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Abstract  Similarity Solutions are obtained for one-dimensional adiabatic flow behind ionizing cylindrical shock wave 
propagating in a rotating non-ideal gas in presence of an azimuthal magnetic field. The electrical conductivity in the medium 
ahead of the shock is assumed to be negligible, which becomes infinitely large after passage of the shock. In order to obtain 
the similarity solutions, the initial density of the medium is assumed to be constant and the initial angular velocity to be 
obeying a power law and to be decreasing as the distance from the axis increases. The effects of an increase in the value of the 
index for variation of angular velocity of the ambient medium, in the value of the parameter of the non-idealness of the gas 
and in the strength of the ambient magnetic field on the shock propagation are investigated. It is observed that the 
non-idealness of the gas has decaying effect on the shock wave. 
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larity Solutions 

1. Introduction 
The formulation of self-similar problems and examples 

describing the adiabatic motion of non-rotating gas models 
of stars, are considered by Sedov[1], Zel’dovich and Ra-
izer[2], Lee and Chen[3] and Summers[4]. Rotation of the 
stars significantly affects the process taking place in their 
outer layers. Therefore, question connected with the explo-
sions in the rotating gas atmospheres are of definite astro-
physical interest. Chaturani[5] studied the propagation of 
cylindrical shock waves through a gas having solid body 
rotation and obtained the solutions by a similarity method 
adopted by Sakurai[6]. Nath, Ojha and Takhar[7] obtained 
the similarity solutions for the flow behind spherical shock 
waves propagating in a non-uniform rotating interplanetary 
atmosphere with increasing energy. Ganguly and Jana[8] 
studied a theoretical model of propagation of strong spheri-
cal shock waves in a self-gravitating atmosphere with radia-
tion flux in presence of a magnetic field. They, also consid-
ered the medium behind the shock to be rotating, but ne-
glected the rotation of the undisturbed medium. In all of the 
works, mentioned above, the medium is taken to be a gas 
satisfying the equation of state of a perfect gas. Because of 
high pressure and density that generally occur behind a 
shock wave, produced by an explosion, the assumption that 
the gas is ideal is no more valid. The popular alternative to 
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the ideal gas is a simplified van der Waals model. Roberts 
and Wu[9, 10] adopted this model to discuss the shock wave 
theory of Sonoluminescence. Vishwakarma et al.[11] too 
adopted this as their model of a non-ideal gas to obtain the 
self-similar solutions for the flow behind a magnetogasdy-
namic cylindrical shock wave propagating in a rotating gas 
in presence of an azimuthal magneting field. They have 
taken the electrical conductivity of the initial medium and 
the medium behind the shock to be infinite. But, in many 
practical cases the medium may be of low conductivity 
which becomes highly conducting due to passage of a strong 
shock. Such a shock wave is called a gas-ionizing shock or, 
simply ionizing shock. The propagation of a ionizing shock 
has been studied by Greenspan[12,] Greifinger and Cole[13], 
Christer[14], Rangarao andRamana[15] and Singh[16] in a 
non-rotating perfect gas. In the present work, we have ex-
tended the work of Vishwakarma et al.[11] by investigating 
the propagation of gas-ionizing shock in a non-ideal rotating 
gas in place of magnetogasdynamic shock. In order to obtain 
similarity solutions, the initial density of the medium is 
assumed to be constant and the initial angular velocity of 
rotation to be obeying a power law and to be decreasing as 
the distance from the axis increases. It is expected that such 
an angular velocity may occur in the atmospheres of rotating 
stars. 

Effects of a change in the strength of ambient magnetic 
field, in the non-idealness of the gas and in the index of 
variation of angular velocity of the ambient medium (or 
index of variation of ambient magnetic field) are investigated. 
A comparison is also made between the results of the present 
work and those of the corresponding magnetogasdynamic 
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shocks. 

