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Abstract  The transient electromagnetic field of an electric line source on a two-layer earth model can be expressed in 

analytical form. To derive closed-form expressions for the fields anywhere on a two-layer earth, the modified Cagniard 

method is used. This method is used to perform the numerical calculation of the electric field for different points of excitation 

and observation on the earth, as well as for different values of the earth`s conductivity and permittivity. The numerical results 

will be presented graphically for the transient electromagnetic field for various values of the permittivity and electrical 

conductivities of the two layers. The effect of the conductivity is of significant importance for the calculation to get the 

transient electromagnetic field on a plane conducting earth. 
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1. Introduction 

Several experimental and theoretical models have been 

studied the electromagnetic transients. In early 1969, T.T. 

Wu [1] stated: “It is worth emphasizing that our knowledge 

about the transient response of the antennas is very meager 

indeed. Any progress in this rather neglected field is 

certainly going to be of a tremendous value”. Now, the 

literature on this subject is vast. Some of these studies are 

motivated by the desire to provide adequate protection of 

electronic equipment in a strong electromagnetic pulse (EMP) 

(Vance [2]). Other studies have been applied to the probing 

of the fields in geological media (Wait [3]), determination of 

the current in a lightning return stroke (Uman and Lain [4]), 

the detection of nuclear bursts (Johler [5]), and the 

discrimination of a radar scatterer (Moffatt and Mains [6]).  

In this paper will study the problem of the transient 

electromagnetic field of an electric line source on a two 

layered conducting earth. Furthermore, we will focus on the 

effects caused by the presence of the earth’s surface. A 

classical work in this area is that of Van der Pol [7] for the 

transient field over a non-conducting earth generated by a 

vertical dipole source situated in the interface between the air 

and the earth. The transient solution of an elevated dipole 

was also obtained by Van der Pol and Levelt [8] and 

Bremmer [9]. Wait [10, 11] and Novikov [12] studied the 

transient response of a vertical dipole with a step or ramp  
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function current source over a finitely conducting earth. 

Since the Sommerfeld-Norton ground wave expansion is 

employed, which is valid for a distance large enough 

compared with the free space wavelength, their results are 

expected to be accurate mainly in the very early time portion 

of the response. Approximate expression for the transient 

field at later observation times was found by Chang [13] and 

Wait [14] under the assumption that the dissipative 

half-space can be replaced by an impedance surface. 

However, an attractive alternative is furnished by De 

Hoop [15] modificationn of Cagniard’s technique that found 

wide applications in the theory of seismic waves in Cagniard 

[16] and [17]. Also, few electromagnetic problems have 

been investigated along these lines (De Hoop and Frankena 

[18] and Langenberg [19]). Kooij [20] and [21] studied the 

transient electromagnetic field of a pulsed vertical magnetic 

dipole above a conducting earth, and of an electric line 

source above a plane drude model plasmatic half-space, 

these showed that it is possible to arrive to a representation 

for the field in the transform domain that allows the 

application of the Cagniard-De Hoop method. 

Kuester [22] investigated the transient reflected field of a 

pulsed line source over a conducting half-space. Bishay and 

Sami [23] expressed, in an analytical form the transient field 

in the time domain of a thin circular loop antenna on a 

two-layered conducting earth model.  

Sami [24] calculated the influence of a magnetically 

permeable surface layer on transient electromagnetic field of 

a vertical magnetic dipole on a two-layer conducting earth. 

The aim of this paper is to drive a representation for the 

field in the transform domain that allows the application of 

the Cagniard-De Hoop method to obtain the transient 
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reflected field in the form of a single finite integral. Of 

particular interest is the physical insight provided by the 

Cagniard-De Hoop method at each point in the configuration, 

the transient field is decomposed exactly into physical 

meaningful parts. Numerical results will be represented 

graphically for the electric field anywhere on a two layer 

earth for different values of the earth`s conductivity and 

permittivity. 

2. Description of the Configuration 

We consider the electromagnetic field in the upper half 

space of two homogeneous, isotropic, semi-infinite media. 

To specify the position in the configuration, we employ the 

 artesian coordinates (x, y, z) with origin O and threeؤ

mutually perpendicular base vectors (i, j, k) of unit length 

each. The upper medium occupies the half space 0 ≤ z < ∞, 

whereas the lower medium occupies the half space -∞ < z < 

0, as Figure 1. The time coordinate is denoted by t, with tR. 

