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Abstract  The properties of nuclear matter at  zero and finite temperatures in the frame of the Brueckner theory realistic 
nucleon-nucleon potentials are studied. Comparison with other calculations is made. In addition we present results for the 
symmetry energy obtained with different potentials, which is of great importance in astrophysical calculat ion. Properties of 
asymmetric nuclear matter are derived from various many-body approaches. This includes phenomenological ones like the 
Skyrme Hartree-Fock and relat ivistic mean field approaches, which  are adjusted to fit properties of nuclei, as well as more 
microscopic attempts like the BHF approximation, a  Self-Consistent Greens Function (SCGF) method and the so-called  Vlowk 
approach, which are based on realistic nucleon-nucleon interactions which reproduce the nucleon-nucleon phase shifts. These 
microscopic approaches are supplemented by a density-dependent contact interaction to achieve the empirical saturation 
property of symmetric nuclear matter. Special attention is paid  to behavior o f the isovector and the isoscalar component of the 
effective mass in neutron-rich matter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value 
decreases with increasing the nucleon energy. In  particu lar, the nuclear symmetry potential at  saturation density changes from 
positive to negative values at nucleon kinetic energy of about 200 MeV. The hot properties of nuclear matter are also 
calculated using T2–approximation method at low temperatures. Good agreement is obtained in comparison with previous 
theoretical estimates and experimental data especially at low densities. 
Keywords  Brueckner-Hartree-Fock Approximation, Self-Consistent Greens Function (SCGF) Method, Three-body 
Forces, Symmetry Energy, Symmetry Potential, Effect ive Mass, T2–approximation Method 

 

1. Introduction 
One of the most fundamental problems in nuclear 

many-body theory is the attempt to evaluate the nuclear 
matter b inding energy and saturation properties, starting 
from a realistic Nucleon-Nucleon (NN) interaction with no 
free parameters. In fact a lot of work has been done trying to 
solve this problem using different approaches and methods 
which are discussed in details by Müther and Polls[1]. An 
important ingredient of all these approaches is the 
consideration of the two-nucleon correlations which are 
induced by the strong short-range components of the NN 
interaction. In lowest-order Brueckner theory, the familiar 
Brueckner-Hartree-Fock (BHF) approach, is adopted to 
calculate the energy, the so-called G-matrix for evaluating 
the energy in the Hartree-Fock approach. In  the G-matrix one 
accounts for the particle-particle correlations which means 
the scattering of two nucleons from states which are 
occupied in the Slatter determinant describing the ground 
state, into unoccupied particle states above the Fermi 
surface[2-4]. 
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The potentials we will employ here are the recent models 
of the Nijmegen group[5], the Argonne V18 potential[6] and 
the charge-dependent Bonn potential (CD-Bonn)[7]. The 
recent versions of The Nijmegen group are Nijm-I, Nijm-II 
and Reid93 potentials. Although all these potentials predict 
almost identical phase shifts, their mathemat ical structure is 
quite different. 

Most of the microscopic calculations have been addressed 
to study symmetric matter[2] and pure neutron matter[8,9]. 
The study of asymmetric nuclear matter is technically more 
involved and only few Brueckner-Hartree-Fock (BHF) 
calculations are available[4,10,11]. The BHF approximation 
includes the self-consistent procedure of determining the 
single-particle auxiliary potential, as first devised by 
Brueckner and Gammel[12], which is an essential ingredient 
of the method. Different approaches have been used to study 
the EoS of asymmetric nuclear matter including 
Dirac-Brueckner-Hartree-Fock (DBHF) calculat ions[13-16], 
Brueckner-Hartree-Fock (BHF) approximation to 
Brueckner-Bethe-Goldstone (BBG) calculations[17,18] and 
variational methods[19,20]. Besides these microscopic 
approaches, effective theories such as Relativistic Mean 
Field (RMF) theory[21,22] and non-relativ istic effective 
interactions[23,24] have also been used extensively to study 
the EoS and mean field propert ies of the asymmetric nuclear 
matter. 
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As it is well known, the BHF approximation largely  
violates the Hugenholtz-Van Hove (HVH) theorem[26], 
which basically measures the consistency of a given order of 
approximation in a perturbative approach. In symmetric 
nuclear matter, the inclusion of the so-called hole-hole (hh) 
contribution greatly improves the fulfillment of the HVH 
theorem[27]. We use realistic NN forces and operate within 
SCGF framework. It is well known that the selfconsistent 
BHF approach does not reproduce the correct saturation 
point of nuclear matter with only the inclusion of the 
two-body interaction[28,29]. But our attention is main ly 
focused on how nuclear matter propert ies change in terms of 
the asymmetry ratio and some caution has to be taken 
whenever saturation properties are involved. In addit ion, it 
gives a simple microscopic justification of the empirical laws 
governing asymmetric nuclear matter. 

1.1. In the Present Report 

In order to establish the importance of the hh term in the 
calculation of EoS for asymmetric nuclear matter our aim is 
to extend the BHF approach which ignores the hh term to 
SCGF approach, which includes the hh term. It  has been 
shown, in the case of pure neutron matter[30] and also 
symmetric nuclear matter[2,30] that the new terms g ive a 
large contribution to single-part icle properties like the mean 
field and the nucleon effective mass. We will refer to the 
present approach to compute nuclear single-particle 
properties as SCGF approximation[2,4]. 

