fish, (ii) 
assumes equal likelihood of being captured for every fish, (iii) 
there is unbounded linear increase in h  with respect to E  
for a fixed ,x  (iv) there is unbounded linear increase in h  

with respect to x  for a fixed E  etc. But those unrealistic 
features can be largely removed by adapting the alternative 
functional form of harvesting type of harvesting 

)./(= nxmEqExh +  Hence this type of functional form 
is the best for both biological and economical context.  

In tradit ional way we use to harvest a population species to 
get some benefit  from it. But over harvesting and 
unconsciousness harvesting causes the imbalance of natural 
resource of life because it may be the cause for the extinction 
of one or more species. Therefore to conserve the population 
for the future generation we may introduce some marine 
reserve where fishery may not be permitted but reserved 
region may be used for the purpose of the ecotourism. This 
ecotourism is economically profitable fo r the local people as 
wll as the government. In this way we see that eco-tourism is 
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not only economically beneficial but also biologically 
strongly essential and this would make a balance of the 
population level in marine ecology. 
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