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Abstract  The free vibrat ion analysis of ring shaped plate of polygonal cross-sections immersed in  fluid is studied using 
the Fourier expansion collocation method. The equations of motion based on two-dimensional theory of elasticity is applied 
under the plane stress-strain assumptions of elastic p late of polygonal cross-sections namely, triangle, square, pentagon and 
hexagon is made of isotropic material. The frequency equations are obtained for longitudinal and flexural anti symmetric 
modes of vibrations. The computed non-dimensional frequencies are plotted in the form of d ispersion curves for the material 
copper. Comparison is made between the frequency responses of plate in  space and plate immersed in fluid. The general 
theory can be used to study any kinds of ring shaped plate using the proper geometrical relations. 
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1. Introduction  
The p lates  o f circu lar and  p lates  o f po lygonalcross-

sections are often used as structural components and their 
vibration characteristics are important for practical design. 
The frequency responses of rotating arbitrary  / polygonal 
cross-sectional plates has many applications in various fields 
of science and technology, namely, submarine structures, 
pressure vessel, bore wells, ship building industries and have 
many other engineering applications. Nagaya[1-3] studied 
the simplified method for solv ing prob lems  of vib rat ing 
plates of doubly connected arbitrary shape using the Fourier 
expansion collocation method, he has detained the frequency 
equations for a doubly connected polygonal cross-sectional 
plate and numerical calculation were carried for the above 
said cross-sect ions. Fo llowing Nagaya, Ponnusamy[4,5] 
discussed the frequency responses of thermo-elastic plate of 
arbitrary  cross-sections and generalized  thermo-elastic  plate 
of polygonal cross-sections by using the Fourier expansion 
collocation method developed by Nagaya[1,-3]. Venkatesan 
and Ponnusamy[6,7] studied the wave propagation in  solid 
and generalized  solid cy linder o f arbit rary  cross-sections 
immersed in fluid using the Fourier expansion collocation 
method. Sinha et al[8] have studied the axisymmetric wave 
propagation in circular cy lindrical shell immersed in  a fluid, 
in  two parts. In  Part I, the theoret ical analys is of the 
p ropagat ion  modes  is  d is cuss ed  and  in  Part  II, the  
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axisymmetric modes excluding tensional modes are obtained 
theoretically and experimentally  and are compared. Berliner 
and Solecki[9] have studied the wave propagation in  a flu id 
loaded transversely isotropic cylinder. In that paper, Part I 
consists of the analytical formulation of the frequency 
equation of the coupled system consisting of the cylinder 
with inner and outer fluid and Part II g ives the numerical 
results. Easwaran and Munjal[10] investigated the effect of 
wall compliance on lowest order mode propagation in a fluid 
filled or submerged impedance tubes. Based on the closed 
form analytical solution of the coupled wave equations and 
applying the boundary conditions at the fluid-solid interface, 
an eigen equation was obtained and then the dispersion 
behavior of wave mot ion was analyzed. A lso, they 
investigated axial attenuation characteristics of plane waves 
along water filled tubes submerged in water o r air.  

This paper demonstrates the in-plane vibration of rings of 
polygonal cross section composed of homogeneous isotropic 
material immersed in a fluid. In the first part, solutions to the 
equations of motion for an isotropic medium using the two 
dimensional theory of elasticity and for the fluid in and 
around the solid medium are described. It  is assumed that, 
there is no vibration and displacement along the z-axis, that 
is the displacement along the z-axis, w  is zero. To satisfy 
the boundary conditions, the Fourier expansion collocation 
method is performed  to the equations of the boundary 
conditions along the boundary of the inner and outer surface 
of the ring. A lso, the frequency equations are obtained for the 
symmetric and antisymmetric cases. To illustrate the validity 
of the model, some numerical examples are provided for the 
frequency equation. The equation is solved by omitt ing the 
flu id medium and the results are compared with the 
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frequency responses of plate in space and plate immersed in 
flu id. Also, the results are obtained for polygonal ( triangle, 
square, pentagon and hexagon) rings for the longitudinal and 
flexural antisymmetric modes of vibrations. 

2. Formulation of the Problem 
We consider a homogeneous, isotropic, elastic ring shaped 

plate of polygonal cross-sections immersed in fluid. The 
system displacements and stresses are defined by the polar 
coordinates r and θ  in  an arb itrary  point inside the p late and 

denote the displacements ru  in the direction of r and uθ  

in the tangential direction θ . The in-plane vibration and 
displacements of ring shaped plate of polygonal 
cross-sections immersed in fluid is obtained by assuming 
that there is no vibrat ion and displacement along the 
z-d irections in  the cylindrical coordinate system( ), ,r zθ . 