The nuclear matter symmetry energy, which  is defined as 
the difference in energy per nucleon between the pure 
neutron matter and the symmetric nuclear matter, is an 
important quantity that determines the properties of objects 
such as the atomic nucleus and the neutron star[31]. The 
study of symmetry energy and its dependence on nuclear 
density and temperature is currently  a subject of great 
interest[32]. Theoretically, the symmetry  energy can be 
determined from microscopic calculations such as the 
Self-Cons istent  Green  Funct ion  (SCGF) and  the Dirac-
Brueckner-Hartree-Fock (DBHF) calcu lations, or the 
phenomenological calcu lations such as the Skyrme 
Hartree-Fock (SHF) and the Relativ istic Mean Field (RMF) 
calculations[4, 31, 33-35]. These calculations currently 
predict wide range of symmetry energ ies for densities below 
and above normal nuclear density, ρ0 = 0.16fm−3. A lso, the 
symmetry energy and its relation with the chemical potential 
have been studied. 

Also, the properties of asymmetric nuclear matter are 
derived from various many-body approaches. This includes 
phenomenological ones like the Skyrme Hartree-Fock and 
relativ istic mean field approaches, which are ad justed to fit 
properties of nuclei, as well as more microscopic attempts 
like the Brueckner-Hartree-Fock approximat ion, a 
self-consistent Greens function method and the so-called 
Vlowk approach. These microscopic approaches are 
supplemented by a density-dependent contact interaction to 
achieve the empirical saturation property of symmetric 

nuclear matter. The pred ictions of the isovector component 
of the effective mass in neutron-rich  matter, the symmetry 
potential and symmetry energy are discussed. 

The one-body potentials for protons and neutrons are 
obtained from the self-consistent Green-function 
calculations of asymmetric nuclear matter, in particular their 
dependence on the degree of proton/neutron asymmetry. 
Results of the binding  energy per nucleon as a function of the 
density and asymmetry parameter are p resented for the 
self-consistent Green function approach using the CD-Bonn 
potential. The nuclear symmetry potential at fixed nuclear 
density is also calculated and its value decreases with 
increasing the nucleon energy. The isoscalar proton/neutron 
effective mass splitting in neutron-rich matter has been 
studied. 

Recently, Li et  al.[36] have studied the saturation 
propert ies of nuclear matter within  the Brueckner-Hartree-
Fock approach using continuous single particle energ ies and 
employing the most recent accurate nucleon-nucleon 
potentials. They found that their results confirm the concept 
of “Coester line“ o r “Coester band“, i.e., density and energy 
of the various saturation points being strongly correlated, 
yielding either a too large saturation density or a too small 
binding energy. 

The many-body method we will employ in deriving the 
EoS of both symmetric and pure nuclear matter is a rather 
simple one i.e., the non-relativ istic BHF method with a 
conventional and continuous single particle spectrum using 
different modern NN potentials. 

The results in the present work which  come out by 
approximating the single particle self-consistent potential 
with a parabolic form. 

1.2. The Theoretical Model  

1.2.1. Brueckner-Hartree-Fock for Symmetric Nuclear 
Matter  

In the BHF approximation, the nuclear matter total energy 
EA is obtained from the Brueckner G-matrix, G(ω), 
according to the equation: 

( )2 2
1

A
,

1 2 3 4k k1 2k k k k kF F1 1 2

k 1E k k | G e e | k k a
2m 2< <

= + +∑ ∑

(1) 

with |k1k2〉a = |k2k1〉, i.e., the subscript a indicates 
antisymmetrizat ion of the matrix elements. Here kF is the 
Fermi momentum, the summat ion over the momenta ki 
include spin and isospin variables. The single particle 
energies ek, appearing in  the entry energy of the G-matrix, 
are given by: 

( ) ( )
2 2ke k U k

2m
= +


              (2) 

Where, the single particle potential U(k) is determined by 
the self-consistent equation: 
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The self-consistency is coupled with the integral equation 
for the G-matrix, i.e., in  the BHF approach G(ω) is obtained 
by solving the Bethe-Goldstone equation: 
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where, ΘF (k) = 1 defin ing the step function for k<kF and  is 
zero  otherwise and ω denotes the starting energy. The 
product Q(k, k’) = (1-ΘF (k))(1-ΘF (k’)), appearing in the 
kernel of Equation (4), enforces the scattered momenta to lie 
outside the Fermi sphere and it is commonly referred  to as 
the “Pauli operator”. In  the case of the angle-average of Pau li 
operator this energy is given as,[37] 
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If one assumes that the potential U(k), or equivalently the 
single particle energy e(k), has approximately a quadratic 
form 

( )
2 2

0
ke k e

2m *
≈ +
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               (6) 

where, e0 is the zero point energy. Then one can calculate the 
potential, at each iteration step, in few points only and 
interpolate the obtained values with a parabola. The 
approximation of Eq. (6) is usually called the effective mass 
approximation, since then the spectrum has the same shape 
as the free one but with an effective mass m*. From 
Equations (2) and (6) the effective mass m* can be evaluated 
from the slope of U(k) at the Fermi momentum[38], 
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1.3. Brueckner-Hartree-Fock for Asymmetric Nuclear 
Matter 