2. Basic Equations and Boundary  
Conditions 

The fundamental equations governing the unsteady adia-
batic cylindrically symmetric motion of a non-ideal and 
perfectly conducting gas, which is rotating about the axis of 
symmetry and in which an azimuthal magnetic field is per-
meated and heat conduction and viscous stress are negligible 
(c.f. Whitham[17], Chaturani[5]), are: 

¶r ¶r ¶ r
+ + r + =

¶ ¶ ¶
u uu 0,

t r r r
    (2.1) 

æ ö¶ ¶ ¶ ¶ m
+ + + m + - =ç ÷ç ÷¶ ¶ r ¶ ¶è ø

2 2u u 1 p h h vu h 0,
t r r r r r (2.2) 

¶ ¶ ¶
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= +

¶ ¶
d u
dt t r

 

and r,p,h  are the density, pressure and azimuthal mag-
netic field, respectively, u and v are the radial and azimuthal 
components of the fluid velocity, m  is the magnetic per-
meability, r and t are the distance and time, and e is the in-
ternal energy per unit mass. Also, we have 

=v Ar,                   (2.6) 
where A is the angular velocity of the medium at the radial 

distance r from the axis of the symmetry.  
In most of the cases the propagation of shock waves arises 

in extreme conditions under which the assumption that the 
gas is ideal is not a sufficiently accurate description. To 
discover how deviations from the ideal gas can affect the 
solutions, we adopt a simple model. We assume that the gas 
obeys a simplified van der Waals equation of state of the 
form (Roberts and Wu[9],[10]) 

Gr
=

- r
Tp ,

(1 b )
            (2.7) 

- r
= =

r g -v
p(1 b )e C T ,

( 1)
         (2.8)

 
where G  is the gas constant, G

=
g -vC

1
 is the specific 

heat at constant volume and g is the ratio of specific heats. 
The constant b is the ‘van der Waals excluded volume’; it 

places a limit, r =max
1 ,
b

 on the density of the gas.  

We assume that a cylindrical shock is propagating out-
wards from the axis of symmetry in a rotating non-ideal gas 
with constant initial density and negligible electrical con-

ductivity in presence of an azimuthal magnetic field. Due to 
passage of the shock, the gas is highly ionized and its elec-
trical conductivity becomes infinitely large. The conditions 
across such a gas-ionizing shock are (c.f. Singh and 
Srivastava[18] and Vishwakarma and Pandey[19]) 

= - b2u (1 )V,             (2.9) 
r

r =
b
1

2 ,               (2.10) 

=1 2h h ,               (2.11) 
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and = r1b b  is the parameter of non-idealness of the gas. 
Here V is the shock velocity,M is the shock-Mach number 

referred to frozen speed of sound æ ög
ç ÷rè ø

1 2
1

1

p ,  and AM  is the 

Alfven-Mach number. Quantities with suffices ‘1’ and ‘2’ 
correspond to their values just ahead and just behind the 
shock, respectively.  

The shock-Mach number eM  referred to the speed of 

sound in non-ideal gas é ùg
ê úr -ë û

1 2
1

1

p
(1 b)

 and the Alfven-Mach 

number AM  are given by 

( )= -
1 2

eM M 1 b ,             (2.15) 

And =
m rA 2 1 2

1 1

VM ,
( h / )

                     (2.16) 

where =
g r 1 2

1 1

VM .
( p / )

                     (2.17) 

Ahead of the shock the azimuthal magnetic field varies as  
a=1 0h h R ,              (2.18) 

where a0h and  are constants, and R is the shock radius. 
In order to obtain the similarity solutions it is assumed that 

the initial angular velocity 1A  varies as  
= d

1 0A A R ,             (2.19) 
where 0A  and d are constants. 
The momentum equation (2.2) in the undisturbed state of 

the gas, gives 
+ a

= r - + a m +
+ a

2(1 d) 2
2 2

1 1 0 0
R Rp A (1 ) h constant.
2(1 d) 2

(2.20) 

The total energy of the flow-field behind the shock is not 
constant, but assumed to be time dependent and varying as 
(Rogers[20], Freeman[21], Director and Dabora[22]) 

w= w ³0E E t , 0,           (2.21) 
where 0E  and w  are constants. The positive value of w  

correspond to the class in which the total energy increases 
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with time. This increase can be achieved by the pressure 
exerted on the fluid by an expanding surface (a contact sur-
face or a piston). This surface may be, physically, the surface 
of the stellar corona or the condensed explosives or the 
diaphragm containing a very high-pressure driver gas. By 
sudden expansion of the stellar corona or the detonation 
products or the driver gas into the ambient gas, a shock wave 
is produced in the ambient gas. The shocked gas is separated 
from this expanding surface which is a contact discontinuity. 
This contact surface acts as a ‘piston’ for the shock wave. 
Thus the flow is headed by a shock front and has an ex-
panding surface as an inner boundary. The situation very 
much of the same kind may prevail in the formation of cy-
lindrical spark channel from exploding wires. In addition, in 
the usual cases of spark break down, time dependent energy 
input is a more realistic assumption than instantaneous en-
ergy input (Freeman and Cragges[23]). 