The two d imensional stress equations of motion, strain 
displacement relat ions in the absence of body forces for a 
linearly elastic medium are considered from Ponnusamy[4] 
as 

( )1 1
, ,rr r r rr rr r uθ θ θθσ σ σ σ ρ− −+ + − =   

1 1
, , 2r r rr r uθ θθ θ θ θσ σ σ ρ− −+ + =         (1) 

and 

( ) 2rr rr rre e eθθσ λ µ= + +  

( ) 2rre e eθθ θθ θθσ λ µ= + +  

2r reθ θσ µ=                  (2) 

Where , ,rr rθθ θσ σ σ  are the stress components, 

, ,rr re e eθθ θ  are the strain components, ρ  is the mass 
density, λ  and µ  are Lame’s constants.  

The strain ije  related to the displacements are given by 

,rr r re u= , ( )1
,re r u uθθ θ θ

−= + , ( )1
, ,r r re u r u uθ θ θ θ

−= − −                     (3) 

in which ru  and uθ  are the displacements components along radial and circumferential direct ions respectively. The 
comma in the subscripts denotes the partial differentiat ion or derivative with respect to the variables. 

Substituting the Eqs.(2) and (3) in Eqs.(1), the displacement equations of motions are obtained as 

( )( ) ( ) ( )1 2 2 1 2
, , , ,, ,2 3r r r r rrr r ttru r u r u r u r u r u uθ θθθ θ θλ µ µ λ µ λ µ ρ− − − − −+ + − + + + − + =  

( ) ( ) ( ) ( )1 2 2 2 1
, ,, , , ,2 3 r r rrr r ttu r u r u r u r u r u uθ θ θ θ θθ θθθµ λ µ λ µ λ µ ρ− − − − −+ − + + + + + + = .        (4) 

3. Solutions of Ring Shaped Plate 
To obtain the free vibration of ring shaped plate of polygonal cross-sections, we seek the solution of Eq.(4) in the form 

( ) ( )1 1
, ,, ,

0
( , , ) i t

n r nr n n r n
n

u r t r r e ω
θθθ ε φ ψ φ ψ

∞
− −

=

 = + + + ∑  

( ) ( )1 1
, ,, ,

0
( , , ) i t

n n rn n n r
n

u r t r r e ω
θθ θθ ε φ ψ φ ψ

∞
− −

=

 = − + − ∑                  (5) 

where 1
2nε =  for 0n = , 1nε =  for 1n ≥ , 1i = − , ω  is the frequency, ( ),n rφ θ , ( ),n rψ θ , ( ),n rφ θ  and 

( ),n rψ θ  are the displacement potentials.  

By introducing the dimensionless quantities ( )λ λ µ= , 2 2 2aρω µΩ = , T t aµ ρ=  , x r a=  and substituting 
Eq.(5) in Eq.(4), we obtain  

( ) 2 22 0nλ φ + ∇ +Ω =                                    (6) 

and  
2 2 0nψ ∇ +Ω =                                       (7) 

where 2 2 2 1 2 2 2x x x x θ− −∇ ≡ ∂ ∂ + ∂ ∂ + ∂ ∂  
The solution of Eq. (6) for symmetric mode is  

( ) ( )1 1 1 1 cosn n n n nA J ax B Y ax nφ α α θ= +                               (8) 
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and the solution for the anti symmetric mode nφ  is obtained by replacing cos nθ  by sin nθ  in Eq. (8), we get  

( ) ( )1 11 1 sinn nn n nA J ax B Y ax nφ α α θ = +                            (9) 

where nJ  is the Bessel function of first kind of order n and nY  is the Bessel function of second kind of order n and 

( ) ( )2 2
1 2aα λ= Ω + . Solv ing Eq. (7), we obtain 

( ) ( )2 2 2 2 sinn n n n nA J ax B Y ax nψ α α θ= +                           (10) 

for symmetric mode. For the antisymmetric mode nψ  is obtained from Eq. (10) by replacing sin nθ  by cos nθ  in Eq. (10), 
we obtain 

( ) ( )2 22 2 cosn nn n nA J ax B Y ax nψ α α θ = +                           (11) 

where ( )2 2
2aα = Ω . If ( )2

1 0aα <  and ( )2
2 0aα < , then the Bessel functions nJ  and nY  are replaced by the modified 

Bessel functions nI  and nK  respectively. 