The electromagnetic properties are characterized by their 

permittivity ∈ , permeability 𝜇 , and the electrical 

conductivity𝜎 . The media are modeled according to the 

classical Maxwell model with constant permittivity, 

permeability and conductivity. For the upper medium we 

have, ∈ =  ∈𝑜 , 𝜇 = 𝜇𝑜  and 𝜎 = 0. For the lower medium, 

we have ∈ = ∈1 , 𝜇 = 𝜇1 = 𝜇𝑜  and      𝜎 ≠ 0 . An electric 

current line source starts to radiate at the instant t = 0, at the 

earth's surface. 

3. Method of the Solution 

The electromagnetic field in the configuration is described 

in terms of the electric field strength E and the magnetic field 

strength H. the action of the source is characterized by 

specifying the volume density of its electric current J. In any 

domain where the field quantities are continuously 

differentiable, they satisfy the following electromagnetic 

field equations: 

∇ × 𝐻 = ∈
𝜕𝐸

𝜕𝑡
+  𝜎𝐸,         (1) 

∇  × 𝐸 =  −𝜇𝑜
𝜕H

∂t
,             (2) 

∇ .  ∈
𝜕𝐸

𝜕𝑡
+  𝜎𝐸 =  0,          (3) 

∇ . 𝜇𝑜 
𝜕E

∂t
= 0.            (4) 

There are three cases as: 
1 – Incident field  𝐸𝑖 , 𝐻𝑖 , is the field that source world 

generate if no boundary were present. 
2 – The reflected field  𝐸𝑟 , 𝐻𝑟  is the difference between 

the total field in region0 ≤ Z < ∞ and the incident field. 
3 – The transmitted field  𝐸𝑡 , 𝐻𝑡  which is the field in the 

region - ∞ <Z≤ 0 across the interface of the two media, 

the boundary conditions below hold, 

 

lim𝑧→0 𝐸
i + 𝐸𝑟 = lim𝑧→0 𝐸𝑡 ,

lim𝑧→0  
𝜕𝐸i

𝜕𝑧
+

𝜕𝐸𝑟

𝜕𝑧
 = lim𝑧→0

𝜕𝐸𝑡

𝜕𝑧
,

lim𝑧→0 𝐻
i + 𝐻𝑟 = lim𝑧→0 𝐻𝑡 ,

lim𝑧→0  
𝜕𝐻 i

𝜕𝑧
+

𝜕𝐻𝑟

𝜕𝑧
 = lim𝑧→0

𝜕𝐻𝑡

𝜕𝑧
. 
 
 

 
 

    (5) 

Further, the primary field is the field generated by the 

source, should travel away from the source, and the 

secondary field is the field generated by the secondary 

sources at the inter face, should travel away from the 

interface (radiation condition). In media of the type under 

consideration, electromagnetic waves travel at the speed 

𝑐𝑖 =
1

 ∈𝑖 𝜇𝑜
,   i = 0, 1 when −∞ < 𝑧 < ∞.     (6) 

To carry out our analysis, we cast the field representations 

in a particular from that is characteristic of the Cagniard– De 

Hoop method. first, we subject the field quantities to a one – 

sided Laplace transformation with respect to time , where the 

relevant transform variable (S) is taken to be real and 

positive the Laplace transform of quantity with respect to 

time by a circumflex over the relevant symbol , we have 

E  x, z; s =  E x, z, τ 
∞

τ=0
e −sτ dτ,          

with Im (S) = 0 and S > 0.    (7) 

The Fourier transformation with respect to x according to 

E  α, z; s =  𝐸 
∞

−∞
 x, z; s e −sαx dx, with    (8) 

 

Figure 1.  Geometry of the problem 
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The inverse Fourier transformation, 

E  x, z; s =
s

2πj
 E 
∞

−∞
 α, z; s e −sαx dα,    (9)

 
in which ⨕ denotes the imaginary axis. Once a suitable 

expression for 𝐸 = 𝐸 𝑖 + 𝐸 𝑟  has been determined, the 

representation (9) is used to arrive at an expression 

for  𝐸 𝑥, 𝑧, 𝑡 = 𝐸𝑖 𝑥, 𝑧, 𝑡 + 𝐸𝑟 𝑥, 𝑧, 𝑡 . This is 

accomplished by a specific scheme of transformations in the 

complex (∝) plane followed by an application of the 

uniqueness theorem of the one – sided Laplace transform (7). 