3. Similarity Solutions 
Zel’dovich and Raizer[2] shown that the gasdynamic 

equations admit similarity transformations, that there are 
possible different flows similar to each other which are de-
rivable from each other by changing the basic scales of 
length, time, and density. The motion itself may be described 
by the most general functions of the two variables r and t, 
r(r,t) , p(r, t), u(r, t), v(r, t) and h(r, t). These functions also 
contain the parameters entering the initial and boundary 
conditions of the problem (and specific heat ratio g ). 

However, there exist motions whose distinguishing prop-
erty is the similarity in the motion itself. These motions are 
called self-similar[1, 2]. The distribution as a function of 
position of any of the flow variables, such as the pressure p, 
evolves with time in a self-similar motion in such a manner 
that only the scale of the pressure P (t)  and the length scale 
R(t) of the region included in the motion change, but the 
shape of the pressure distribution remains unaltered. The p(r) 
curves corresponding to different time t can be made the 
same by either expanding or contracting the P  and the R 
scales. The function p(r, t) can be written in the form 

æ ö= P ç ÷
è ø

rp(r,t) (t)P ,
R

            (3.1) 

where the dimensional scales P  and R depend on time in 

some manner, and the dimensionless ratio æ ö= ç ÷P è ø

p rP
R

 is a 

“universal” (in the sense that it is independent of time) 

function of the new dimensionless coordinate =
rx
R

. Mul-

tiplying the variables æ ö
ç ÷
è ø

rP
R

 and x by the scale functions 

P (t)  and R(t), we can obtain from the universal function P(x) 
the true pressure distribution curve p(r) as a function of 
position for any time t. The other flow variables, density, 
velocity and magnetic field are expressed similarly. 

For self-similar motions the system of partial differential 

equations (2.1)-(2.5) reduces to a system of ordinary dif-
ferential equations in new unknown functions of the simi-

larity variable =
rx
R

. Let us derive these equations. To do 

this we represent the solution of the partial differential 
equations (2.1)-(2.5) in terms of products of scale functions 
and the new unknown functions of the similarity variable x, 

=
rx
R

, =R R(t) . 

The pressure, density, velocity, magnetic field, and length 
scales are not all independent of each other. If we have 
choose R and r1  as the basic scales, then the quantity 

= &V R  can serve as the velocity scale, r 2
1V  as the pressure 

scale, and r m1( / ) V  as the magnetic field scale. This does 
not limit generality of the solution, as the scale is only de-
fined to within a numerical coefficient which can always be 
included in the new unknown function. We seek a solution of 
the form 

=u VU(x),               (3.2) 
r = r W1 (x),                (3.3) 

= r 2
1p V P(x),              (3.4) 

=v VK(x),               (3.5) 

m = r 1/2
1h ( ) V H(x).           (3.6) 

whereU, W , P, K and H are new dimensionless functions 
of the similarity variable x, in terms of which the differential 
equations are to be formulated. The shock front is repre-
sented by =x 1.  

The shock conditions (2.9) to (2.13) are transformed into 

= - bU(1) 1 ,                (3.7) 

W =
b
1(1) ,                 (3.8) 

=
A

1H(1) ,
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2 2
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2 2
A

2 1K(1) ,
M M       (3.11) 

where + = a1 d .                           (3.12) 
In the derivation of the condition (3.11) it was necessary to 

use the relation (3.12), otherwise (3.11) would contain R(t) 
and the solution would not be self-similar.  

The total energy behind the shock is given by  

wì ü- r m
= p r + + + =í ý

g -î þ
ò

p

2R 2 2
0r

1 p(1 b ) hE 2 (v u ) rdr E t ,
2 1 2

(3.13) 

where pr  is the radius of inner expanding surface. Ap-
plying the similarity transformations (3.2) to (3.6) to the 
relation (3.13), we find that the motion of the shock front is 
given by the equation 

w

=
pr

2 2 0

1

E t
R V ,

2 J
             (3.14) 
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where 
é ù- W

= W + + +ê úg -ë û
ò
p

1 2
2 2

x

1 P(1 b ) HJ (U K ) xdx
2 ( 1) 2

(3.15) 

in which px  is the value of x at the inner expanding 
surface. 