The self-energy of a nucleon with isospin i, momentum k 
and energy ω in asymmetric nuclear matter is defined in the 
BHF approximat ion by[1, 4], 

( ) ( )BHF 3 0
i jij

j
d q kq | G | kq n q .= Ω∑ ∑∫    (8) 

In this equation 0
jn (q)  refers to the occupation 

probability of a free Fermi gas of protons (j = p) and neutrons 
(j = n) like in the mean-field o r Hartree-Fock approach. This 
means that for asymmetric matter with a total density ρ = 
ρp+ρn this probability is defined by: 

( ) Fj0
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          (9) 

With Fermi momenta for protons (kFp) and neutrons (kFn). 
The antisymmetrized G matrix elements in Eq. (8) are 

obtained from a given NN interaction by solving the 
Bethe-Goldstone equation: 
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The single-particle energies εpi of the intermediate states 
should be the corresponding BHF single-part icle energies 
which are defined in terms of the real part of the BHF 
self-energy of Eq. (8) by: 

( )
2

BHF
ki i ki

k Re k,
2m

 ε = + ω = ε ∑     (11) 

with a starting energy parameter Ω  = ω+εqj in the 
Bethe-Goldstone Eq. (10). 

1.4. Self-Consistent Green’s Function 

One of the drawbacks of the BHF approximation is the 
fact that it  does not provide results for the equation of state, 
which are consistent from the po int of view of 
thermodynamics. As an example we mention that BHF 
results do not fulfill e.g., the Hugenholtz van Hove theorem. 
This is due to the fact that the BHF approximation does not 
consider the propagation of particle and hole states on equal 
footing. An extension of the BHF approximat ion, which 
obeys this symmetry is the Self-Consistent Green’s Function 
(SCGF) method. During the last years techniques have been 
developed, which allow to evaluate the solution of the SCGF 
equations for microscopic NN interactions. Those 
calculation demonstrate that for the case of realistic NN 
interactions, the contribution of particle-particle ladders 
dominates the contribution of corresponding hole-hole 
propagation terms. This justifies the use of the BHF 
approximation  and a procedure, which goes beyond BHF 
and accounts for hole-hole terms in a perturbative way[2, 39]. 
This leads to a modification of the self-energy in  the BHF 
approximation by adding a hole-hole term of the form: 
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The quasi-particle energy for the extended self-energy can 
be defined as: 
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Accordingly, the Fermi energy is obtained evaluating this 
definit ion at the Fermi momentum k = kFi for protons and 
neutrons, respectively: 

qp
Fi kFiε = ε               (14) 

The spectral functions for hole and part icle strength, 

( )h
iS k,w

 and ( )p
iS k,w , are obtained from the real 

and imaginary part of the self-energy
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where, the plus and minus sign on the left-hand side of this 
equation refers to the case of hole (h, ω<εFi) and particle 
states (p, ω>εFi), respectively. The hole strength represents 
the probability  that a nucleon with  isospin i, momentum k 
and energy ω can be removed from the ground state of the 
nuclear system with the removal energy ω, whereas the 
particle strength denotes the probability that such a nucleon 
can be added to the ground state of the system with A 
nucleons resulting in  a state of the A+1 particle system which 
has an energy of ω relative to the ground state of the A 
particle system. Hence the occupation probability is obtained 
by integrating the hole part of the spectral function: 

( ) ( )i
h
i
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ε
= ω ω∫∫       (16) 

Note that this yields values for the occupation probability, 
which ranges between values of 0 and 1 for all momenta k, 
leading to a partial depletion of the hole-states in the Fermi 
gas model (k<kF) and partial occupations for states with 
momenta h>kF. A similar integral y ields the mean energy for 
the distribution of the hole and particle strength, 
respectively: 
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Our self-consistent Green’s function calculation is defined 
by identifying the single particle energy in the 
Bethe-Goldstone equation as well as in the 2h1p correction 
term in Eq . (12): 
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This definition leads to a single particle Greens function, 
which is defined for each momentum k by just one pole at ω 
= εkτ . Hence, the total energy per nucleon is evaluated by: 
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In order to achieve saturation in nuclear matter one has to 
add three-body interaction terms or a density-dependent 
two-nucleon interaction. So, it is quite natural to supplement 
the effective interaction by a simple contact interaction, 
which we have chosen following the notation of the Skyrme 
interaction to be of the form: 

2
0

2
3

1 1H t
2 12

t ,+δ∆ = ρ + ρ            (21) 

where, ρ is the matter density, t0, t3 and δ are parameters. For 
a fixed  value of δ (typically  δ = 0.5) we have fitted t0 and t3 in 
such a way that a Hartree-Fock calcu lation using Vlowk plus 
the contact term of Eq . (21) yields the empirical saturation 
point for symmetric nuclear matter. 