4. Solutions of Fluid Medium 
In cylindrical polar coordinates r  and θ  the acoustic pressure and radial displacement equation of motion for an 

inviscid fluid are of the form Achenbach[11] , 

( )1
, ,( )f f f f f

r r rp B u r u uθ θ
−= − + +                           (12) 

and  
2

, ,f
f r tt rc u− = ∆                                     (13) 

respectively, where fB  is the adiabatic bulk modulus, fρ  is the density, f f
fc B ρ=  is the acoustic phase velocity 

in the flu id, ( ),f f
ru uθ  is the displacement vector and 

( )1
, ,( )f f f

r r ru r u uθ θ
−∆ = + +                                  (14) 

Substituting 

,
f f

r ru φ= ,
1

,
f fu rθ θφ

−=                                     (15) 
and seeking the solution of  Eq. (13) in the form 

( ) ( )
0

( , , ) cos sin
ff f i t

n n n
n

r t r n r n e ωφ θ ε φ θ φ θ
∞

=

 = +  ∑ ,                  (16) 

the oscillating waves propagating in the inner fluid  located 
in the annulus is given by 

3 3( )f
n n nA J axφ α=            (17) 

where ( )2 2
113

f f
a Bα ρ= Ω , in  which 1 1

f fρ ρ ρ= , 

1 1

f fB B µ= . If ( )3 0aα < , the Bessel function nJ  in 

the Eq. (17) is to be replaced by modified Bessel function 

nI . Similarly, for the outer fluid  that represents the 
oscillatory waves propagating away is given as 

( )2
3 4( )f

n n nB H axφ α=          (18) 

where ( )2 2
224

f f
a Bα ρ= Ω , in  which 2 2

f fρ ρ ρ= ,

2 2

f fB B µ= , ( )2
nH  is the Hankel function of the second 

kind of order n. If 2
4( ) 0aα < , then the Hankel function of 

second kind is to be rep laced by nK , where nK  is the 
modified Bessel function of the second kind. By substituting 
Eq. (16) in  Eq. (12) along with the Eqs. (17) and (18), the 
acoustic pressure for the inner flu id can be expressed as 

2
11 3 3( ) cos ai Tf

n np A J ax n eρ α θ Ω= Ω   (19) 
while fo r the outer flu id, it is given by 

( )22
22 3 4( ) cos ai Tf

n np B H ax n eρ α θ Ω= Ω  (20) 
In the antisymmetric case, the solutions for the inner and 

outer fluid are obtained as  

3 3( )f
n n nA J axφ α=            (21) 
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and  
( )2

3 4( )f
n n nB H axφ α=         (22) 

Similarly, the acoustic pressure for the antisymmetric 
mode are obtained as 

( )2
3 311 sin a

f i T
n np A J ax n eρ α θ Ω= Ω  (23) 

for the inner flu id and 
( ) ( )22

3 422 sin a
f i T

n np B H ax n eρ α θ Ω= Ω  (24) 

for the outer flu id. 

5. Boundary Conditions and Frequency 
Equations 

The boundary conditions along the curved surfaces of the 
ring are 

( ) ( ) ( )1 0f f
xx xy r rll l

p u uσ σ+ = = − =      (25) 

for the inner boundary and  

( ) ( ) ( )2 0f f
xx xy r rll l

p u uσ σ+ = = − =    (26) 

for the outer boundary, where x is the coordinate normal to 
the boundary and y  is the coordinate in the tangential 

direction, xxσ  is the normal stress, xyσ  are the shearing 

stresses and ( )l is the value at the l th−  segment of the 
boundary. The first and last conditions in Eqs. (25) and (26) 
are due to the continuity of the stresses and displacements of 
the ring shaped plate and fluid on the curved surfaces. Since 
the boundary of the cross section is irregular in shape, it is 
difficult to satisfy the boundary conditions along both inner 
and outer surfaces of the ring shaped polygonal cross 

sectional plate immersed in fluid direct ly. If lγ  is the angle 
between normal to the segment and the reference axis and if 
it is assumed to be constant, then the transformed 
expressions for the stresses are Nagaya[3] as  

( )( ) ( ) ( ) ( )

( )( ) ( )