4. Incident and Reflected Field 
Representations 

We take into account the two – dimensionality of the 

problem. To this end, we decompose each vectorial quantity 

in to a component that is parallel to the line source, this 

component is denoted by the subscript ‖ and a component in 

the plane perpendicular to it, this component is denoted by 

the subscript ┴. Taking into account that ∇= ∇┴ and𝐽 = 𝐽‖, 

we can rewrite the electromagnetic field equations (1)-(4) in 

a from where only an E- polarized field is generated for 

which 𝐸‖ ≠ 0 and 𝐻‖ = 0. In this section, we determine the 

representation of the type (9) for the incident and reflected 

field. The incident electromagnetic field satisfies Maxwell's 

equations (1)-(4) with ∈ = ∈𝑜  and 𝜎 = 0.For the localized 

line source of Figure1, we have 

𝐽 = 𝑗‖ 𝑡 𝛿 𝑥 , 𝑧 ,            (10) 

Applying the transformations (7) and (8), we can get the 

E-polarized filed as 

𝐸 ǁ
𝑖 =

−𝜇𝑜

2𝛾𝑜
𝑗ǁ 𝑠 𝑒

(−𝑠𝛾𝑜  𝑧 )       (11) 

and 

H ┴
i =  − αi −  γok  ⊗  j ‖ 2γo 

−1e −sγo  z   ,   (12) 

in which 𝛾𝑜
2 = 𝑐𝑜

−2 − 𝛼2, when Re (𝛼) ≥ 0, and 𝛿(𝑥, 𝑧) is 

the Dirac-delta function. 

Similarly, for the reflected field, we obtain the generated 

E-polarized field as 

𝐸 ‖
𝑟 =

−𝜇𝑜

2𝛾𝑜
𝑗ǁ 𝑠 𝑅𝐸𝑒

 −𝑠𝛾𝑜𝑧  ,  with 0 < z < ∞,  (14) 

and 

H ┴
r = μo

−1 α𝑖 −  γok × E ‖
r  , when 0 < z < ∞,  (15) 

where 
ER  denotes the electric field reflection Factor for E – 

polarized waves. Applying the boundary condition (5), we 

obtain 

𝑅𝐸 =
𝛾𝑜−𝛾 1

𝛾𝑜+𝛾 1
,                (16) 

where γ 1 is given by 

γ 1 = ( γ1
2 +

σμo

s
 )

1

2 , and  γ1 = ( c1
−2 − α2)

1

2 , 

when Re (γ1) ≥ 0 .       (17) 

5. Integral Representation of the 
Reflection Factor 

In this section, the reflection factor RE is rewritten in the 

form of an integral representation such that the Cagniard- De 

Hoop technique can be applied. First, we multiply both the 

numerator and the denominator of RE with  γo − γ 1 , then 

RE = −
s γo

2 +γ1
2 +σμo

s c1
−2−co

−2 +σμo
+

2γo  sγ1
2+σμo  

s c1
−2−co

−2 +σμo
∙ γ 1

−1.   (18) 

The factor 𝛾1𝛾 1
−1 can be written as  

γ1γ 1
−1 =

s+ɑ

  s+ɑ 
2
−ɑ

2
 

1
2

−
ɑ

  s+ɑ 
2
−ɑ

2
 

1
2

 ,      (19) 

where  

a =
σμo

2γ1
2  .                (20) 

The representation (20) can be recognized as the Laplace 

transform [25] 

𝛾1𝛾 1
−1 = 1 −  𝑎 𝐼𝑜 𝑎𝑘 − 𝐼1 𝑎𝑘  𝑒

 −𝑎𝑘 𝑒 −𝑠𝑘 𝑑𝑘.
∞

𝑘=0
 (21) 

In equation (21), Io and I1 denote the modified Bessel 

functions of order zero and one, respectively. The technique 

of rewriting the reflection coefficient RE as a Laplace 

integral is a key step that is also the basis of the exact image 

theory developed by Lindell and Alanen [26] and Nikoskinen 

and Lindell [27]. Substitution from equation (21) in equation 

(18) and using the fact that 𝛾1
2 − 𝛾𝑜

2 = 𝑐1
−2 − 𝑐𝑜

−2 = 𝜇𝑜(∈1−
∈𝑜  ), we obtain 

𝑅𝐸 = 𝑤 𝐴 +
𝛽𝑤 𝐵

𝑠+𝛽
+   𝑤 𝑐 +

𝛽𝑤 𝐷

𝑠+𝛽
 

∞

𝑘=0
𝑒 −𝑠𝑘 𝑑𝑘,  (22) 

where 

β = 𝜎
∈1−∈𝑜

,   whit 𝛽 > 0,           (23) 

