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Abstract  In order to study the free vib ration of simply  supported circular cy lindrical shells, a semi-analytical p rocedure 
is discussed in detail. In this technique, beam function is used as an approximat ion for simply supported boundary 
conditions. A literature review reveals that beam functions are used extensively in predicting natural frequencies of shells. 
Since this method does not involve with boundary condition equations, there is no need to deal with intense calculations. 
Hence, it  is important to check the accuracy of this approximate technique. So this method was applied to ten different shell 
theories: 1) Donnell-Mushtari, 2) Love-Timoshenko, 3) Arno ld-Warburton, 4) Houghton-Johns, 5) Flugge-Byrne-Lur’ye, 6) 
Reissner-Naghdi-Berry, 7) Sanders, 8) Vlasov, 9) Kennard-Simplified and 10) Soedel. The approximate procedure was 
compared favorably with experimental results. Finally, variations and influences of length, radius and thickness were 
studied on amplitude ratios. 
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1. Introduction 
Similar to beams and plates, in many branches of 

engineering, cylindrical shells are the practical elements of 
various engineering structures such as pipes and ducts, 
bodies of cars, space shuttles, aircraft fuselages, ship hulls, 
submarines and construction buildings. However, analysing 
the dynamic characteristics of cylindrical shells is more 
complicated than that of beams and plates. This is main ly 
because the equations of motion of cylindrical shells 
combined with boundary conditions are more complex. 

A comprehensive summary and discussion of shell 
theories including natural frequencies and mode shape 
informat ion has been done by Liessa[1] in 1973. More 
recently, Amabili and Paidoussis[2], Amabili[3] and 
Kurylov and Amabili[4] have presented noteworthy reviews 
with a non-linear point of v iew. Many investigations 
followed the p ioneering work of Love[5] using his first 
approximation theory, such as Flugge[6]. The Flugge theory 
is based on Kirchhoff-Love hypothesis for thin elastic shells. 
By using this theory, the strain-displacement relat ions and 
changes of curvatures of the middle surface of a cylindrical 
shell can be obtained. The simplified Donnell’s theory 
would be achieved by neglecting few terms in Flugge 
equations 

Livanov[7] applied love’s assumption and usedd is p lace
ment functions to solve the p roblem of axisymmetrical  
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vibrations of simply supported cylindrical shells. Rinehart 
and Wang[8] investigated the vibration of simply supported 
cylindrical shells stiffened by discrete longitudinal 
stiffeners using Donnell’s approximate theory, Flugge’s 
more exact theory and Love’s assumption for longitudinal 
wave numbers. Thesis theories are not only concerned with 
simply supported end conditions, but they have also applied 
other boundaries, such as cantilever cylindrical shells[9], 
fixed free circular cy lindrical shells[10], clamped-clamped 
shells[11] and infin ite length shells[12]. Most researchers 
and those cited above, use beam function as an 
approximation  for the simply  supported boundary 
conditions and find natural frequencies of vibration by the 
approximate method. This approximation is also useful for 
fin ite element analysis of cylindrical shells by using 
Hermitain  polynomial of beam function type[13]. In 
addition to the approximate method, there are other 
approaches to find natural frequencies, like the computer 
based numerical method[14],[15] to avoid cumbersome 
computational effort and the wave propagation technique 
[16]. More recently Farshidianfar etl.[17] used the 
advantage of acoustical excitation to find natural frequency 
of long cylindrical shells. 

Unlike beams or plates which are normally one or two  
dimensional structures, shells can freely vibrate in three 
directions. This has caused complicated the motions of the 
shell at resonance frequencies. Thus, apart from frequency 
behaviour, modal identification of cy lindrical shells with 
their amplitudes has always been of great importance. 
Fields such as engineering design, acoustics and sound 
radiation are very  much dependent on the amplitude rat ios 
of cylindrical shells. Previous studies[18] have been made 
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in order to identify amplitude ratios of the mode shapes, 
however, these studies are not complete. 

In the present study, a semi-analytical approach is 
proposed to investigate the free vibration of simply 
supported cylindrical shells. As cited above, in tradit ional 
analysis, beam functions with similar boundary conditions 
are used to approximate wave numbers in the axial direction. 
This method is considered as an approximate technique. 
The approximate method is used to obtain the natural 
frequencies based on ten different shell theories 
(Donnell-Mushtari, Love-Timoshenko, Arnold-Warburton, 
Houghton-Johns, Flugge-Byrne-Lur’ye, Reissner-Naghdi-B
erry, Sanders, Vlasov, Kennard-Simplified and Soedel). The 
results are also compared with experimental results and 
show good agreement. Finally, the behaviour of the circular 
shells with  various aspect and thickness ratios was analysed. 
It was observed that by varying these parameters the 
dominant motion of the shell could change to either 
longitudinal, tangential or radial. 