1 2 1 2
, ,, ,

1
, ,

2 [ cos sin

0.5 sin 2 ]

xx r r r l r lr r

r lr

u r u u u r u u

r u u u

θ θθ θ

θ θθ

σ λ µ θ γ θ γ

θ γ

− −

−

= + + + − + + −

+ − − −
  

( ) ( ) ( )( ) ( )1 1
, ,, ,[ sin 2 sin 2 ]xy r r l r lr ru r u u r u u uθ θ θθθσ µ θ γ θ γ− −= − + − + − + −                 (27) 

Substituting Eqs. (8)-(11), (19), (20), (23), (24) in the Eqs. (25) and (26), the boundary conditions are transformed as 
follows: 

( ) ( )11 0ai T
xxxx l l

S S e Ω + =  
, ( ) ( )11 0ai T

xyxy l l
S S e Ω + =  

 

( ) ( )11 0ai T
rr l l

S S e Ω + =  
                                 (28) 

for the inner surface and  

( ) ( ) 0ai T
xxxx l l

S S e Ω + =  
, ( ) ( ) 0ai T

xyxy l l
S S e Ω + =  

 

( ) ( ) 0ai T
rr l l

S S e Ω + =  
                                  (29) 

for the outer surface, where 

( ) ( )1 1 2 5 1 2 3 4 5
0 10 0 10 0 50 1 1 2 2 5

1
0.5xx n n n n n n n n n n

n
S p A p B p A p A p B p A p B p A

∞

=

= + + + + + + +∑  

( ) ( )1 1 2 1 2 3 4
0 10 0 10 1 1 2 2

1
0.5xy n n n n n n n n

n
S q A q B q A q B q A q B

∞

=

= + + + + +∑  

( ) ( )1 1 2 5 1 2 3 4 5
0 10 0 10 0 50 1 1 2 2 5

1
0.5r n n n n n n n n n n

n
S r A r B r A r A r B r A r B r A

∞

=

= + + + + + + +∑  

( ) ( )1 2 6 1 2 3 4 6
0 10 0 10 0 50 1 1 2 2 5

1
0.5xx n n n n n n n n n n

n
S p A p B p B p A p B p A p B p B

∞

=

= + + + + + + +∑  

( ) ( )1 2 1 2 3 4
0 10 0 10 1 1 2 2

1
0.5xy n n n n n n n n

n
S q A q B q A q B q A q B

∞

=

= + + + + +∑  
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( ) ( )1 2 6 1 2 3 4 6
0 10 0 10 0 50 1 1 2 2 5

1
0.5r n n n n n n n n n n

n
S r A r B r B r A r B r A r B r B

∞

=

= + + + + + + +∑      (30) 

( ) ( )1 3 4 1 2 3 4 5
20 20 1 1 2 2 50 0

1
0.5 n n n n nxx n n n n n

n
S p A p B p A p B p A p B p A

∞

=

= + + + + + +∑  

( ) ( )1 3 4 1 2 3 4
20 20 1 1 2 20 0

1
0.5 n n n nxy n n n n

n
S q A q B q A q B q A q B

∞

=

= + + + + +∑  

( ) ( )1 3 4 1 2 3 4 5
0 20 0 20 1 1 2 2 5

1
0.5 n n n n n n n n n nr

n
S r A r B r A r B r A r B r A

∞

=

= + + + + + +∑  

( ) ( )3 4 1 2 3 4 6
20 20 1 1 2 2 50 0

1
0.5 n n n n nxx n n n n n

n
S p A p B p A p B p A p B p B

∞

=

= + + + + + +∑  

( ) ( )3 4 1 2 3 4
20 20 1 1 2 20 0

1
0.5 n n n nxy n n n n

n
S q A q B q A q B q A q B

∞

=

= + + + + +∑  

( ) ( )3 4 1 2 3 4 6
0 20 0 20 1 1 2 2 5

1
0.5 n n n n n n n n n nr

n
S r A r B r A r B r A r B r B

∞

=

= + + + + + +∑           (31) 

The terms 
i
np  to 

i
nr  are given in the Appendix A. 

Performing the Fourier series expansion to Eqs. (25) and (26) along the boundary, the boundary conditions along the inner 
and outer surfaces are expanded in  the form of double Fourier series. When a plate is symmetric about more than one axis, the 
boundary conditions, in the case of symmetric mode can be written in the form of a matrix as given below: 

            

            

         

1 2 5 1 1 2 2 3 3 4 4 5 5
00 00 00 01 0 01 0 01 0 01 0 01 0

1 2 5 1 1 2 2 3 3 4 4 5 5
0 0 0 1 1 1 1 1

1 2 1 1 2 2 3 3 4 4
10 10 11 1 11 1 11 1 11 1

0 0 0

0 0 0

0 0 0 0 0 0

N N N N N

N N N N NN N NN N NN N NN N NN

N N N N

P P P P P P P P P P P P P

P P P P P P P P P P P P P

Q Q Q Q Q Q Q Q Q Q

     

