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Free Vibration Analysis of Ring Shaped Plate of Polygonal
Cross-Sections Immersed in Fluid
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Abstract The free vibration analysis of ring shaped plate of polygonal cross-sections immersed in fluid is studied using
the Fourier expansion collocation method. The equations of motion based on two-dimensional theory of elasticity is applied
under the plane stress-strain assumptions of elastic plate of polygonal cross-sections namely, triangle, square, pentagon and
hexagon is made of isotropic material. The frequency equations are obtained for longitudinal and flexural anti symmetric
modes of vibrations. The computed non-dimensional frequencies are plotted in the formof dispersion curves for the material
copper. Comparison is made between the frequency responses of plate in space and plate immersed in fluid. The general

theory can be used to study any kinds of ring shaped plate using the proper geometrical relations.
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1. Introduction

The plates of circular and plates of polygonalcross-
sections are often used as structural components and their
vibration characteristics are important for practical design.
The frequency responses of rotating arbitrary / polygonal
cross-sectional plates has many applications in various fields
of science and technology, namely, submarine structures,
pressure vessel, bore wells, ship building industries and have
many other engineering applications. Nagaya[1-3] studied
the simplified method for solving problems of vibrating
plates of doubly connected arbitrary shape using the Fourier
expansion collocation method, he has detained the frequency
equations for a doubly connected polygonal crosssectional
plate and numerical calculation were carried for the above
said cross-sections. Following Nagaya, Ponnusamy[4,5]
discussed the frequency responses of thermo-elastic plate of
arbitrary cross-sections and generalized thermo-elastic plate
of polygonal crosssections by using the Fourier expansion
collocation method developed by Nagaya[1l,-3]. Venkatesan
and Ponnusamy[6,7] studied the wave propagation in solid
and generalized solid cylinder of arbitrary cross-sections
immersed in fluid using the Fourier expansion collocation
method. Sinha et al[8] have studied the axisymmetric wave
propagation in circular cylindrical shell immersed in a fluid,
in two parts. In Part I, the theoretical analysis of the
propagation modes is discussed and in Part II, the
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axisy mmetric modes excluding tensional modes are obtained
theoretically and experimentally and are compared. Berliner
and Solecki[9] have studied the wave propagation in a fluid
loaded transversely isotropic cylinder. In that paper, Part I
consists of the analytical formulation of the frequency
equation of the coupled system consisting of the cylinder
with inner and outer fluid and Part II gives the numerical
results. Easwaran and Munjal[10] investigated the effect of
wall compliance on lowest order mode propagation in a fluid
filled or submerged impedance tubes. Based on the closed
form analytical solution of the coupled wave equations and
applying the boundary conditions at the fluid-solid interface,
an eigen equation was obtained and then the dispersion
behavior of wave motion was analyzed. Also, they
investigated axial attenuation characteristics of plane waves
along water filled tubes submerged in water or air.

This paper demonstrates the in-plane vibration of rings of
polygonal cross section composed of homogeneous isotropic
material immersed in a fluid. In the first part, solutions to the
equations of motion for an isotropic medium using the two
dimensional theory of elasticity and for the fluid in and
around the solid medium are described. It is assumed that,
there is no vibration and displacement along the z-axis, that
is the displacement along the z-axis, w is zero. To satisfy
the boundary conditions, the Fourier expansion collocation
method is performed to the equations of the boundary
conditions along the boundary of the inner and outer surface
ofthering. Also,the frequency equations are obtained forthe
symmetric and antisymmetric cases. To illustrate the validity
of the model, some numerical examples are provided for the
frequency equation. The equation is solved by omitting the
fluid medium and the results are compared with the
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frequency responses of plate in space and plate immersed in
fluid. Also, the results are obtained for polygonal ( triangle,
square, pentagon and hexagon) rings for the longitudinal and
flexural antisymmetric modes of vibrations.

2. Formulation of the Problem

We considerahomogeneous, isotropic, elastic ring shaped
plate of polygonal cross-sections immersed in fluid. The
system displacements and stresses are defined by the polar

coordinates rand @ in anarb itrary point inside the plate and

denote the displacements 1, in the direction of rand #,

in the tangential direction 0. The in-plane vibration and
displacements of ring shaped plate of polygonal
cross-sections immersed in fluid is obtained by assuming
that there is no vibration and displacement along the

z-directions in the cylindrical coordinate system(r, 9,2).