The same parameterizat ion of a contact term has been 
used to evaluate corrections to the self-energy of BHF and 
SCGF in such a way that also these calculations reproduce 
the saturation of symmetric nuclear matter.  

The many–body problem at finite temperatures has been 
considered by several authors within different approaches, 
such as the fin ite temperature Green’s function method[40], 
the thermo field method[41], or the Bloch–De Domicis (BD) 
diagrammatic expansion[42]. The latter, was developed soon 
after the Brueckner theory, represents the “natural” 
extension to fin ite temperature of the BBG expansion, to 
which it leads in the zero temperature limit . Baldo and 
Ferreira[43] showed that the dominant terms in the BD 
expansion were those that correspond to the zero  temperature 
of the Brueckner–Bethe–Goldstone (BBG) diagrams, where 
the temperature is introduced only through the Fermi–Dirac 
distribution  

.
T

)T()T,k(eexp)T,k(f
1

1
−















 −

+=
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Therefore, at the BHF level, finite temperature effects can 
be introduced in a very good approximation just replacing in 
the BGE (4):  

(i) the zero temperature Pauli operator Q=(1-θ1(k))(1-θ2(k)) 
by the corresponding finite temperature one 
Q(T)=(1−f1)(1−f2),  

(ii) The single–particle energies e (k) by the temperature 
dependent ones e (k, T) ), obtained from Eqs. (3) and (4) 
when θ (k) is replaced by f (k , T). 

In the present work, two simplifications are used to 
calculate the thermodynamic p roperties of nuclear matter. 
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Firstly, the G-matrix calculat ion is performed  at T = 0 MeV 
and using the continuous choice for U (k). Secondly, the 
internal energy of the system F→F/A, is computing by using 
the entropy of the free Fermi gas with effective mass m*, 
where the internal energy of nuclear mater is defined by 

,TSEF T−=                (23) 
where E→E/A is the total energy at T = 0, ST is the entropy of 
the system at temperature T. In addition thermal effects are 
treated in a low temperature limit of the internal energy. 
Starting from Eq. (23), in the low temperature limit the 
energy and entropy behave as E = ET=0 + aT2 and ST = 2aT, 
respectively, where a is the so–called level density parameter. 
Therefore, fo r the internal energy we have the following 
expression: 
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where the level density parameter a is a function of the 
nucleon effective mass m* at T = 0 MeV with k = kF. By 
using equation (24) the internal energy of the system at 
temperature T is defined by[44] 
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where m* is the effective mass of the nucleon at zero 
temperature with k = kF, defined in Eq . (7). It  should be 

pointed out that the same expressions are obtained for zero 
range forces[45]. In fact they reflect a general property of the 
Landau theory of normal Fermi liquids.  

2. Results and Discussion 
2.1. The Symmetric and Pure Neutron Matter 

2.1.1. The Single Part icle Energy 

In this section we present the results for the single particle 
energies which is calcu lating using Equation (2). More 
discussion can be read in[46]. Figure 1 shows the 
dependence of the single particle energy on the momentum k 
up to kfit = 1.6kF for symmetric nuclear matter using the 
CD-Bonn potential (solid curve), the Argonne V18 potential 
(dashed-double dot curve), the Nijm-I potential (dotted 
curve), the Nijm-II potential (dashed curve) and the Reid 93 
potential (dashed-dot curve) at the normal saturation density 
ρ0 = 0.16 fm−3 in terms of Fermi momentum, kF =1.333 fm−1. 
Left panel for conventional choice, right panel for 
continuous choice. We observe that the results of all 
potentials are close to each other in  the conventional choice 
and at high momentum after k = kF the results of all 
potentials come together, this means that the effect of the 
potential d isappear at values above Fermi momentum kF. In 
the continuous choice we note that the CD-Bonn and Nijm-I 
(non-local) potentials are more attractive than the Argonne 
V18, the Nijm-II and the Reid 93 (local) potentials and the 
difference between the potentials continues even at high 
momentum k, this means that the effect of the potential 
continues at values above kF. 

If we compare the results we note that, one finds that the 
single particle energies are more attractive in the continuous 
choice than those in the conventional choice.  

 
Figure 1.  The single particle energy within BHF approach using modern nucleon-nucleon potentials. The left  panel represents the results with conventional 
choice and the right panel with the continuous choice for the auxiliary potential at  the normal Fermi momentum kF = 1.333fm−1 
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Figure 2.  The binding energy per nucleon calculated for symmetric nuclear matter as a function of the Fermi momentum kF within BHF approach using 
modern nucleon-nucleon potentials. The left panel represents the results with conventional choice and the right panel with the continuous choice for the 
auxiliary potential. The solid points are the saturation points and the big square indicates the empirical saturation area 

This reflects the fact that the effective interaction is more 
attractive between nucleons in the continuous choice than the 
conventional choice. From Fig. 1 one can also see that the 
BHF single part icle energ ies have a simple parabolic shape 
as a function of the momentum for all the interactions. So, 
one uses a parametrizat ion of the single particle energies in 
terms of an effective mass using Eq. (7). 

