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Abstract  This paper presents an investigation of the behavior of a restrained cargo modeled by the cubic-quintic-septic 
Duffing equation using He’s iterat ion perturbation method (IPM) and He’s variational iteration method (VIM). We compared 
our results with the exact result and show the excellent agreement between the approximate methods and the exact result. We 
also highlight the simplicity and accuracy of IPM and VIM in obtaining analytic appro ximate solutions to nonlinear 
differential equations like the cubic-quintic-septic Duffing equation. 
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1. Introduction 
Obviously the study of nonlinear systems and their 

behavior remains one of the most important aspect of 
engineering, applied mathemat ics, physics and other 
scientific fields. These nonlinear systems are real physical 
systems which are modeled by nonlinear d ifferential 
equations, for this reason, one cannot overemphasize the 
importance of understanding and gaining useful insights 
towards the behavior of these nonlinear d ifferential 
equations so as to make accurate and precise decisions while 
working with real physical systems. 

On the other hand, nonlinear d ifferential equations are 
very difficult and complex to study. Due to their complexity, 
it is very difficu lt and most times impossible to obtain an 
exact solution to these nonlinear differential equations. Over 
the years, researchers have developed many tools that will 
aid in the study of these nonlinear d ifferential equations. 
Methods like pertu rbat ion methods[1, 2, 3], numerical 
methods[4], and most recent ly the approximate methods 
have been developed in order to understand the behavior of 
these nonlinear d ifferential equations. Many approximate 
methods have evolved recently, among them are, homotopy 
analys is method  (HAM)[5-14], homotopy pertu rbat ion 
method  (HPM)[15-24], variat ional approach  method 
(VAM)[25, 26], energy balance method (EBM)[27, 28], to 
mention only  but a few. Most of these methods mentioned  
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above have been applied to varying physical problems with 
success. 

This paper presents some contributions towards gaining 
more understanding of the cubic-quintic-septic Duffing 
equation through the use of He’s iteration perturbation 
method (IPM)[29, 30] and He’s variational iteration 
method[31-39].  

The Duffing  equation is a  well known and extensively 
studied nonlinear differential equation having the general 
form (1) and related to many practical engineering systems. 
Due to the presence of fifth and seventh power nonlinearities, 
the cubic-quintic-septic Duffing equation becomes more 
complicated and complex, thus the difficulty in obtaining 
accurate analysis of the equation. Some pract ical problems 
that have been effectively modeled by the Dufffing equation 
were listed in[40]. 
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The cubic-quintic-septic Duffing equation which can be 
represented by (2), turned out to be a useful model fo r the 
behavior of a restrained cargo system in[41], where it  was 
noted that even though the cubic and cubic-quint ic 
representations of the Duffing equation were found to 
adequately represent the restoring force of the restrained 
cargo, the cubic-quintic-septic approximat ion of the 
restoring force is more accurate and efficient as it  avoids 
limitat ions associated with approximat ions such as small 
nonlinearity and low level of excitation.  
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α  is the resonant frequency, , ,β µ δ  are the nonlinear 
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coefficients. 

2. Basic idea of the Iteration 
Perturbation Method (IPM)  

Most nonlinear d ifferential equations used to model 
physical systems can be generally described as (1). 

Considering (1), we introduce the variable, 
d
dt
ψη =  and 

then (1) can be represented by the system  
( ) ( )        ( ) ( , , , )t t t f tψ η η ψ η η= = −        (3) 

Assuming that the in itial approximate guess of (3) can  be 
represented as  

( ) cos( )t p tψ ω=                    (4) 
where ω  is the angular frequency of oscillation and p  is 
the initial amplitude of oscillation. Then we obtain using (4) 
and (3)  

( ) sin( ) ( )        t p t tψ ω ω η= − =  
           (5) 

Substituting (5) and (4) into 2(3) , we obtain  
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Integrating (6), gives  
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Comparing 1(5)  and (7), we obtain  
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T  is the period of oscillation.  
Then we can represent the solution to (1) as  

1( ) cost p t
p
φ

ψ
 

=   
 

                  (9) 

3. Application of Iteration Perturbation 
Method (IPM)  

We consider the un-damped and unforced cubic-quintic- 
septic Duffing equation[41] given by (2), which is equivalent 
to the two-dimensional system  
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x p y

α β µ δ= = − − − −
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We note that setting 0δ =  in (2) g ives us the popular 
cubic-quintic Duffing equation while setting 0δ µ= =  
in (2) as well gives the conventional cubic Duffing equation. 