The two dimensional stress equations of motion, strain
displacement relations in the absence of body forces for a
linearly elastic medium are considered from Ponnusamy[4]
as

-1 -1 Y
Grr,r +r o-rH,H +r (Grr - 0-9(9) - pur

Oy, +1 Opyp+2r 0, = pii, )
and
o, =A(e, +ey)+2ue,
O =A(e, +eg ) +2 ey
o, =2ue, (2)
Where O,,.,049,0,, are the stress components,

€,,.,€p,€,9 are the strain components, p is the mass
density, 4 and g are Lame’s constants.

The strain ¢, related to the displacements are given by

e =U.. €y=Tr (ur +u9’9), €9 =Uy, —T (ug —u,,g) 3)

s

in which y _and U, are the displacements components along radial and circumferential directions respectively. The

comma in the subscripts denotes the partial differentiation or derivative with respect to the variables.
Substituting the Eqgs.(2) and (3) in Eqs.(1), the displacement equations of motions are obtained as

-1 -2 -2
(2,+2,u)(urﬂ+r u,, —r u,,)+,ur U g

+(A+p)ruy g —(A+3u)ru, , = pu,,

y(ug’”, +r i, —ru, ) H(A+2u)ruy gy +(A+30) ru, y +(A+ p)r'u, , = pu,,. (4)

3. Solutions of Ring Shaped Plate

To obtain the free vibration of ring shaped plate of polygonal cross-sections, we seek the solution of Eq.(4) in the form

0 (r.0.0= 36, [ (4, 4w, )+ (B0, 4700 )
n=0

uy(r,0,1) = ign |:(”_l¢n,9 -

Voo )+ (7 o=V, )}e"‘” )

where gn:% for n=0, g =1 for n>1, i=+-1, ® is the frequency, @, (I’,@), l//n(r,Q), 5,, (r,@) and

w,(r,0) are the displacement potentials.

By introducing the dimensionless quantities Z:(l/,u),

Eq.(5) in Eq.(4), we obtain

O’ = po’a’ [u, T:tJ,u/p/a , x=r/a and substituting

[(2+Z)v2+92]¢n -0 ©)

and

[V +Q7 |y, =0 (7)

where V2 =0"/ax® +x' 9/ox+x7 006"
The solution of Eq. (6) for symmetric mode is

In"n

4, =| 4,7, (ayax)+ B,Y, (a;ax) |cos né (8)
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and the solution for the anti symmetric mode 7¢n is obtained by replacing cosn@ by sinnf in Eq. (8), we get
4, = [ZmJn (a,ax)+ BuY, (alax)] sin nd )

where J, is the Bessel function of first kind of order n and Yn is the Bessel function of second kind of order n and

F

(aa) = QZ/(2+I). Solving Eq. (7), we obtain
v, :[AZan (a,ax)+ B, Y, (azax)JsinnH (10)

2n"n

for symmetric mode. For the antisymmetric mode y_/ﬂ is obtained from Eq. (10) by replacing sinnf by cosn@ in Eq.(10),
we obtain

% = [Zszn (azax)+§ann (azax)}cos né (11)
where (ozza)2 = If (ala)z <0 and (ozza)2 <0, then the Bessel functions /, and Y, are replaced by the modified

Bessel functions ]n and Kn respectively.

4. Solutions of Fluid Medium

In cylindrical polar coordinates 7 and € the acoustic pressure and radial displacement equation of motion for an
inviscid fluid are of the form Achenbach[11],

S — S, f 1o, f S
p’ =-B (u” +r (u +u9’9)) (12)
and

2./ _
Criyy =4, (13)
respectively, where Bf is the adiabatic bulk modulus, pf is the density, ¢, = \/Bf/pf is the acoustic phase velocity

fof
in the fluid, (ur sUy ) is the displacement vector and

. o :
A= (”rfr +r7 (u] +u§,a)) (14)
Substituting
: S S
u/ =g/ Uy =r ¢, (15)
and seeking the solution of Eq. (13) in the form
. © . 1 .
¢/ (r,0,1) = z &, [¢,{ (r)cosnd + ¢£ (r)sin nG}elw’, (16)
n=0

the oscillating waves propagating in the inner fluid located
in the annulus is given by

¢r{ = A3an (a3a.X) (17)
2 == S A 7
where (a3a) =Q /p1 Bi , n which p, —p,/p ,

B =B/ /u, Hf) is the Hankel function of the second
kind of order n. If (0(441)2 < 0, then the Hankel function of

second kind is to be replaced by K, where K, is the

modified Bessel function of the second kind. By substituting

—f » Eq. (16) in Eq. (12) along with the Egs. (17) and (18), the
—_ RS . .