Equation (3.14) can be written as 

wæ ö
= ç ÷prè ø

1 2
20

1

EdRR t
dt 2 J

        (3.16) 

which on integration gives 

w+æ ö
= ç ÷pr w +è ø

1 4
( 2) 40

1

8E 1R t .
J 2

     (3.17) 

From (3.17) we get the shock velocity 
( )w+ w w+ w-

w+
w +æ öw +

= = = ç ÷
prè ø

1 2 2 2
0 2

1

2dR ( 2)R 8EV R .
dt 4t J 4

(3.18) 

Since M and AM  are constants for similarity solutions, 
we have 

w -
a =

w +
2 .
2

                (3.19) 

Now, the following two cases arise 
Case 1: a = 0  
In this case, we have 

+ =d 1 0                (3.20) 
and the shock velocity is constant. It follows that 1p = 

constant, 
r = m2 2

1 0 0A h ,               (3.21) 

and m
=

g

2 2
2 0 A

1

h M
M .

p
                       (3.22) 

Case 2: a ¹ 0.  
In this case, the constant in the right hand side of (2.20) 

must be zero, and the shock velocity is variable and so 
am

=
g r - + a m

2 2
2 0 A

2 2
1 0 0

2 h M
M .

[ A (1 ) h ]
         (3.23) 

Now, we have the following relations valid in both the 
case: 

w+ w w+é ùæ öm w +ê ú= ç ÷r prê úè øë û

21 22 2 2
0 A 0
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h M 8E ( 2) ,
J 4

    (3.24) 
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0

A 2 M
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h M
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To obtain the solution in a convenient form, we introduce 
the following transformations: 

r
=

r2

g ,                 (3.26) 

=
2

py ,
p

                (3.27) 

=
uW ,
V                  (3.28) 

=
vz ,
V                 (3.29) 

=
2

hs .
h

                   (3.30) 

Using the transformations (3.26) to (3.30), the equations 
of the motion (2.1) to (2.5) take the form 

- + + =
dg dW gW(W x) g 0,
dx dx x

    (3.31) 

b b b
- + + + + a - =

2 2

2 2
A A

dW F dy s ds s z(W x) W 0,
dx g dx gM dx gxM x

(3.32) 

- + + a =
ds dW(W x) s s 0,
dx dx

     (3.33) 

- + + a =
dz Wz(W x) z 0,
dx x

      (3.34) 

g b -
a + - - =

b -
dy y (W x) dg2 y (W x) 0,
dx dxg( bg)

  (3.35) 

where = + - b
g 2

1F (1 ).
M

                   (3.36) 

In terms of the dimensionless variables x, W, y, g, s, and z, 
The shock conditions take the form 

=x 1,                 (3.37) 

= - bW 1 ,                 (3.38) 

=g 1,                 (3.39) 

=s 1,                    (3.40) 

=y 1,                  (3.41) 

é ù+ a a
= +ê úgë û

1 2

2 2
A

(1 ) 2z .
M M          (3.42) 

Because of the dependence of the equations (3.31) to (3.35) 
and (3.38) on b , similarity solution exists only when b  is 
constant, i.e. only when the initial density r1  is constant. 
The problem with the flow of a non-ideal gas is different 
from that of the perfect gas problem. In the latter case, 
similarity solution exists for initial density varying as some 
power of distance (Rogers[20], Rosenau[24]), but it is not 
true for the problem with the flow of a non-ideal gas. 

In addition to the shock conditions(3.37) to (3.42), the 
condition to be satisfied at the inner boundary surface is that 
the velocity of the fluid is equal to the velocity of inner 
boundary itself. This kinematic condition, from equations 
(3.2) and (3.28), can be written as 

=p pW(x ) x .              (3.43) 
From equations (3.31) to (3.35), we have 

g b
= ab +

b -

é ùb a b
               - - - + a +ê ú

ë û

2

2 2
2

2 2
A A

dW y FWBx 2 xyF
dx ( bg)

s s x(W x) z g gWx ,
M M

(3.44) 
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where 
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2 2
2

2
A

y F sB B(x) g(W x) .
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Now, the equations (3.44) to (3.48) may be integrated, 
numerically, with the boundary conditions (3.37) to (3.42) 
and the appropriate values of the constant parameters g , a , 
b , M and AM , to obtain W, g, s, y and z. 

4. Results and Discussion 
Similarity considerations led to the following relations 

among the constants a , d and w : 

+ = a1 d ,                 (4.1) 

w -
a =

w +
2 .
2

                (4.2) 

Thus, the shock velocity varies as the ambient azimuthal 
velocity of the medium or as the ambient magnetic field. 