𝑤 A α =
γo−γ1

γo +γ1
,             (24) 

𝑤 B α =
2γo

γ1
−

γo−γ1

γo +γ1
− 1 ,        (25) 

𝑤 c α = −β
γo

γ1
 Io  

σμo k

2γ1
2  − I1  

σμo k

2γ1
2   . exp  −

σμo k

2γ1
2   , (26) 

and 

w D α = −β 
γo

γ1
 

3

 Io  
σμo k

2γ1
2  − I1  

σμo k

2γ1
2   . exp  −

σμo k

2γ1
2  . 

(27)
 

6. Time Domain Field Expressions 

By applying the inverse Fourier transformation (9) with 

respect tox to equation (14) and (15) together with equation 

(24 –29), we obtain the corresponding expressions, which 

are of the form 

E ‖
r = sj ‖ s g E x, z; s  ,         (28) 

H ┴
r = sj ‖ s × g H x, z; s ,         (29) 

where 
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g E x, z; s =  
−μo

2πi

e −s αx +γo z  

2γo

i∞

−i∞
.  W A + 

βW B

s+β
+  W C +

βW D

s+β
  e −sk dk

∞

k=0
 𝑑𝛼 ,  (30) 

and 

g H x, z; s =
−1

2πi
  αi − γok 
i∞

−i∞

e −s αx +γo z  

2γo
.  W A +

βW B

s+β
+   W C +

βW D

s+β
 e −sk dk

∞

k=0
 dα .   (31) 

In the next step it is shown that the integrals at the right – hand side of (30) and (31) can be transformed by using (8) for 

Laplace transform into 

g E x, z; s =  e −sτ  gE x, z, τ dτ,
∞

τ=R ′
c°

 
   (32) 

and 

g 𝐻 x, z; s =  e −sτ gH x, z, τ dτ,
∞

τ=R ′
c°

 
   (33) 

where 

𝑅′ =  𝑥2 + 𝑧2 
1

2 ,  (34) 

the only real values of 𝜏 occur in the integration and where 𝑅′  is the distance from the image of the electric line source to the 

point of observation. Now, we observe that 𝑠𝐽 ‖ 𝑠 𝑒
 −𝑠𝜏  is the Laplace transform. Of a function of time that vanishes when

𝑡 < 𝜏 and equal 
∂j‖ t−τ 

∂t
when  𝜏 < 𝑡, for the fields 𝐸‖

𝑟  and  𝐻┴
𝑟  ,

hence, we get 

𝐸‖
r x, z; t =  

0 when 0 < 𝑡 < R′ co 

 
∂j‖ t−τ 

∂t
gE x, z, τ dτ

t

R ′ co 
when R′ co < 𝑡 < ∞

 , (35) 

H┴
r  x, z; t =  

0 when 0 < 𝑡 < R′ c° 

 
∂j‖ t−τ 

∂t
× g𝐻 x, z, τ dτ

t

R ′ co 
when R′ co < 𝑡 < ∞

 , (36)

where 𝜏 = R′ c°  

7. Cagniard – De Hoop Technique

In this section, we will apply the cagniard – De Hoop technique in order to find an expression for 𝐸‖
𝑟 𝑥, 𝑧, 𝑡  and

 𝐻┴
𝑟 𝑥, 𝑧, 𝑡 . In view of subsequent deformations of the path of integration, we take 𝑅𝑒 𝛾𝑜 ≥ 0 and 𝑅𝑒 𝛾1 ≥ 0 not only on

the imaginary 𝛼  axis but everywhere in the complex 𝛼  plane this implies that branch cuts are introduced along 

 𝛼 ∈  𝑐0,1
−1 <  𝑅𝑒 𝛼  < ∞, 𝐼𝑚 𝛼 = 0  . Now, the path of integration in the complex 𝛼 plane is deformed in a cagniard – De

Hoop contour defined through, 

Re  αx + γoz = τ,  and Im  αx + γoz = 0. (37) 