Bi =B /:U' If (asa) <0, the Bessel function J, in acoustic pressure for the inner fluid can be expressed as

the Eq. (17) is to be replaced by modified Bessel function plf — A3nQ2 ;1‘];1 (a3ax) cos n@eiQT"

1 n - Similarly, for the outer fluid that represents the hile forthe outer fluid, it is given by

(19)

oscillatory waves propagating away is given as

/= 25 g@ 7,
py =B, Q" p,H,” (a,ax)cosnfe”" (20)
¢ =B, H,) (,ax) (1s) ntisymmetric case. the so

In the antisymmetric case, the solutions for the inner and
outer fluid are obtained as

¢hf = A3 J,

n-n

2 —f=/ . . - i
where (@,a) %/ p\BY . in whien p, =pu/p (a;ax) @1
3
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and
¢/ =B, H" (a,ax) (22)

Similarly, the acoustic pressure for the antisymmetric
mode are obtained as

;lf = 43,07 ;lJn (azax)sin n@e' e (23
for the inner fluid and
;; = B3, QY p,H ,(12) (etgax)sin nfe™* (24)

for the outer fluid.

S. Boundary Conditions and Frequency
Equations

The boundary conditions along the curved surfaces of the

ring are
(axx +pif )1 =(o*x}, )1 (u —u; ) =0 (25)
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for the inner boundary and

(Gxx +p{)1 =(GXJ’)/ (Ll s ) =0 (26)
for the outer boundary, where x is the coordinate normal to
the boundary and j is the coordinate in the tangential

direction, O, is the normal stress, o, are the shearing

Xy

stresses and ( )1 is the value at the /—¢h segment of the

boundary. The first and last conditions in Eqs. (25) and (26)
are due to the continuity of the stresses and displacements of
the ring shaped plate and fluid on the curved surfaces. Since
the boundary of the cross section is irregular in shape, it is
difficult to satisfy the boundary conditions along both inner
and outer surfaces of the ring shaped polygonal cross

sectional plate immersed in fluid directly. If }; is the angle

between normal to the segment and the reference axis and if
it is assumed to be constant, then the transformed
expressions for the stresses are Nagaya[3] as

o, = ﬂ,(um +77 (ur +uy, )) +2ulu,  cos® (0—y,)+r" (u,, +uy, )sin2 (6-7,)

+0.5(r’1 (“9

ny = lu[ur r

-7 (ugﬁ +ur)sin2(0—7,)+(r

—urﬂ)—ugyr)sinZ(H—y/,)]

- (u,,ﬂ —u9)+u9’r)sin2(0—yl )]

(27)

Substituting Egs. (8)-(11), (19), (20), (23), (24) in the Egs. (25) and (26), the boundary conditions are transformed as

follows:

) (5] oo o

for the inner surface and

for the outer surface, where

S =0. 5(poA10 +pOBIO + Py Asy

)
S, )+

=0.5 (‘](I)Alo +q,B

S
1l
—_

[Ms

Sl = O.S(rOIAm +17 B, +1; A50)+

=
1l
AN

S

XX

NgE

- o.s(p;A10 + py By +P§Bso)+

n=1

NgE

S

Xy

= O-S(Q(I)Alo +40 By, ) +

Il
—_

n

(4,4,

1 2 3 4 5
(rnAln +rn Bln +rn A2n +rn B2n +rn ASn)

{(Siy )1 + (ELy )1} % _ o

(28)

(29)

+pnB +psA2n+pnBZn+pnAn)

+an +qu2n+QnB )

(pll’lAlI1+pnB +p3A2n+pnBZn+pB )

(‘];11‘41;1 +4,B,+4q,4,, +anZn)
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S = O.5(r01A10 +7; B + r6B )+ Z(rnlAln + rnzBln + rn3A2n + rfan + rn6BSn) (30)
n=1