               

     

     

         

         

            

            

1 2 1 1 2 2 3 3 4 4
0 0 1 1 1 1

1 2 5 1 1 2 2 3 3 4 4 5 5
00 00 00 01 0 01 0 01 0 01 0 01 0

1 2 5 1 1 2 2 3 3 4 4 5 5
0 0 0 1 1 1 1 1

1
00

0 0 0 0 0 0

0 0 0

0 0 0

N N N NN N NN N NN N NN

N N N N N

N N N N NN N NN N NN N NN N NN

Q Q Q Q Q Q Q Q Q Q

R R R R R R R R R R R R R

R R R R R R R R R R R R R

P

     

     

     

               

     

2 6 1 1 2 2 3 3 4 4 6 6
00 00 10 0 10 0 10 0 10 0 10 0

1 2 6 1 1 2 2 3 3 4 4 6 6
0 0 0 1 1 1 1 1

1 2 1 1 2 2 3 3 4 4
10 10 11 1 11 1 11 1 11 1

0 0 0

0 0 0

0 0 0 0 0 0

N N N N N

N N N N NN N NN N NN N NN N NN

N N N N

P P P P P P P P P P P P

P P P P P P P P P P P P P

Q Q Q Q Q Q Q Q Q Q

     

               

     

     

             

1 2 1 1 2 2 3 3 4 4
0 0 1 1 1 1

1 2 6 1 1 2 2 3 3 4 4 6 6
00 00 00 00 0 00 0 00 0 00 0 00 0

1 2 6 1 1 2 2 3 3 4 4 6 6
0 0 0 1 1 1 1 1

0 0 0 0 0 0

0 0 0

0 0 0

N N N NN N NN N NN N NN

N N N N N

N N N N NN N NN N NN N NN N NN

Q Q Q Q Q Q Q Q Q Q

R R R R R R R R R R R R R

R R R R R R R R R R R R R











 

     

     

               

     

10

10

50

50

11

1

11

1

51

5

51

5

0

N

N

N

N

A
B
A
B
A

A
B

B

A

A
B

B


  
  
  
  
  
  

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

  


=

















(32) 

where 

 ( ) ( )
11

2 , cos
l

l

Lj j
mn ln n

l
P p R m d

θ

θ

ε π θ θ θ
−=

= ∑ ∫ ,  ( ) ( )
11

2 , sin
l

l

Lj j
ln nmn

l
Q q R m d

θ

θ

ε π θ θ θ
−=

= ∑ ∫  

 ( ) ( )
11

2 , cos
l

l

Lj j
mn ln n

l
R r R m d

θ

θ

ε π θ θ θ
−=

= ∑ ∫ , ( ) ( )
11

2 , cos
l

l

L
j j

mn n n l
l

P p R m d
θ

θ

ε π θ θ θ
−=

= ∑ ∫  
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( ) ( )
11

2 , sin
l

l

L
j j

mn n n l
l

Q q R m d
θ

θ

ε π θ θ θ
−=

= ∑ ∫ , ( ) ( )
11

2 , cos
l

l

L
j j

mn n n l
l

R r R m d
θ

θ

ε π θ θ θ
−=

= ∑ ∫    (33) 

Similarly, the matrix for the antisymmetric mode is obtained as 
           

           

         

  

3 4 1 1 2 2 3 3 4 4 5 5
10 10 11 1 11 1 11 1 11 1 11 1

3 4 1 1 2 2 3 3 4 4 5 5
0 0 1 1 1 1 1

3 4 1 1 2 2 3 3 4 4
00 00 01 0 01 0 01 0 01 0

3 3
0 0

0 0

0 0

0 0 0 0

N N N N N
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N N N N

N N N
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Q Q Q Q Q Q Q Q Q Q

Q Q Q
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     

             

      
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0 0
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Q Q Q Q Q Q Q
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     

     
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11 1 11 1
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 

           

    

     

             

    
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0 0
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N N N N