Finally we want  to stress that, desp ite the parabolic 
approximat ion  is not  accurate[47] and  we use a not  so 
large cutoff fo r the s ing le part icle momentum, we believe 
that the d ifferences in  the resu lts fo r various  NN 
interact ions, obtained with in  the same approximat ion 
scheme, are sens ible and  mean ingfu l. 

2.2. The Nuclear Matter Binding Energy 

We present the results of the non-relativistic BHF 
calculations in Fig. 2 obtained with different modern NN 
potentials. The energy per particle EA in MeV is plotted 
against the density ρ in terms of Fermi momentum kF in fm−1, 
for symmetric nuclear matter using different potentials, the 
CD-Bonn potential (solid line), the three Nijmegen 
potentials, Nijm-I (short dashes), Nijm-II (double dot-dashed 
line) and Reid 93 (dot-dashed line) and the Argonne V18 
potential (dotted line). Left panel is for conventional choice 
and the right panel is for continuous choice. The solid points 
indicate the saturation points and the dashed box indicates 
the empirical saturation one. One observes from the figure 
that the binding energy per nucleon, first decreases with 
increasing kF, until it reaches the minimum (saturation) point 
then it increases with increasing the Fermi momentum kF. 
The continuous choice leads to an enhancement of 
correlation effects in  the medium and tends to predict larger 
binding energies for nuclear matter than the conventional 
choice. 

It is found that our calculat ions lead to results for 

saturation points, which lie along a line (Coester line) shifted 
with respect to the phenomenological saturation point (ρ0 = 
0.16 fm−3; EA = -16MeV). One can see that the continuous 
choice leads to an enhancement of correlation effects in the 
medium and tends to predict larger binding energies for 
nuclear matter than the conventional choice. In the continuous 
choice that line is close to the empirical data than the 
conventional choice. So, we can say that our results confirm 
the concept of a “line”, density and energy of the various 
saturation points being strongly linearly correlated, where that 
be consistent with the results in Refs.[36, 48]. The saturation 
points for our results are presented in Table 1. 

A very important source for the origin of the two-body 
correlations is the tensor force, which for example, describes 
the scattering of a proton-neutron pair, which originally is in 
a relative 3S1 state with momentum below kF, into a 3D1 state 
above the Fermi sea. A measure of the strength of the tensor 
force is expressed in term of the D-state probability PD 
obtained for the deuteron[48, 49]. We also observe from 
Table 1 that the continuous choice in the Nijm-II potential 
and Argonne V18 potential obey approximately the correct 
Fermi momentum saturation point but at low bind ing 
energy per nucleon. The continuous choice in the Nijm-I 
potential obeys approximately the correct bind ing energy 
per nucleon but at h igh Fermi momentum. The CD-Bonn 
potential leads to strong over-bind ing and too high 
saturation density than the others, because it contains a 
weak tensor force. It  looks that any increase of the 
non-locality would improve the fitt ing of b inding energy of 
nuclear matter, but shifts the saturat ion point to  higher 
density and binding energy. 

In Fig . 3, we p lot, fo r comparison also, the energy per 
particle as a funct ion of Fermi momentum kF using the 
continuous choice for the sing le part icle auxiliary  potential 
with the results obtained with the T-matrix and T-matrix 
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+3BF method with  CD-Bonn potential by Somua and 
Bozek[50] and with BHF +3BF using both CD-Bonn and 
Argonne V18 potentials by Baldo and Shaban[51]. There is 
another method can be used to enhance the present results if one 
goes beyond BHF approach. 

In Fig. 4, the energy per particle EA is plotted against 
Fermi momentum kF, for pure neutron matter using different 
potentials. Left panel is for conventional choice, right panel 
is for continuous choice. We compare the results by CD-Bonn 
+3BF and V18+3BF. The pure neutron matter EoS is unbound 
with the energy per nucleon rising approximately 
monotonically with increasing the Fermi momentum, which is 
in agreement with most of the many-body calculations. We 
note that the differences between the potentials are small, 

because the main source of differences among the potentials is 
in the strength of the tensor force, which is mostly reflected in 
the (T = 0) 3S1-3D1 coupled states. In pure neutron matter (T = 
1), however, this partial wave does not contribute. 

Only T=1 states contribute to the energy of pure neutron 
matter while both isospin states contribute to the energy of 
symmetric nuclear matter, if major T = 0 part ial waves 
become increasingly repulsive at short distances. It is 
possible for the energy of symmetric nuclear matter to grow 
at a faster rate and eventually approach the neutron matter 
EoS. This is just what we observe in our model. In the 
presence of repulsive forces only, symmetric matter would 
be a more repulsive system than neutron matter (for the same 
kF).  