—I —3—  —4—= - —2— N
S :0_5(p0A20 —|—pOBzo)+Z( nAln +p, B +pnA2n +pnan +pnA5n)

3

—l —3— —4—= ¢ —2— —4—
Sy = 0.5(q0A20 -I-qOBzo) Z(anln +q, B +an2n +an2n)

1
—1 —3— —4— — —2— —4— —5—
Sr:O.S rOAZO +rOBZO + Aln +rnBln +rnA2n +rnB2n +rnA5n
n=1

—3— —4— © —1 —6 —
S :O.S(pOAzo +pOBzo)+Z(pn pnBln +pnA2n +pnan +pnBsn)

n=1
— —3— —4— = (—1— —2— —4—
Sy =O.5(qOA20 +q0320)+2(q An +q, Bln +q A2n +q, an)
n=1

—3— —4— - —2— —6—
Sr :O.S(VOAZO +VOB20)+Z(rnA1n +rnBln +rnA2n +rnB2n +rnB5n)

n=l1

G

i
The terms P, to 7’,; are given in the Appendix A.

Performing the Fourier series expansion to Eqs. (25) and (26) along the boundary, the boundary conditions along the inner
and outersurfaces are expanded in the form of double Fourier series. When a plate is symmetric about more than one axis, the
boundary conditions, in the case of symmetric mode can be written in the form of a matrix as given below:

Al A2 A5 N ~1 ~2 A2 a3 3 a4 A4 A5 ~5
Poo  Poo  Poo 0 Por -+ PonN Por -+ PoN Por - PoN Por -+ PoN Por -+ Pon O - 0 (Ao |
' By
Al A2 A5 A1 Al a2 2 A3 3 a4 4 a5 ~5
Pno PnNo PnNo O Pn1 - PNN PNt - PNN PNt - PNN PNt -+ PNN PNt - PNN 0 -+ 0 || 450
A1 A2 ~1 A1 a2 ~2 A3 ~3 A4 ~4 Bsg
Q0 Q1o O 0 Oy - O 90 - 9w Y4 > 9w 94 - O 0O - 0 o - 0 )

N M : N N : : : : N : : : : : N 11
A1 A2 ~1 Al 2 ~2 A3 ~3 A4 ~4 :
Ovo 9% 0 0 Oy = 9w 9w " 9w w1 = Cw 9 = Qw 0 - 0 0 o 0 j
Al A2 A5 A1 A1 ~2 ~2 A3 A3 a4 ~4 A5 ~5
Roo  Roo  Roo 0 Ror -~ Ron Ror - Ron Ror - Ron Roi -+ Rov Ro1t -+ Roy O - 0 |Bi
~1 ~2 ~5 ~1 ~1 ~2 ~2 ~3 ~3 ~4 ~4 ~5 ~5 By
RNo RNo RnNo O RNt -+ RNN RN1 -+ RNN RNt -+ RNN RN1 -+ RNN RNt -+ RNN O -+ 0 || =0(32)
Ry B, o0 Ry By -~ By Ry - Ry B -~ By By - By 0 - 0o R} - R

o Foo o Ao ov - Ao v Ho o~y Ho ON 10 ON

1 2 6 1 1 2 2 3 3 4 4 6 6
Pvo Pyo O Pyo Pvi - Paw Pv1io- P Pwmio Paw Pvioc Paw 0 - 0 Pypoe Byy ||

1 2 1 1 2 2 3 3 4 4
On %o O 0 o1 - On 91 - 9N 91 > 9N 91 - Oy 0 - 0 o - 0 .A51

1 2 1 1 2 2 3 3 4 4 4
Oyo Ovo O 0 Onvt - Ow 9v1 - Ow 9v1 - 9w 9vm - 9w 0 - 0 o - 0 BSN

| 2 6 | 1 2 2 3 3 4 4 6 6 51
Ryo Ryo O Roo Roo -~ Ron Roo - Roy Roo - Roy R =+ Roy O =+ 0 Ry -+ Roy ||,

1 2 6 1 1 2 2 3 3 4 4 6 6 |LBsN

LRvo Ryo O Ryo Ryt - Ryv Ryt - Ryw Ryt - Ryw Ryt - Ryw 00 -+ 0 Ryp - Ryy |
where
L 9 L9
P = (26,/7)). I )24 (Rz,@)cosm@d@ an (26,/7)] ‘[ q; (Rz,@)sinm@d@
/= lgH =1 01
L 9 L 9