2. Theoretical Analysis 
The cylindrical shell under consideration is with constant 

thickness h, mean radius R, axial length L, Poisson’s ratioυ , 
density ρ  and Young’s modulus of elasticity E . Here the 
respective displacements in the axial, circumferential and 
radial d irections are denoted by ( )txu ,,θ , ( )txv ,,θ  and 
( )txw ,,θ  as shown in Figure 1. 

 
Figure 1.  Circular cylindrical shell: coordinate system and dimensions 

In order to study free vibrat ion of a cylindrical shell, the 
equations of motion can  be written in  matrix form as fo llows: 

    (1) 

where )3 ,2 ,1,( =jiLij are differential operators with 
respect to x , θ  and t.  

Different systems of equations are used to model the 

vibration behaviour of circular cylindrical shells. In this 
paper ten theories namely: 1) Donnell-Mushtari[1], 2) 
Love-Timoshenko[1], 3) Arnold-Warburton[1], 4) Houghto
n-Johns[1], 5) Flugge-Byrne-Lur’ye[1], 6) Reissner-Naghdi
-Berry [1], 7) Sanders[1], 8) Vlasov[1], 9) Kennard-Simplifi
ed[1] and 10) Soedel[19], are used to find natural frequencies 
for various boundary conditions. 

The first attempt in solving (1) is the assumption of a 
synchronous motion: 

            (2) 

where ( )tf  is the scalar model coordinate corresponding 
to the mode shapes ( )θ,xU , ( )θ,xV  and ( )θ,xW . 

The next step is to use the separation of variables method 
in order to separate the spatial dependence of the modal 
shape between longitudinal and circumferential direct ions. 
Hence the axial, tangential and rad ial displacements of the 
wall vary accord ing to: 

     (3) 

in which mλ  and n  are the axial wavenumber and the 
circumferential wave parameter, respectively. BA,  and C  
are the undetermined constants, and ω  is the circular 
frequency of the natural vibration. 

Substituting (3) into (1), using any of the shell theories, 
leads to a set of homogenous equations having the following 
matrix form:  

       (4) 

in which [ ] )3 ,2 ,1,( =jiCij are functions of mn λ ,  and a 

frequency parameter Ω  that is defined as follows: 

           (5) 

The coefficient matrix, [ ]ijC  for the ten shell theories is 
obtained as follows: 
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  (7) 

Arnold-Warburton 

   (8) 

Houghton-Johns 

  (9) 

Flugge-Byrne-Lur’ye 

 (10) 

Reissner-Naghdi-Berry 

  (11) 

Sanders 

  (12) 

Vlasov 

  (13) 

Kennard-Simplified  

  (14) 

For nontrivial solution the determinant of the coefficient 
matrix in (4) must be zero : 

;             (15) 
The expansion of (15) will give the following two  

eigenvalue problems: 
• For a given value of mλ  there exists one or more proper 

values for ω  so that the (15) vanishes.  
• For a given value of ω  there exists one or more proper 

values for mλ  so that the (15) vanishes. 
Solving (15) leads to a cubic equation in terms of the 

nondimentioanl frequency parameter 2Ω . Thus for a fixed 
value of n  and mλ , three positive roots and three negative 
roots are yield for the nondimensional frequency. The three 
positive roots are the natural frequencies of the cy lindrical 
shell that can be classified as primarily axial, circumferential 
or radial. The lowest frequency is usually associated with a 
motion that is primarily radial (or flextural). 

3. Beam Function Method 
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In general, solving the roots of the characteristic equation 
of (15) for mλ  is not possible in closed form. Hence, 
researchers have often leaned to use approximate techniques. 
Beam functions can be used to obtain natural frequencies and 
approximate d isplacements for closed circu lar cy lindrical 
shells. This method is an assimilat ion of the flextural 
vibration of cy lindrical shell with a transversely vibrating 
beam of the same boundary conditions. According to the 
approximate method, for a simply supported shell at both 
ends, the nature of the axial mode can be defined as: 

                 (16) 

By substituting (16) into (15), the only unknown of the 
characteristic equation will be the frequency parameter 2Ω  
for a fixed combination of m  and n .  