 
Figure 3.  The binding energy per nucleon calculated for symmetric nuclear matter as a function of the Fermi momentum kF within BHF approach using 
modern nucleon-nucleon potentials. All the results are calculated with the continuous choice for the auxiliary potential and compared with other approaches, see 
the text for details. The big square indicates the empirical saturation area 
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Figure 4.  The binding energy per nucleon calculated for pure neutron matter as a function of the Fermi momentum kF within BHF approach using modern 
nucleon-nucleon potentials. The left  panel represents the results with conventional choice and the right panel with the continuous choice for the auxiliary 
potential 

Table 1.  Summary of the main features of the nuclear matter that be 

extracted from the equation of state at saturation points. These values are the 

Fermi momentum 
0
Fk , saturation energy EA, symmetry energy Esym, 

incompressibility K and effective mass m*/m. All results are calculated 

within BHF approach using the conventional (first  group) and continuous 

(second group) choice for the auxiliary potential 

 Conventional choice 

 
0
Fk  

(fm−1) 
-EA 

(MeV) 
Esym 
MeV K (MeV) m*/m 

CD-Bonn 1.743 17.70 32.24 208.83 0.566 
Arg. V18 1.506 11.94 23.05 137.42 0.632 

NijmI 1.643 14.50 30.40 156.38 0.566 
NijmII 1.522 11.92 25.89 136.10 0.634 
Reid 93 1.578 13.51 28.08 148.18 0.618 

 Continuous choice 
CD-Bonn 1.627 18.25 30.23 180.23 0.602 
Arg. V18 1.353 11.29 20.11 189.51 0.681 

NijmI 1.530 15.49 28.84 148.51 0.639 
NijmII 1.361 11.17 22.16 182.94 0.682 
Reid 93 1.418 13.17 24.60 121.55 0.664 

2.3. Symmetry Energy 

The neutron matter EoS combined with that of symmetric 
nuclear matter provides us with informat ion on the isospin 

effects[10], in particular on the symmetry energy.The energy 
per nucleon for nuclear matter is a function of the density ρ 
and the asymmetry parameter α .Hence, using Taylor's 
expansion and ignoring higher order terms: 

EA (ρ, α) = EA (ρ,0) + E sym  α 2 +О (α 4 ) +… .   (27) 
The symmetry energy of nuclear matter is defined as a 

second derivative of energy per nucleon EA with respect to 
the asymmetry parameter α as follows: 

( ) ( )2
A

sym 2
0

E ,1E
2

α=

 
 
  

∂ ρ α
ρ =

∂α
      (28) 

where, we introduced the asymmetry parameter: 
n pρ −ρ

α =
ρ                (29) 

Both ρn and ρp are the neutron and proton densities in 
Asymmetric Nuclear Matter (ANM) and ρ = ρn + ρp  is the 
total density of asymmetric nuclear matter. It  is well 
established[33, 34, 52] that the binding energy per nucleon 
EA fulfills the simple a2-law not only for a«1 as assumed in 
the empirical nuclear mass formula[53], but also in the whole 
asymmetry range. The a2-law of the EoS of ANM at any 
isospin asymmetry leads to two important consequences. 

First, it indicates that the EoS of ASM at any isospin 
asymmetry is determined completely by the EoS of SNM 
and the symmetry energy.  

Second, the above α2-law implies that the difference of the 
neutron and proton chemical potentials in β-stable neutron 
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star is determined by the symmetry energy in an explicit way: 
µn-µp = 4aEsym[34] and thus the symmetry energy plays a 
crucial role in p redicting the composition of neutron stars. 

The results of our calculat ion for the symmetry energy as a 
function of baryonic density in terms of the Fermi 
momentum kF, Eq.28 are depicted in Fig. 5. Also the values 
of symmetry energy at saturation points are listed in Table 1. 
We observe that the symmetry energy first increases with 
increasing the Fermi momentum kF until it reaches a 
maximum value then it decreases with increasing kF. 

In Table 2 we present the Fermi momentum at which the 
symmetry energy takes maximum value kFmax and it reaches 
zero kFC (crit ical Fermi momentum) for various potentials. 
At high kF the symmetry  energy can take negative values, this 
occurred because at high kF the EoS for symmetric nuclear 
matter increases more rapidly and in some potentials 
increase more than the EoS for pure neutron matter. This 
means that pure neutron matter system becomes more stable 
than symmetric matter, a phenomenon referred to as isospin 

separation instability[54]. 

2.4. Asymmetric Nuclear Matter 

2.4.1. The Binding Energy 

Figure 6 shows the energy per nucleon as a function of the 
density ρ in asymmetric nuclear matter fo r various values of 
the asymmetry parameter a. In order to establish the 
importance of the hole-hole term in the calculated binding 
energy we have compared BHF calculat ions (which ignore 
the hole-hole term) with SCGF, which includes the hole-hole 
term. As expected, the hh term gives a repulsive contribution 
to the EoS of asymmetric nuclear matter. Th is contribution 
becomes stronger by increasing the density and makes the 
EoS at high density much stiffer. As the density increases the 
phase space for the hole-hole propagator is no longer 
negligible, resulting in  an enhanced repulsive effect on the 
total energy.  

 
Figure 5.  The symmetry energy obtained from Equation (28) as a function of the Fermi momentum kF. The left  panel represents conventional choice and 
the right panel with the continuous choice for the auxiliary potential 
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Figure 6.  The energy per nucleon for asymmetric nuclear matter as a function of density for various values of the asymmetry parameter α. The predictions 
are obtained from the BHF (left  panel) and the SCGF (right panel) approaches 

The additional repulsion from the hh improves greatly the 
predicted saturation density of cold symmetric nuclear 
matter. As the neutron density increases (the total density 
remain ing constant), the EoS becomes more and more 
repulsive. From the figure one notices that, the saturation 
densities of asymmetric nuclear matter depend on the 
asymmetric parameter α and the saturation points shift to 
lower densities. In addition the instability of nuclear matter 
decreases with increasing asymmetry parameter α, (or 
decreasing proton fraction). 