Rom =(2¢,/7), f r/ (i’(’z,&)cosm@d@, Pl =(2¢,/7)Y. j p; (R,,0)cos modo
=g, =g,
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sinm0do, R’

mn

L
26‘”/7[2_[ (R;,0)cosmOdl  (33)
I=1¢,_,

Similarly, the matrix for the antisymmetric mode is obtained as

(=3 =4 =l =1 =2 =2 =3 =3
Pio Pio  Pu PN Pn PiNn  Pn Pin
Pno Pno Pn1 PNy PN PNy Phi Pny
=3 =4 =1 =1 =2 =2 =3 =3
900 Q00 Qo1 Qon Qo1 on Qo1 Qon
=3 =3 =1 =1 =2 =<2 =3 =3
Ov0 9v0 9m Ow 9w Ow 9m Oy
Rio  Rio Ru RiN  Rn RN Rn Rin
=3 =4 =l =1 =2 =2 =3 =3
Rno RNo RNn1 RNN RN RNy RN1 RNN
-3 = — —1 — -2 -3 -3
Pio PIO P11 Pin Pll Pivn  Phi Pin
I | —1 —2 —2 —3 —3
Pno Pno PN PNy PN PNy Phi PNy
-3 =4 =l —1 —2 -2 =3 —3
900 Q00 Qo Qon Qo1 Qon Qo1 Qon
—3 =4 =l —1 —2 -2 =3 —3
QNO Q1o QN1 Oy QN1 O QN1 Oy

—1 —2 —3
RIO RIO R11 Rin R11 Rin Rll Rin
-3 =4 = —1 —2 —2 — —3

LRN0o RNO  Rn1 RNN RN RNN  RN1 RNN

where

L

Pmn =(2¢,/7)),

11911

L 9

6,
f pi(Ri.0)sinmodo, an =(2¢,/7)

Rom =(26,/7) [ 72 (R1,0)sinmod6. P =(22,/7) j ) (R,.0)sinmbdo

[=1 0
L 9

0l =(26,/7)3 | 7’ (R,.0)cos modo,

I=1g,

=4 =4 =5 =5 r ~
P Piv  Pn PiN O 0 Ay
: : : : By
=4 =4 =5 =5
Py PNy Phi Pyy 0 0 4
11
=4 =4 :
Qo1 Oy O 0 0 0 :
N N . N . . AlN
—4 —4
O Ony 0 0 0 o |,
11
=4 =4 =5 =5 .
Ri11 R1N Ri1 Rin 0 0 :
. . . . By
=4 4 =5 =5 Ay
RN RNN  Rn1 Rnv 0 0 . =0(34)
—4 — —6 —6 )
P11 P1N 0 0 P11 PIN || 4yp
By
—4 —4 —6 —6 N
Pni Pny 0 0 Pni Pyn || ¢
—4 —4 By
Oo1 Oy O 0 0 0o |
. . . . . . 51
QN1 Ow 0 0 0 0 Asy
—4 —6 —6
Rl RN O 0 Ri1 Ri1 || Bs
—4 —4 —6 —6
RNt Ryy O 0 Rn1 RNNg‘BSN
L Y
> [ 41(R1.0)cosmodo
/= lgH
L
I= 191_1
—j L4,
R =(26,/7) Y. | ra(R;,0)sinmbdo  (35)

=g,

and where j=1,2,3,4,5 and 6, L is the numberof segments, Ri is the coordinate r at the inner boundary, R, is the

coordinate 7 at the outer boundary and N is the number of truncation of the Fourier series. For the nontrivial solution of the
systems ofequations given in Eqs.(32) and (34), the determinant ofthe coefficient matrix must vanish and these determinants
give the frequencies of symmetric and antisymmetric modes respectively.

6. Particular Case

The frequency equations for a ring shaped plate of
polygonal cross-sections is obtained by omitting the fluid
medium in the corresponding expressions and solutions of
the above sections. This frequency equations are further
reduced to obtain the frequency equations of a solid
polygonal cross-sectional plate by considering the outer

Y and Yn+l

surface of the plate 1,

are equal to zero in the
Egs. (25) and (26), this frequency equations are matches well

with the frequency equations of Ponnusamy[5] by
considering the thermal fields are equal to zero. Using this
frequency equation, the numerical results of the frequency
fora plate in space is obtained, this results is used to compare
with the frequency obtained for a plate immersed in fluid.