Then the following two cases may exist, 
(i) The constant velocity shock a =( 0) ; 
(ii) The decreasing velocity shock a <( 0).  
Therefore, for the purpose of numerical calculations, we 

choose a = 0 , -0.5 which correspond, respectively, to the 

following two sets of values of the constants: 
(i) a = 0 , w = 2 , = -d 1 , and  

(ii) a = -
1
2

, w =
2
3

, = -
3d
2

. 

The solution of the differential equations (3.44) to (3.48) 
with boundary conditions (3.37) to (3.42) depends on five 
constant parameters g aA, M, M , b and . Numerical inte-
gration of these differential equations is performed to obtain 
the reduced variables W, z , g, y, s, starting from the shock 
surface to the inner expanding surface for 

-g = = = =2
A5 3; M 10; M 0.02, 0.1; b 0, 0.05, 0.1; a = 0,  

-0.5 (Rosenau and Frankenthal[25], Rosenau[24],  Vish-
wakarma and Yadav[26], Vishwakarma and Singh[27]). For 
a fully ionized gas g = 5 3 , and therefore it is applicable to 
stellar medium. Rosenau and Frankenthal[25] have shown 
that the effects of magnetic field on the flow-field behind the 
shock are significant when - ³2

AM 0.01.  Therefore the 
above values of -2

AM  are taken for calculations in the present 
problem. The value =b 0  corresponds to the perfect gas 
case. The results are shown in figures 1-5. Values of px  
(the reduced position of the inner expanding surface) and the 
density ratio across the shock front b = r r1 2  are shown in 
tables 1 and 2 for different cases.  

Table 1.  Position of inner expanding surface px for g = 5 3 , =M 10  
and various values of -2

AM , b , and a  

-2
AM  b  a  w  

px  

magnetogasdynamic 
Shock (Vishwa-
karma et al.[11]) 

Gas-ionizing 
Shock (Our 

Case) 
0.02 
0.02 
0.02 

0.0 
0.05 
0.1 

-0.5 
-0.5 
-0.5 

2 3  
0.656 
0.628 
0.612 

0.762851 
0.747620 
0.740120 

0.1 
0.1 
0.1 

0.0 
0.05 
0.1 

-0.5 
-0.5 
-0.5 

2 3  
0.473 
0.446 
0.456 

0.731528 
0.711262 
0.699147 

0.02 
0.02 
0.02 

0.0 
0.05 
0.1 

0.0 
0.0 
0.0 

2 
0.820 
0.806 
0.788 

0.865428 
0.847192 
0.832530 

0.1 
0.1 
0.1 

0.0 
0.05 
0.1 

0.0 
0.0 
0.0 

2 
0.727 
0.714 
0.711 

0.852846 
0.834035 
0.819464 

Table 2.  Density ratio b  across the shock front for =b 0,  0.05, 0.1, 
=M 10  and g = 5 3  

b  b = r r1 2  

0.0 
0.05 
0.1 

0.16667 
0.20000 

0.22430394 
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Figure 1.  Variation of the reduced radial velocity in the flow-field behind the shock front 

 
Figure 2.  Variation of the reduced azimuthal magnetic field in the flow-field behind the shock front 
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Figure 3.  Variation of the reduced density in the flow-field behind the shock front 

 
Figure 4.  Variation of the reduced pressure in the flow-field behind the shock front 
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Figure 5.  Variation of the reduced azimuthal velocity in the flow-field behind the shock front

Figure 1 shows that the radial velocity W increases from 
the shock front to the inner expanding surface when a = 0;  
whereas its increase is very slow in almost all the cases of 
a = -0.5 . In these cases ( a = -0.5 ), it starts to decrease 
after attaining a maximum near the inner surface. The nature 
of the radial velocity profile in the flow-field behind a 
gas-ionizing shock is different from that behind a magneto-
gasdynamic shock, where it decreases from shock front to 
inner surface in the cases of a = -0.5  (Vishwakarma et 
al.[11]). 

Figure 2 shows that the magnetic field s increases abruptly 
near the inner contact surface when the initial magnetic field 
is weak ( - =2

AM 0.02 ). This behaviour of the magnetic field 
is removed in the cases of strong initial magnetic field 
( - =2

AM 0.1 ). The magnetic field does not exhibit the be-
haviour of abrupt increase near the inner surface in the case 
of magnetogasdynamic shock (see figure 3 of Vishwakarma 
et al.[11]).  