If ≤ 𝜏 < ∞, in which 𝑇 = 𝑅′ 𝑐𝑜  , (38) 

the contour is a branch of a hyperbola. let  𝛼 = 𝛼  𝜏  denote its parametric representation in the upper half of the complex α 

plan (i.e., {α∈⨕│-∞<Re(α)<∞,0<Im(α)<∞})e , then the contour consists of 𝛼  together with its complex conjugate 𝛼 . By 

solving (37), we obtain   

𝛼  𝜏 =
𝑥𝜏

𝑅′ 2 + 𝑖
𝑧

𝑅′ 2
 𝜏2 − 𝑇2 

1

2  =
1

𝑅′ 2  𝑥𝜏 + 𝑖𝑧(𝜏2 − 𝑇2)
1

2 , with  T ≤ τ < ∞. (39) 

Along the contour, we further have 

γ o τ =
z τ

R ′ 2 − i
x

R ′ 2
 τ2 − T2 

1

2 =
1

R ′ 2  zτ − ix(τ2 − T2)
1

2 , (40) 

and 

∂α 

∂τ
=

iγ o

 τ2−T2 
1
2

 . (41) 

Taking into account the symmetry of the contour with respect to the real 𝛼 axis and reversing the orders of integration in

order to apply the uniqueness argument of equation (32) – (36), we obtain, 

gE x, z, τ = gE,1 x, z, τ + gE,2 x, z, τ + gE,3 x, z, τ + gE,4 x, z, τ , (42) 

Where 
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gE,1 x, z, τ = μoU τ − R′ Co  
Re W A  τ  

2π τ2−T2 
1
2

 ,                        (43) 

gE,2 x, z, τ = μoU τ − R′ Co  
Re W B  τ  

2π τ2−T2 
1
2

∗ βe −βτ U τ  ,                 (44) 

gE,3 x, z, τ =
μo U τ−R′ Co  

2π
 

Re W c  τ,ξ  

 ξ2−T2 
1
2

dξ
τ

T
 ,                        (45) 

and 

gE,4 x, z, τ =
μ°U τ−R ′ C°  

2π
 

Re W D  τ,ξ  

 ξ2−T2 
1
2

dξ
τ

T
∗ βe −βτ U τ  .                (46) 

Similarly, we can set gH x, z, τ  by using equation (32) as 

gH x, z, τ = gH,1 x, z, τ + gH,2 x, z, τ + gH,3 x, z, τ + gH,4 x, z, τ ,                 (47) 

where  

gH,1 x, z, τ = −U τ − R′ Co  
Re  α i−γ o k W A  τ  

2π τ2−T2 
1
2

,                   (48) 

 gH,2 x, z, τ = −U τ − R′ Co  
Re  α i−γ o k W B  τ  

2π τ2−T2 
1
2

∗ βe −βτ U τ ,           (49) 

gH,3 x, z, τ = −
U τ−R ′ Co  

2π
 

Re  α  ξ i−γ o  ξ k W c  τ,ξ  

 ξ2−T2 
1
2

dξ ,
τ

T
                 (50) 

and 

 gH,4 x, z, τ = −
U τ−R ′ C°  

2π
 

Re  α  ξ i−γ ° ξ k W D  τ,ξ  

 ξ2−T2 
1
2

dξ
τ

T
∗ βe −βτ U τ .             (51) 

 

 

(e) 

 

 

(d) 

 

 

(c) 

 

 

(b) 

 

 

(a) 

 

(j) 

 

(i) 

 
(h) 

 

(g) 
 

(f) 

Figure 2.  [(a-e)and 2(f-j)] represent the normalized reflected electric field at the distance d=1m. and d=10m., where the permittivity 
∈1

∈𝑜
= 2, 5, 10, 30 and 

100, respectively. Thered, green, blue curves corresponding to the values of the conductivity𝜎 = 3 𝑚𝑠\𝑚. , 30 𝑚𝑠\𝑚. , 𝑎𝑛𝑑 300 𝑚𝑠\𝑚, respectively 
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In (43) – (51) the function U denotes the Heaviside unit 

step function and the ∗ symbol stands for the convolution 

operation with respect to τ. Further, we have that 

𝑊𝐴,𝐵 𝜏 = 𝑊 𝐴,𝐵 𝛼 𝜏   and 𝑊 𝐶,𝐷 𝜏, ξ = 𝑊𝐶,𝐷(𝛼 ξ , τ −

ξ). Expressions (42) and (35) form the desired closed-form 

expression for the space-time reflected electric field and 

expressions (47) and (36) form the desired closed-form 

expression for the space-time reflected magnetic field. 