7. Numerical Results and Discussions

In order to illustrate the nature and general behavior of the
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solution, some numerical examples are considered in this
section. The resulting frequency equations of the symmetric
and antisymmetric cases of the ring shaped plate of
polygonal cross sections immersed in a fluid given in Egs.
(33) and (35) are transcendental in nature with respect to the
dimensionless frequency . The computation of Fourier
coefficients given in Eqs. (34) and (36) is carried out using
the five point Gaussian quadrature. To obtain the roots of the
frequency equation, the secant method applicable for the
complex roots (Antia[12]) is employed. The material
properties used forthe computations are as follows: for solid,

the Poisson ratio v =0.3, density p:7849kg/m3 and
Young’s modulus E =2.139x10" N/m* and for fluid the
p’ =1000kg / m’®
¢ =1500m/sec .

density and phase velocity

7.1. Geometrical Relations of Ring Shaped Polygonal
Cross-Sections

The geometrical relations for the ring shaped plate of
polygonal cross-section given by Nagaya[3] as follows.

R /a= [cos(@—}/, )T
R /b= [008(9_2)}_1

Yi=7 (36)
where a(=b+h) and b is the apothems, / is the

thickness of the plate. Here the apothem bis taken as the
reference length which is used to obtain the dimensionless

expressions, and y,is the angle between the reference axis

and the normal to the segment.
7.2. Longitudinal Mode

In longitudinal mode of square and hexagonal
cross-section, the cross-section vibrates along the axis of the
cylinder, so that the vibration displacements in the
cross-sections are symmetrical about both the major and the
minor axes. Hence the frequency equations are obtained by
choosing both the terms of m and n as 0,2,4,6,... in

the Eq. (32) for the numerical calculations. In the case of
triangle and pentagonal cross-sectional plate, the vibration
and displacements are symmetrical about the major axis
alone, hence the frequency equations are obtained from the
Eq. (32) by choosing mand nas 0,1,2,3,.... Since the
boundary of the cross-sections namely, triangle, square,
pentagon and hexagon are irregular, it is difficult to satisfy
the boundary conditions along the curved surface, and hence
Fourier expansion collocation method is applied. That is the
curved surface, in the range @ =0 and @ = 7 is divided
into 20 segments, such that the distance between any two
segments is negligible and the integrations is performed for
each segment numerically by using the Gauss five point
formula .The non-dimensional frequencies are computed

for 0 <Q<1.0, using the secant method (applicable for
the complex roots, (Anita[12])).

7.3. Flexur al Mode

In flexural mode of square and hexagonal crosssection,
the vibration and displacements are antisymmetrical about
the major axis and symmetrical about the minor axis. Hence
the frequency equation may be obtained from Eq. (34) by
choosing n,m=1,3,5,7.....
pentagonal cross-sections, the vibration and displacements
are antisymmetrical about the minor axis, hence the
frequency equations may be obtained from Eq. (34)by

choosing n,m=1,2,3....

In the case of triangle and

7.4. Comparison between the Frequency Responses of
Plate in S pace and Plate Immersed in Fluid

Table 1. Comparison between non-dimensional frequencies of Plate in
Space (PS) and Plate Immersed in Fluid (PIF) for longitudinal modes ofthe
Polygonal (triangle, square, pentagon and hexagon) cross-sectional plates

Cross-sections Mode PS PIF

S1 2.3472 2.7667

Triangle S2 39541 4.1810
S3 54340 5.5957

S1 14157 14158

Square 2 2.8305 2.8426
S3 70773 7.0781

S1 14156 14270

Pentagon 2 2.3341 2.7232
S3 54287 5.5569

S1 2.8314 2.8420

Hexagon S2 56614 5.6668
S3 7.0728 7.0761

A comparison is made between the non-dimensional
frequencies of Plate in Space (PS) and Plate Immersed in
Fluid (PIF) for the longitudinal and flexural anti symmetric
modes of vibrations and are shown in Tables 1 and 2
respectively. Fromthe Tables 1 and 2, it is observed that, the
non-dimensional frequencies increases for increasing modes
of vibrations. Comparing the frequency responses of PS and
PIF, the frequencies are higher for a plate immersed in fluid
than the plate in space, this is the proper physical behavior
for solid-fluid interface problems. The notations namely S1,
S2, S3 and Al, A2, A3 used in the Tables respectively
represents the symmetric and anti symmetric modes of
vibration, and the number 1, 2, 3 represents the first, second
and third modes of vibrations.
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Table 2. Comparison between non-dimensional frequencies of Plate in
Space (PS) and Plate Immersed in Fluid (PIF) for flexural anti symmetric
modes of the Polygonal (triangle, square, pentagon and hexagon)
cross-sectional plates