Figures 3, 4 and 5 show that the density g, pressure y and 
azimuthal velocity z decrease from shock front to the inner 
contact surface. The density and pressure fall abruptly near 
the inner surface when a = 0 and - =2

AM 0.02 . This ten-

dency of density and pressure is reduced if a  is decreased 
( a = -0.5 ) or if -2

AM  is increased ( - =2
AM 0.1 ). 

From tables 1 and 2 and figures 1 to 5, it is found that the 
effects of an increase in the value of -2

AM  (i.e. the effects of 
an increase in the strength of ambient magnetic field) are  

(i) to decrease the radial velocity and azimuthal magnetic 
field at a point in the flow-field behind the shock front, but to 
increase the azimuthal velocity (see figures 1, 2 and 5); 

(ii) to decrease the density and pressure, except in a region 
near the inner contact surface. The decrease in density is 
small for a = -0.5  in comparison to that for a = 0  (see 
figures 3 and 4); 

(iii) to decrease the slopes of the profiles of the density, 
pressure and azimuthal magnetic field, i.e. to reduce the 
tendency of abrupt fall of the density and pressure and abrupt 
increase of the azimuthal magnetic field as we move inwords 
from the shock front (see figures 2, 3 and 4); and 

(iv) to increase the distance of the inner contact surface 
from the shock front (see table 1), but this increase is small in 
comparison with that in the case of magnetogasdynamic 
shock studied by Vishwakarma et al.[11]. 

Thus the increase in the strength of the magnetic field has 
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decaying effect on the ionizing shock wave, but it is less in 
comparison with that in the case of magnetogasdynamic 
shock. 

The effects of an increase in the value of the parameter of 
the non-idealness of the gas b  are  

(i) to increase the radial and azimuthal velocities at a point 
in the flow-field behind the shock but to decrease the azi-
muthal magnetic field, in general. The increase in the radial 
velocity is significant in the cases when a = -0.5  (see 
figures 1, 2 and 5); 

(ii) to increase the density and pressure, in general (see 
figures 3 and 4); and 

(iii) to increase the distance between inner contact surface 
and the shock front, and b = r r1 2  (see tables 1 and 2). 

Therefore the non-idealness of the gas has decaying effect 
on the ionizing shock wave as in the case of magnetogas-
dynamic shock.  

The effect of an increase in the value of the index for 
variation of azimuthal magnetic field a , i.e. the effects of an 
increase in the value of the index for variation of the angular 
velocity of the ambient medium d are 

(i) to increase the shock velocity (see equation (3.18)); 
(ii) to decrease the distance of inner expanding surface 

from the shock front. It means that the shock is stronger 
when the ambient magnetic field is uniform ( a = 0 ) in 
comparison with that when it is decreasing ( a = -0.5 ). It 
also means that the shock is stronger when the angular ve-
locity of the ambient medium is slowly decreasing (see the 
relations (2.19) and (3.20)); and 

(iii) to increase the slopes of profiles of all the flow vari-
ables in the flow-field behind the shock. (see figures 1-5). 

5. Conclusions 
In the present paper, similarity solutions are obtained for 

the flow-field behind a gas-ionizing cylindrical shock wave 
propagating in a rotating non-ideal gas in presence of an 
azimuthal magnetic field. On the basis of this study one may 
draw the following conclusions.  

(i) the shock velocity varies as the ambient azimuthal ve-
locity (i.e. as the ambient magnetic field). 

(ii) the presence of magnetic field has decaying effect on 
the ionizing shock wave but it is less in comparison with that 
on the magnetogasdynamic shock;  

(iii) the non-idealness of the gas also has decaying effect 
on the ionizing shock wave, and it is almost of the same 
intensity as that on the magnetogasdynamic shock;  

(iv) in the case when the initial magnetic field or the initial 
angular velocity of the medium is decreasing with distance 
(i.e. when a = -0.5 ), the nature of the radial velocity pro-
files in the flow-field behind the ionizing shock is signifi-
cantly different from that behind the magnetogasdynamic 
shock; and 

(v) when the initial magnetic field is weak ( - =2
AM 0.02 ) 

the magnetic field increases abruptly near the inner contact 
surface. The magnetic field does not exhibit this behavior in 

the case of the magnetogasdynamic shock. 
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