4. Result and Discussion 
Since the beam function method is an approximation to 

obtain natural frequencies for thin circular cy lindrical shells, 
it is important to check the accuracy of this method. Hence, 
the natural frequency for simply supported boundary 
conditions, calculated by using the beam functions via ten 
common theories of cylindrical shells. 

In Table 1, results calculated by the approximate method 
according to the ten theories, are compared with an 
experiment held by Farshidianfar et l.[17] for simply 
supported circular cylindrical shell. The shell investigated in 
Table 1 is made of alumin ium with material p roperties; 
E=68.2GPa, 3mKg2700=ρ and 33.0=υ . The dimensions of 
the shell are: L=1.7272 m, R=0.0762 m and  h=0.00147 m. 
The errors of all theories with respect to the experiment are 
also shown in Table 2. It  is observed that, the beam function 
method yields close results compared to  the experiment as 
well. It is also concluded that some theories 
(Love-Timoshenko, Arnold-Warburton, Flugge 
Byrne-Lur’ye, Reissner-Naghdi-Berry, Sanders, Vlasov, and 
Soedel) reveal same results. Kennard-Simplified, 

Reissner-Naghdi-Berry and Soedel are more accurate than 
the other theories and Dunnell-Mushtari and 
Houghton-Johns theory are not precise compared to other 
theories. 

Let us now study the effects of length, radius and 
thickness on amplitude ratios and motions of the mode 
shapes of the shell. In  Figures. 2-5 amplitude rat ios are 
plotted as functions of the thickness ratio h/R, for shells with 
two aspect ratios L/R= 3 and 20. 

According to Figurs.2-5 for L/R=3, nearly all modes up to 
m=3 have dominantly radial motions for all values of n, for 
shells of h/R<0.25. Th is is true except for { })1,1(),( =nm , 
which also has an equally  axial motion. It is observed that for 
shells of h/R>0.25 the axial and tangential motions become 
stronger, however, these type of shells are categorized into 
thick-walled shells. According to Love’s first approximation 
for thin-walled shells, only shells of small thickness to radius 
and length are categorized into thin-walled theories. Thus, it 
may  not be exact  to calcu late shells of h/R>0.25 with 
thin-walled theories. However the general trend could be 
shown. Although, one would  expect dominant radial motions 
for higher mode numbers of m, but, it is interesting that for 
m>3 modes and L/R=3, both amplitude ratios posses a 
quasi-sinusoidal and irregular behaviour. Therefore, shells 
with small L/R ratios have a complete irregular behaviour for 
different thicknesses at high mode numbers. 

On the other hand, for L/R=20 a complete different pattern 
is observed compared to L/R=3. As reported in Figurs.2-5, 
for shells of L/R=20, at low mode numbers the tangential 
ratio behaves similar to a quasi-sinusoidal wave. However, 
the magnitude of the tangential and axial ratios does not 
exceed unity. Thus, the motions are always dominantly 
radial for long shells with small radius, regardless of the 
thickness. 

Hence it is concluded from Figurs.2-5 that the thickness is 
a crucial parameter when dealing with short shells of small 
radius. This is due to the fact that, these types of shells 
behave similar to a ring rather than a beam. 

Table  1.  Comparison Between Approximation Analysis with Experimental Data 
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1 1 138.40 148.642 141.668 141.578 134.151 141.498 141.623 141.578 141.407 145.637 141.446 
1 2 190.30 231.881 176.728 176.524 167.113 176.501 176.706 176.524 176.558 209.101 176.692 
1 3 502.20 541.841 481.813 481.722 477.946 481.733 481.813 481.722 481.779 515.852 481.811 
1 4 884.40 983.559 922.114 922.057 920.000 922.103 922.114 922.057 922.125 956.539 922.112 
2 1 464.70 530.105 528.121 528.019 525.944 527.962 528.064 528.019 527.860 529.300 527.358 
2 2 310.50 292.056 249.876 249.297 242.573 249.240 249.830 249.308 249.388 274.424 249.663 
2 3 477.00 551.332 491.995 491.632 487.890 491.632 491.984 491.644 491.780 525.853 491.960 
3 2 496.60 458.874 432.613 431.865 427.874 431.820 432.557 431.899 432.001 447.932 432.010 
3 3 558.90 582.173 525.615 524.867 521.295 524.855 525.592 524.878 525.150 558.169 525.499 
4 2 679.80 718.773 701.754 700.937 698.363 700.937 701.697 700.994 701.107 711.902 700.852 
4 3 638.30 650.082 599.091 597.912 594.703 597.923 599.057 597.957 598.354 628.742 598.809 
5 3 782.00 764.458 720.678 719.147 716.403 719.193 720.633 719.238 719.737 746.463 720.163 
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Table 2.  Errors of the Ten Theories Compared with Experimental Data 
m