Cross-sections Mode PS PIF

Al 1.2996 13763

Triangle A2 2.7079 2.7955
A3 41218 42101

Al 12934 13616

Square A2 2.6543 2.7779
A3 4.0691 4.1971

Al 1.2896 13627

Pentagon A2 2.6701 2.7746
A3 4.0660 4.1896

Al 1.3005 13567

Hexagon A2 2.6282 2.7683
A3 4.0549 4.1840

7.5 Dispersion Cur ves

The frequency responses of longitudinal and flexural
antisymmetric modes of vibration are plotted in the form of
dispersion curves. The notations used in the figures, namely,
PS, PF respectively denotes the plate in space and plate
immersed in fluid. The notations 1, 2 and 3 respectively
represcents the first, second and third modes of vibrations.
The cross over points in various dispersion curves of
different modes indicate that for a particular frequency of

2.5

PF1
2 P )

—a— PS1
- = =PF3

vibrations, the mechanical energy is communicated between
the directions of frequency in the respective modes. Another
aspect, which can be seen from the graph is that the
frequencies are increases with respect to its modes of
vibration. It is also observed that the displacement of
particles takes irregular path when a plate in space (vacuum).

A dispersion curve is drawn to compare the frequency
responses of longitudinal modes of triangular cross-sectional
plate immersed in fluid and in space and is shown in Fig.1.
From the Fig.1, it is observed that, the non-dimensional
frequencies are increased with respect to its modes of
vibrations and also the frequencies are linearly increased for
a plate immersed in fluid. Similarly, a comparison is made
between the frequency responses of flexural antisymmetric
modes of triangular crosssectional plate immersed in fluid
and in space and is shown in Fig.2. From Fig.2, it is observed
that the displacement of particles for a plate immersed in
fluid and in space receive a similar pattern. The displace ment
of energy for a plate in space is lesser than the plate
immersed in fluid.

Figs.3 and 4 respectively shows the comparison between
the frequency responses of longitudinal and flexural
antisymmetric modes of square cross-sectional plate
immersed in fluid and in space. From the Figs.3 and 4, it is
observed that, the non-dimensional frequencie increases with
respect to its modes of vibrations. Fromthe Fig.3, for the first
and third modes of vibrations, the frequencies will be the
same for a particular period, after that both the plate
immersed in fluid and in space have dispersion in different
patterns. A similar type of behavior is observed for the
flexural antisymmetric modes of vibrations also.

- @ —=PS3 -

Non dimensional frequency | Q|

0.4

0.6 0.8 1

Mode

Figure 1. Comparison between the non-dimensional frequencies of longitudinal modes of triangular cross-sectional plate immersed in fluid and in space
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Figure 2. Comparison between the non-dimensional frequenciesoftriangular cross-sectional plate immersed in fluid and in space for different flexural anti
symmetric modes

Non-dimensional frequency |Q|

0 0.2 0.4 0.6 0.8 1
Mode

Figure 3. Comparison between the frequencies of flexural anti symmetric modes of square cross sectional plate immersed in fluid and in space
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Mode

Figure 4. Comparison between the frequencies of longitudinal modes of square cross sectional plate immersed in fluid and in space
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Graph is drawn to compare the frequencies of longitudinal and flexural antisymmetric modes of vibration for pentagonal
cross-sectional plate immersed in fluid and in space is respectively and is shown in the Figs.5 and 6.