N N N NN N NN N NN N NN N NN

R R R R R R R R R R R R
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 
 
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(34) 

where 

 ( ) ( )
11

2 , sin
l

l

Lj j
mn ln n

l
P p R m d

θ

θ

ε π θ θ θ
−=

= ∑ ∫ ,  ( ) ( )
11

2 , cos
l

l

Lj j
lnmn n

l
Q q R m d

θ

θ

ε π θ θ θ
−=

= ∑ ∫  

 ( ) ( )
11

2 , sin
l

l

Lj j
mn n ln

l
R r R m d

θ

θ

ε π θ θ θ
−=

= ∑ ∫ , ( ) ( )
11

2 , sin
l

l

Lj j
mn n ln

l
P p R m d

θ

θ

ε π θ θ θ
−=

= ∑ ∫  

( ) ( )
11

2 , cos
l

l

Lj j
n lmn n

l
Q q R m d

θ

θ

ε π θ θ θ
−=

= ∑ ∫ , ( ) ( )
11

2 , sin
l

l

Lj j
mn nn l

l
R r R m d

θ

θ

ε π θ θ θ
−=

= ∑ ∫       (35) 

and where 1, 2,3, 4,5j =  and 6 , L  is the number of segments,  lR  is the coordinate r  at the inner boundary, lR  is the 
coordinate r at the outer boundary  and N is the number of truncation of the Fourier series. For the nontrivial solution of the 
systems of equations given in Eqs. (32) and (34), the determinant of the coefficient matrix must vanish and these determinants 
give the frequencies of symmetric and antisymmetric modes respectively. 

6. Particular Case 
The frequency equations for a ring shaped plate of 

polygonal cross-sections is obtained by omitting the flu id 
medium in the corresponding expressions and solutions of 
the above sections. This frequency equations are further 
reduced to obtain the frequency equations of a solid 
polygonal cross-sectional plate by considering the outer 

surface of the plate nY  and 1nY +   are equal to zero in the 
Eqs. (25) and (26), this frequency equations are matches well 

with the frequency equations of Ponnusamy[5] by 
considering the thermal fields are equal to zero. Using this 
frequency equation, the numerical results of the frequency 
for a plate in  space is obtained, this results is used to compare 
with the frequency obtained for a plate immersed in fluid.  

7. Numerical Results and Discussions 
In order to illustrate the nature and general behavior of the 
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solution, some numerical examples are considered in this 
section. The resulting frequency equations of the symmetric 
and antisymmetric cases of the ring shaped plate of 
polygonal cross sections immersed in  a flu id given in Eqs. 
(33) and (35) are t ranscendental in nature with respect to the 
dimensionless frequency Ω . The computation of Fourier 
coefficients given in Eqs. (34) and (36) is carried out using 
the five point Gaussian quadrature. To obtain the roots of the 
frequency equation, the secant method applicable for the 
complex roots (Antia[12]) is employed. The material 
properties used for the computations are as follows: for solid, 
the Poisson ratio 0.3ν = , density 37849 /kg mρ =  and 

Young’s modulus 11 22.139 10 /E N m= ×  and for flu id the 
density 31000 /f kg mρ =  and phase velocity 

1500 / secc m= .  

7.1. Geometrical Relations of Ring Shaped Polygonal 
Cross-Sections 

The geometrical relations for the ring shaped plate of 
polygonal cross-section given by Nagaya[3] as follows. 

( ) 1
cosi lR a θ γ

−
 = −   

( ) 1
cosi lR b θ γ

−
 = −
 

 



l lγ γ=                       (36) 

where ( )a b h= + and b  is the apothems, h is the 

thickness of the plate. Here the apothem b is taken as the 
reference length which  is used to obtain the dimensionless 
expressions, and lγ is the angle between the reference axis 
and the normal to the segment. 

7.2. Longitudinal Mode 

In longitudinal mode of square and hexagonal 
cross-section, the cross-section vibrates along the axis of the 
cylinder, so that the vibration displacements in the 
cross-sections are symmetrical about both the major and the 
minor axes. Hence the frequency equations are obtained by 
choosing both the terms of m  and n  as 0, 2, 4,6,...  in 
the Eq. (32) for the numerical calculations. In the case of 
triangle and pentagonal cross-sectional plate, the vibration 
and displacements are symmetrical about the major axis 
alone, hence the frequency equations are obtained from the 
Eq. (32) by choosing m and n as 0,1, 2,3,... . Since the 
boundary of the cross-sections namely, triangle, square, 
pentagon and hexagon are irregular, it is difficult to satisfy 
the boundary conditions along the curved surface, and hence 
Fourier expansion collocation method is applied. That is the 
curved surface, in the range 0θ =  and θ π=  is divided 
into 20 segments, such that the distance between any two 
segments is negligible and the integrations is performed for 
each segment numerically by using the Gauss five point 
formula .The non-dimensional frequencies  are computed 

for 0 1.0< Ω ≤ , using the secant method (applicable for 
the complex roots, (Anita[12] )). 