Further, it is easily verified in the expression (42) and (47), 

together with (43) - (51), that the terms 

gE,2, gE,3, gE,4, gH,2, gH,3  and gH,4  vanish if 𝜎 → 0. In the 

final space-time expression of the reflected field, the 

convolution of the excitation function j‖ and the exponential 

function in (44), (46), (49), and (51) can be carried out 

analytically for various types of sources.  

The current in the electric line source is defined by: 

𝑗ǁ 𝑡 =
1

𝑇𝑝𝑢𝑙𝑠𝑒
 𝑈 𝑡 − 𝑈 𝑡 − 𝑇𝑝𝑢𝑙𝑠𝑒   𝑖 . 

In which U (t) is the Heaviside's unit step function, 𝑇𝑝𝑢𝑙𝑠𝑒  

is the pulse duration and 𝑇𝑝𝑢𝑙𝑠𝑒 = 1. The convolution of the 

source function 𝑗ǁ and the exponential function in (45), (47), 

(50) and (52) is carried out analytically. If  𝛽∆𝑡 ≫ 1, where 

∆𝑡 denotes the numerical time discretization step, we can 

approximate the function 𝛽 exp −βτ  by a Dirac delta 

function, which simplifies the expression for gE(x, t). 

8. Numerical Results and Discussion 

The transient electromagnetic field due to electric line 

source on a two-layer conducting earth can be expressed in 

analytical form. The normalized reflected fields have been 

calculated for different values of conductivity, and ratio of 

permittivity 
∈1

∈o
, at the two distance pointe (d = 1m and 10m) 

of observation and excitation.  

The results represented graphically and illustrated by 

Figure 2 [(a-e) and (f-j)]. These figures represent the 

normalized electric fieldfor different values of conductivity 

𝜎 = 3 𝑚𝑠\𝑚. , 30 𝑚𝑠\𝑚. , 𝑎𝑛𝑑 300 𝑚𝑠\𝑚,  and indicate 

that the normalized electric field for different values of the 

ratio of the permittivity 
∈1

∈o
 = 2, 5, 10, 30 and 100, at the 

distance d =1m, and 10m., respectively. The effect of the 

conductivity σ indicates that, the values of the normalized 

reflected electric field decrease with increasing of the 

conductivity σ of the lower medium and the distanced. This 

means that with increasing distance d between the source and 

the receiving end, the values of the normalized reflected 

electric and magnetic fields decrease, furthermore, the effect 

of the ratio of permittivity 
∈1

∈o
 is shown in Figure 2.Figure 

2[(a-c) and 2(f-h)] shows that the normalized electric field 

are increasing in the values with the increase of the ratio of 

the permittivity 
∈1

∈o
 = 2, 5 and 10, at the distance d = 1m., and 

10 m., respectively. Beginning with the ratio of the 

permittivity 
∈1

∈𝑜
 = 30, the normalized electric and magnetic 

fields have the fixed values as show in Figures, at the 

distance d = 1m, and 10m. Comparing the results in Figures 2 

(d-e) and 2(i-j), we notice that for ratios of the permittivity 
∈1

∈𝑜
 of 30 or lager, there is absolutely no effect of the reflected 

field on the fields observed at the distanced =1m and       

d =10m. 

9. Conclusions 

The transient electromagnetic field of an electric line 

source on a two-layer conducting earth can be expressed in 

an-analytical form, and the effect of the conductivity 𝜎 is 

taken into consideration.The transient electromagnetic field 

of an electric line source on a two-layer conducting earth has 

been derived in an analytical form. In these expressions, the 

effects of the conductivity and the ratio of permittivity have 

been taken into consideration. They depend on the distance 

between the source and the received point. It would be 

interesting to evaluate the normalized parallel component of 

the reflected electric field 𝐸‖ 
𝑟  𝑥, 𝑧; 𝑠 numerically with 

different values of the conductivity 𝜎 of the lower medium, 

and different values of the ratio of the permittivity 
∈1

∈𝑜
. We 

conclude that when the ratio of permittivity 
∈1

∈𝑜
= 30 or large, 

there is absolutely no influence of the interfering on the 

received signal, even if the arrival time coincides with the 

free-space arrival time. 
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