PF1 —m—PS1

......... PE2  «eeshees PS2 Q .
---PF3 -e-P3 A IATA
) o

Non-dimensional frequency |Q|

Mode

Figure 5. Comparison between the frequencies of longitudinal modes of pentagonal cross sectional plate immersed in fluid and in space
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=
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0 0.2 04 0.6 0.8 1
Mode

Figure 6. Comparison between the frequencies of flexural anti symmetric modes of pentagonal cross-sectional plate immersed in fluid and in space

The dispersion of a plate immersed in fluid linearly increases, whereas the dispersion pattern is irregular when the plate is
in space. The cross-over points between the modes of vibration indicates that, there is a transfer of energy between the modes
of vibrations. The plate is highly dispersive when it is placed in vacuum. A comparison graph is drawn between the
non-dimensional frequencies of longitudinal and flexural anti sy mmetric modes ofhexagonalplates and are shown in the Figs.
7and 8 respectively. Fromthe Figs. 7 and 8§, it is observed that the non-dimensional frequencies are higher for plate immersed
in fluid than the plate is space. This is the proper physical behavior of solid-fluid interaction problems.
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Figure 7. Comparison between the non-dimensional frequencies of longitudinal modes of hexagonal cross sectional plate immersed in fluid and in space
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Figure 8. Comparison between the non-dimensional frequenciesof flexural anti symmetric modes hexagonal cross sectional plate immersed in fluid and in
space

8. Conclusions

The in-plane vibration of rings of polygonal cross section composed of homogeneous isotropic material immersed in a
fluid is analyzed using the Fourier expansion collocation method. The frequency equations are obtained for longitudinal and
flexural antisymmetric modes of vibrations. The computed non-dimensional frequencies for PS and PIF are compared by
plotting the dispersion curves. Comparison is made between non-dimensional frequencies of Plate in Space (PS) and Plate
Immersed in Fluid (PIF) for longitudinal modes of the Polygonal (triangle, square, pentagon and hexagon) cross-sectional
plates.
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Appendix A
=2{n(n-1)J, (aax)+(aax)J ., (aax)jcos2(6 -y, )cos nd

{( ) (Z+2c05" (0-7,))\/, (eax)cosnd (D

pi =2{n(n-1)Y, (ayax)+(ayax)¥,,, (a,ax)}cos2(6 -y, )cos nd
¢ {(eya)’ (+ 2008 (0-7,))} Y, (cyax)eosnd (2

p, =2n{(n-1)J, (ayax)+(a,ax)J,,, (a,ax)}cos2(0 -y, ) cos né
12{(n(n=1) (@), (@) + (c,ax) ., (eax) sin2(6 - 7 )sinn (A3

py =2n{(n-1)Y, (a,ax) - (a,ax)Y,,, (a,ax)} cos 2(0 - y,) cos nd

12{(n(n 1)~ (eax)’ )Y, (@sax) +(an)7,,, (@) sin2 (6 -7, )sinnd (A9
P} =Q%p,J, (a,ax)cosnd (A5)
= p,H (a,ax)cos nd (A6)

)+(eax)J,,, (alax)}sin2(l9—7,)cosn«9
(A7)
, (a,ax)}cos2(0 -y, )sinnd

q. = Z{n(n—l)—(alax) (alax
+2n{(ozlax)Jn+1 (a]ax) ( )

quZ{n(n—l)—(alax) " (aax)+(ayax) ,Hl(alax)}sin2(¢9—yl)cosn9

(A8)
+2n{(eyax)Y,,, (ayax)-(n-1)Y, (e,ax)} cos 2(6 -y, )sin nf

q, =2n{(n-1)J, (eyax)—(a,ax)J,,, (a,ax)}sin2(6 -y, ) cos nd
12{(,ax) ., (@ax)(n(n 1)~ (@ax)’ ), (aax)| cos2(6 - ) sinnd (A9

g, =2n{(n-1)Y, (a,ax) - (a,ax)¥,,, (a,ax)}sin2(0 - y,) cos nd
. (A10)

+2{(a2ax " (@yax) (n(n 1)-(a,ax) )Yn(azax)}cos2(6’—yl)smm9

r) ={an(alax) (ayax)J,., (eqax)jcosnd (A11)
r ={nY, (eyax)—(aax)Y,,, (ayax)}cosnd (A12)
r) =nJ, (a,ax)cos nf (A13)
r, =nY, (a,ax)cosnd (A14)
v =—[an (053ax)—(053ax)Jn+1 (a3ax }cosn@ (A15)
rS = —[nH,(f) (a,ax) —(054ax)H,£+)1 (a4ax)] cosné (A16)

The barred expressions for the anti symmetric case are obtained by replacing cosn@ by sinnf and sinn@ by cosné
in the Appendix A.
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