7.3. Flexural Mode 

In flexural mode of square and hexagonal cross-section, 
the vibration and displacements are antisymmetrical about 
the major axis and symmetrical about the minor axis. Hence 
the frequency equation may be obtained from Eq. (34) by 
choosing , 1,3,5,7.....n m =  In the case of triangle and 
pentagonal cross-sections, the vibration and displacements 
are antisymmetrical about the minor axis, hence the 
frequency equations may be obtained from Eq. (34)by 
choosing , 1, 2,3....n m =  

7.4. Comparison between the Frequency Responses of 
Plate in S pace and Plate Immersed in Fluid 

Table  1.  Comparison between non-dimensional frequencies of Plate in 
Space (PS) and Plate Immersed in Fluid (PIF) for longitudinal modes of the 
Polygonal (triangle, square, pentagon and hexagon) cross-sectional plates 

Cross-sections  Mode  PS  PIF 

  S1  2.3472  2.7667 

Triangle  S2  3.9541  4.1810 

  S3  5.4340  5.5957 

       

  S1  1.4157  1.4158 

Square  S2  2.8305  2.8426 

  S3  7.0773  7.0781 

       

  S1  1.4156  1.4270 

Pentagon  S2  2.3341  2.7232 

  S3  5.4287  5.5569 

       

  S1  2.8314  2.8420 

Hexagon  S2  5.6614  5.6668 

  S3  7.0728  7.0761 

A comparison is made between the non-dimensional 
frequencies of Plate in Space (PS) and Plate Immersed in 
Flu id (PIF) for the longitudinal and flexural anti symmetric 
modes of vibrat ions and are shown in Tables 1 and 2 
respectively. From the Tables 1 and 2, it is observed that, the 
non-dimensional frequencies increases for increasing modes 
of vibrations. Comparing the frequency responses of PS and 
PIF, the frequencies are h igher for a plate immersed in flu id 
than the plate in space, this is the proper physical behavior 
for solid -fluid interface problems. The notations namely S1, 
S2, S3 and A1, A2, A3 used in the Tables respectively 
represents the symmetric and anti symmetric modes of 
vibration, and the number 1, 2, 3 represents the first, second 
and third modes of vibrations. 
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Table 2.  Comparison between non-dimensional frequencies of Plate in 
Space (PS) and Plate Immersed in Fluid (PIF) for flexural anti symmetric 
modes of the Polygonal (triangle, square, pentagon and hexagon) 
cross-sectional plates 

Cross-sections  Mode  PS  PIF 

  A1  1.2996  1.3763 
Triangle  A2  2.7079  2.7955 

  A3  4.1218  4.2101 
       
  A1  1.2934  1.3616 

Square  A2  2.6543  2.7779 
  A3  4.0691  4.1971 
       
  A1  1.2896  1.3627 

Pentagon  A2  2.6701  2.7746 
  A3  4.0660  4.1896 
       
  A1  1.3005  1.3567 

Hexagon  A2  2.6282  2.7683 

  A3  4.0549  4.1840 

7.5 Dispersion Curves 

The frequency responses of  longitudinal and flexural 
antisymmetric modes of vibration are plotted in the form of 
dispersion curves. The notations used in the figures, namely, 
PS, PF respectively denotes the plate in space and plate 
immersed in flu id. The notations 1, 2 and 3 respectively 
represcents the first, second and third modes of vibrat ions. 
The cross over points in various dispersion curves of 
different modes indicate that for a particular frequency of 

vibrations, the mechanical energy is communicated between 
the directions of frequency in the respective modes. Another 
aspect, which can be seen from the graph is that the 
frequencies are increases with respect to its modes of 
vibration. It is also observed that the displacement of 
particles takes irregular path when a plate in space (vacuum). 

A dispersion curve is drawn to compare the frequency 
responses of longitudinal modes of triangular cross-sectional 
plate immersed in flu id and in space and  is shown in Fig.1. 
From the Fig.1, it is observed that, the non-dimensional 
frequencies are increased with respect to its modes of 
vibrations and also the frequencies are linearly increased for 
a plate immersed in fluid. Similarly, a  comparison is made 
between the frequency responses of flexural antisymmetric 
modes of triangular cross-sectional plate immersed in flu id 
and in space and is shown in Fig.2. From Fig.2, it is observed 
that the displacement of particles for a plate immersed in 
flu id and in space receive a similar pattern. The displacement 
of energy for a p late in  space is lesser than the plate 
immersed in fluid. 