Table 2.  The values of the Fermi momentum that the symmetry energy 
takes a maximum value kFmax and it  reaches zero at kFC in units of fm−1 for 
the various potentia ls 

 kFmax(conv) kFC kFmax(cont
 

kFC 
CD-Bonn 2.1 Above 3 

 
1.9 2.6 

Arg. V18 1.8 2.8 1.5 2.2 
NijmI 1.9 2.8 1.8 2.5 
NijmII 1.8 2.7 1.6 2.2 
Reid 93 1.9 2.8 1.6 2.3 

Table 3.  The difference between neutron and proton chemical potentials 
are reported for two approximations used in the present work for CD-Bonn 
potential at  asymmetry papameter α = 0.8. All chemical potentials 
difference are given in MeV 

Method BHF SCGF 
Density ρ 4 α Esym 4 α Esym 

0.08 65.3 56.4 
0.16 96.3 90.6 
0.32 145.0 142.4 
0.48 189.5 185.9 

The EoS in the case of asymmetric nuclear matter was 
studied in more details in Ref.[33]. 

2.5. The Symmetry Energy and its Relation with the 
Chemical Potential  

Within the parabolic approximation (Eq. 16) in[34] one 
can obtain the neutron and proton chemical potentials in 
asymmetric nuclear matter in the fo llowing way[55, 56]: 

( ) ( )

( )

n,p n,p

2 2
sym

, , 0

2 E
ρ

 
 
 
 

µ ρ α ≈µ ρ α =

∂− α α−α ρ ρ
∂



        (30) 

where, the minus sign is for neutrons and the plus sign for 
protons and in particular: 

( ) ( ) ( )n p sym, , 4 Eρ α − ρ α = α ρµ µ     (31) 
The nucleon chemical potential difference can be 

calculated once we have the coefficient of symmetry energy 
from Eq. (31). In  Table 3 the shift  between neutron and 
proton chemical potentials µn-µp as function of the density 
for BHF and SCGF approaches using CD-Bonn potential at 
asymmetry parameter α = 0.8. Reveals that there is a 
negligible difference between the BHF and the SCGF 
approximations. This means that the hh ladder brought about 
negligible contributions to the chemical potential difference 
specially at high density. 

2.6. Properties of Asymmetric Nuclear Matter  
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2.6.1. How to Reproduce the Empirical Saturat ion Point 

All results of calculations, which refer to realistic NN 
interactions, have been obtained using the CD-Bonn[7] 
interaction. This includes all BHF and SCGF calculat ions. 
Also the evaluation of Vlowk has been based on the 
proton-neutron part of CD-Bonn. The Skyrme Hart ree-Fock 
calculations have been done using the parameterizat ion SLy4 
and for the relat ivistic mean-field calcu lation the 
parameterization fo r DDRMF in[57] has been used. 

First let us turn to the b inding energy of symmetric nuclear 
matter, which are displayed in Fig. 7. Compared to other 
realistic NN interactions the CD-Bonn potential, which we 
have chosen here is a rather soft NN interaction with a weak 
tensor force. This is indicated by the results for the saturation 
point of symmetric nuclear matter as obtained in the BHF 
approximation (the minimum of the dashed black line in Fig. 
7 and data in  Table 4 ). The saturation density is larger than 
twice the empirical value and the calcu lated energy is well 
below, which means that the CD-Bonn result is located in the 
large bind ing energy high density part of the Coester 
band[1]. 

In order to reproduce the empirical saturation point of 
symmetric nuclear we have added an isoscalar interaction 
term as defined in  Eq. (21) choosing a value for δ = 0.5 and 
fitting the parameters t0 and t3. The results for these fitting 
parameters are listed in Table 5 and the corresponding 
energy versus density curves are displayed in Fig. 7. 

2.7. The Nuclear Compressibility Modulus or the 
Incompressibility 

The results for the calcu lated saturation points in Table 4 
are supplemented by the corresponding values for the 
nuclear compressibility modulus: 

( )2
2
0 2

0

E / A
K 9

ρ=ρ

∂
= ρ

∂ρ
        (32) 

Table 4.  Properties of symmetric nuclear matter are compared for Skyrme 
SLy4, DDRMF, BHF, SCGF and Vlowk. The results, which are listed in the 
columns labeled with +ct are obtained employing the additional contact 
interaction of Eq. (21) with parameters as listed in Table 5. The quantities 
listed include the saturation density ρ0, the binding energy at saturation E/A, 
the compressibility modulus K and the symmetry energy at saturation 
density aS (ρ0) 

 ρ0 (fm−3) E/A(ρ0) 
(MeV) K (MeV) aS (ρ0) 