 n 

D
on

ne
ll-

M
as

ht
ar

i 
(H

z)
 

Lo
ve

- 
Ti

m
os

he
nk

o 
(H

z)
 

A
rn

ol
d-

 
W

ar
bu

rto
n 

(H
z) 

H
ou

gh
to

n-
 

Jo
hn

s (
H

z)
 

Fl
ug

ge
-B

yr
ne

- 
Lu

r’y
e (

H
z) 

Re
iss

ne
r-N

ag
hd

i- 
Be

rry
 (H

z)
 

Sa
nd

er
s 

(H
z)

 

V
la

so
v 

(H
z)

 

K
en

na
rd

- 
Si

m
pl

ifi
ed

 (H
z) 

So
ed

el 
(H

z)
 

1 1 7.7 2.4 2.3 -3.1 2.2 2.3 2.3 2.2 5.2 2.2 
1 2 21.85 -7.1 -7.2 -12.2 -7.2 -7.1 -7.2 -7.2 9.9 -7.1 
1 3 7.9 -4.1 -4.1 -4.8 -4.1 -4.0 -4.1 -4.1 2.7 -4.1 
1 4 11.2 4.3 4.2 4.0 4.3 4.3 4.2 4.3 8.1 4.3 
2 1 14.1 13.6 13.6 13.2 13.6 13.6 13.6 13.6 13.9 13.5 
2 2 -5.9 -19.5 -19.7 -21.9 -19.7 -19.5 -19.7 -19.7 -11.6 -19.6 
2 3 15.6 3.1 3.1 2.3 3.1 3.1 3.1 3.1 10.2 3.1 
3 2 -7.6 -12.9 -13.0 -13.8 -13.0 -12.9 -13.0 -13.0 -9.8 -13.0 
3 3 4.2 -5.9 -6.1 -6.7 -6.1 -5.9 -6.1 -6.0 -0.1 -6.0 
4 2 5.7 3.2 3.1 2.7 3.1 3.2 3.1 3.1 4.7 3.1 
4 3 1.8 -6.1 -6.3 -6.8 -6.3 -6.1 -6.3 -6.2 -1.5 -6.2 
5 3 -2.2 -7.8 -8.0 -8.4 -8.0 -7.8 -8.0 -8.0 -4.5 -7.9 

 
Figure 2.  Amplitude ratio versus h/R for m=1: (a) L/R=3; (b) L/R=20 

 
Figure 3.  Amplitude ratio versus h/R for m=3: (a) L/R=3; (b) L/R=20 
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Figure 4.  Amplitude ratio versus h/R for m=5: (a) L/R=3; (b) L/R=20 

 
Figure 5.  Amplitude ratio versus h/R for m=7: (a) L/R=3; (b) L/R=20 

5. Conclusions 
The free vibration of circular cylindrical shells with 

simply supported boundary conditions has been studied 
using ten different thin  shell theories: Donnell-Mushtari, 
Love-Timoshenko, Arnold-Warburton, Houghton-Johns, 
Flugge-Byrne-Lur’ye, Reissner-Naghdi-Berry, Sanders, 
Vlasov, Kennard-Simplified and Soedel. The scope of the 
investigation was focused upon using the beam function as 
an approximat ion fo r boundary condition to find the natural 
frequencies of a shell. Next , in order to check the accuracy of 
the theories, a comparison was carried out with experimental 
results and it shows good agreement. Moreover, the approxi
mate method based on the Soedel and Kennard-Simplified 
theories reviled better results compared to other theories.  

Modal amplitudes which are important parameter in  
acoustical engineering were also analysed. The effects of 
length, radius and thickness are completely studied on 
amplitude rat ios and mode shapes. Results show that both the 
aspect and thickness ratios are crucial parameters which can 
change the behaviour of a shell from beam type motion to 
ring type. 
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