Figs.3 and 4 respectively shows the comparison between 
the frequency responses of longitudinal and flexural 
antisymmetric modes of square cross-sectional plate 
immersed in fluid and in space. From the Figs.3 and 4, it is 
observed that, the non-dimensional frequencie increases with 
respect to its modes of vib rations. From the Fig.3, for the first 
and third modes of vibrat ions, the frequencies will be the 
same for a particu lar period, after that both the plate 
immersed in fluid and in space have dispersion in different 
patterns. A similar type of behavior is observed for the 
flexural antisymmetric modes of vibrations also. 

 
Figure 1.  Comparison between the non-dimensional frequencies of longitudinal modes of triangular cross-sectional plate immersed in fluid and in space 
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Figure 2.  Comparison between the non-dimensional frequencies of triangular cross-sectional plate immersed in fluid and in space for different flexural anti 
symmetric modes 

 
Figure 3.  Comparison between the frequencies of flexural anti symmetric modes of square cross sectional plate immersed in fluid and in space 

 
Figure 4.  Comparison between the frequencies of  longitudinal modes of square cross sectional plate immersed in fluid and in space 
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Graph is drawn to compare the frequencies of longitudinal and flexural antisymmetric modes of vibrat ion for pentagonal 
cross-sectional plate immersed in fluid and in space is respectively and is shown in the Figs.5 and 6.  

 
Figure 5.  Comparison between the frequencies of longitudinal modes of pentagonal cross sectional plate immersed in fluid and in space 

 
Figure 6.  Comparison between the frequencies of flexural anti symmetric modes of pentagonal cross-sectional plate immersed in fluid and in space 

The dispersion of a plate immersed in fluid linearly increases, whereas the dispersion pattern is irregular when the plate is 
in space. The cross-over points between the modes of vibration indicates that, there is a transfer of energy between the modes 
of vibrat ions. The plate is highly  dispersive when it  is p laced in  vacuum. A  comparison graph is drawn between the 
non-dimensional frequencies of longitudinal and flexural anti symmetric modes of hexagonal p lates and are shown in  the Figs. 
7 and 8 respectively. From the Figs. 7 and 8, it is observed that the non-dimensional frequencies are h igher for plate immersed 
in fluid than the plate is space. This is the proper physical behavior of solid-fluid interaction problems.  
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Figure 7.  Comparison between the non-dimensional frequencies of longitudinal modes of  hexagonal cross sectional plate immersed in fluid and in space 

 
Figure 8.  Comparison between the non-dimensional frequencies of flexural anti symmetric modes hexagonal cross sectional plate immersed in fluid and in 
space 

8. Conclusions 
The in-plane v ibration of rings of polygonal cross section composed of homogeneous isotropic material immersed in a 

flu id is analyzed using the Fourier expansion collocation method. The frequency equations are obtained for longitudinal and 
flexural antisymmetric modes of vibrations. The computed non-dimensional frequencies for PS and PIF are compared by 
plotting the dispersion curves. Comparison is made between non-dimensional frequencies of Plate in Space (PS) and Plate 
Immersed in Fluid (PIF) for longitudinal modes of the Polygonal (triangle, square, pentagon and hexagon) cross-sectional 
plates. 
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Appendix A 
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( )5 2
1 3 cosn np J ax nρ α θ= Ω                                            (A5) 

( ) ( )26 2
2 4 cosn np H ax nρ α θ= Ω                                            (A6) 
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( ) ( ) ( ){ }1
1 1 1 1 cosn n nr nJ ax ax J ax nα α α θ+= −                                       (A11) 

( ) ( ) ( ){ }2
1 1 1 1 cosn n nr nY ax ax Y ax nα α α θ+= −                                       (A12) 

( )3
2 cosn nr nJ ax nα θ=                                                     (A13) 

( )4
2 cosn nr nY ax nα θ=                                                      (A14) 

( ) ( ) ( )5
3 3 1 3 cosn n nr nJ ax ax J ax nα α α θ+= − −                               (A15) 

( ) ( ) ( ) ( ) ( )2 26
4 4 1 4 cosn n nr nH ax ax H ax nα α α θ+

 = − −                            (A16) 

The barred expressions for the anti symmetric case are obtained by replacing cos nθ  by sin nθ  and sin nθ  by cos nθ  
in the Appendix A. 
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