We assume that the solution to (2) can be expressed in the form of  (4). Substituting (4) into (10) yields  
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Expanding (11) in Fourier series, we obtain  
2 2 4 4 6 6

1cos( )[ cos ( ) cos ( ) cos ( )] cos( ) ...p t p t p t p t tω α β ω µ ω δ ω φ ω− + + + = +          (12) 
Eq. (12) implies that  
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Carrying out the indicated integration in (13), yields  
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Then we can write 2(11)  as  
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Eq. (15) implies that  
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Simplifying (16) yields  

2        ( ) cos( ) ( )t p t tψ ω ω η= − = 
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Comparing (17) and 1(11)  yields  
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Then from (4), we write the approximate solution to (2) as  
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4. Basic idea of the Variational Iteration Method (VIM)  
In[31-39], some of the various literatures that demonstrated the basic idea of the variational iterat ion method were listed. 
Depending on the initial condit ions given, we choose a suitable guess function 0 ( ) cos( )x t p tω=  . Following[34], the 

angular frequency ω  is determined by  
2
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From (20), we obtain the angular frequency as  
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According to the linear section of (2), the general Lagrange mult iplier can be identified as[38]   
sin ( )tω τλ

ω
−

=                                                  (22) 

Then the second order approximate solution is given by  
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Substituting (22) and employing (4) in (23), performing the indicated operation, we obtain  
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5. Discussion of Results  
In this section, we compare the results obtained using Iteration Pertubation Method and Variat ional Iteration Method, to 

the exact results computed numerically by the use of Runge-Kutta fourth-order method (RK45). The simulat ions below were 
obtained using the scilab computer programming package.  
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Figure 1.  presents the behavior of the displacement of  the cubic-quintic-septic Duffing equation with increasing time for the parameter values 

1p α β µ δ= = = = =  

 

Figure 2.  presents the phase plot of  the cubic-quintic-septic Duffing equation for the parameter values 1p α β µ δ= = = = =  
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Figure 3.  presents the behavior of the displacement of  the cubic-quintic-septic Duffing equation with increasing time for the parameter values 

1, 3.5, 96.6289, 0.8p δ β α µ= = = − = = −   

 
Figure 4.  presents the phase plot of the cubic-quintic-septic Duffing equation for the parameter values 

1, 3.5, 96.6289, 0.8p δ β α µ= = = − = = −   
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We note that, setting 0δ =  in (19) y ields  
2 464 48 40
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Eq. (25) is the approximate solution to the popular 
cubic-quintic Duffing equation. Likewise one can also obtain 
the approximate solution to the cubic Duffing equation using 
the two given methods employed in this paper. 

6. Conclusions 
In this paper, we have shown the effectiveness and 

efficiency of the Iterat ion Perturbation Method (IPM) and 
the Variational Iteration Method (VIM) in obtaining analytic 
approximate solutions to nonlinear differential equations 
such as the cubic-quintic-septic Duffing equation. We 
compared our results with the exact result obtained 
numerically and our comparison shows that the two methods 
considered in this paper give accurate results. Moreover, the 
two methods showcased in this paper, are very easy and 
simple to handle as they do not involve rigorous calculation 
processes as well as complex mathematical ideas. Though 
more research is required in the light of gaining more 
informat ion as to how these approximate methods affects 
real physical systems, this paper presents a step towards a 
successful and positive implementation of the two methods.  
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