(MeV) 
Sly4 0.160 -15.97 230 32.0 

DDRMF 0.178 -16.3 337 32.1 
BHF 0.374 -23.97 286 51.4 

BHF+ct 0.161 -16.0 214 31.9 
SCGF 0.212 -11.5 203 34.0 

SCGF+ct 0.160 -16.1 270 28.3 
Vlowk+ct 0.160 -16.0 258 21.7 

Table 5.  Parameters t0 and t3 defining the contact interaction of Equation 
(21) as obtained for the fit to the saturation point ρ = 0.16fm−3 and E/A = 
-16.0 MeV at δ = 0.5 for various realistic approaches 

 BHF SCGF Vlowk 
t0 (MeV fm3) -153 -311 -438.1 

t3 (MeV fm3+3δ) 2720 3670 6248 

This nuclear compressibility, which  is calculated at the 
saturation density ρ0, together with the increase of energy at 
large density displayed in Fig. 7 characterize the stiffness of 
the EoS of symmetric nuclear matter. 

 
Figure 7.  (Color online) Comparison of binding energy per nucleon of symmetric nuclear matter as obtained from Skyrme SLy4, DDRMF, BHF, SCGF 
and Vlowk. Results of approaches based on realistic NN interactions are also compared with an additional contact interaction of the form displayed in Eq. (21) 
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Comparing the different approaches we find that the 
relativ istic features included in the DDRMF approach lead to 
the stiffer EoS around the saturation density as well as at 
higher densities. The SCGF and the Vlowk calculations yield 
rather similar results after the contact terms are included, 
which are a little b it softer than the DDRMF results and 
characterized by a compression modulus of 270 MeV and 
258 MeV for SCGF and Vlowk, respectively. At higher 
densities the results are also very close to those obtained for 
the Skyrme Hart ree-Fock using SLy4. Note, however, that 
SLy4 y ields a rather low value for K as compared to the 
SCGF and Vlowk calculations. The softest EoS for symmetric 
matter among those approaches which fit the empirical 
saturation point is provided by the BHF approximat ion. 

2.8. The Nuclear Symmetry Energy 

Table 5 a lso displays results for the symmetry energy: 

( ) ( )
2 pS

E / A N Z 1 2Y
A

a ,
ρ

∂ −ρ = α = = −
∂α   (33) 

Evaluated for each  approach at the corresponding 
saturation density ρ0. The two phenomenological approaches 
SLy4 and DDRMF yield results which are in the range of the 

experimental value of 32±1 MeV. Also the BHF and SCGF 
approach lead to results which are rather close to the 
empirical value, if the contact term has been added. The BHF 
and SCGF calculations without the contact term lead to 
non-realistic values for aS (ρ0) since these values are 
calculated at the corresponding saturation densities, which 
are larger than the empirical saturation density. 

The symmetry energy calculated in the SCGF approach is 
slightly smaller than the one obtained from the BHF 
approximation. Th is is valid for all densities under 
consideration (Fig. 8). This difference can easily be 
explained: As we already mentioned above, the contribution 
of the hole-ho le terms  is repulsive, which leads to larger 
energies for SCGF as compared to BHF for all densities in 
symmetric nuclear matter (Fig. 7) as well as in  pure neutron 
matter (Fig. 9). Since, however, the contribution of ladder 
diagrams is larger in the proton-neutron interaction (due to 
the strong tensor terms in the 3S1-3D1 partial wave) than in 
the neutron-neutron interaction, this repulsive effect  is 
stronger in symmetric nuclear matter than in neutron 
enriched matter. Therefore the symmetry energy calculated 
in SCGF is slightly smaller if the hole-hole terms are 
included in SCGF[58]. 

 
Figure 8.  (Color online) Comparison of the symmetry energy aS(ρ) as a function of density ρ as obtained from Skyrme SLy4, DDRMF, BHF, SCGF and 
Vlowk approaches 
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Figure 9.  (Color online) Energy per nucleon of pure neutron matter as a function of density as obtained from Skyrme SLy4, DDRMF, BHF, SCGF and 
Vlowk approaches 

 
Figure 10.  (Color online) Results for a system of infinite matter consisting of protons, neutrons and electrons in β-equilibrium. The upper panel show the 
proton abundances and the lower panel displays the energy per nucleon as a function of density using the various approximation schemes discussed in the 
text 
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The symmetry energy rises as a function of density for all 
approaches considered. Note, however, that the two 
phenomenological approaches Skyrme Hartree-Fock using 
SLy4 and DDRMF provide rather d ifferent predict ions at 
high densities although the symmetry energy at normal 
density is identical. The relativ istic approach predicts 
symmetry energies for high densities, which are well above 
all those derived from the microscopic calculations, while 
the Skyrme interaction yields a symmetry energy which is 
even below the Vlowk estimate at densities above four times 
saturation density. 

2.9. β-Equilibrium 

Rather similar features also observed, when we inspect the 
properties of nuclear matter in β-equilibrium, neutralizing 
the charge of the protons by electrons, displayed in Fig. 10. 
The upper panel of this figure displays the proton abundance 
Yp = Z/A, which are to some extent related to the symmetry 
energy: large symmetry energy should correspond to large 
proton abundances. So the largest proton abundances are 
predicted within the DDRMF approach. Already at a density 
around 0.4 fm−3 Yp exceeds the about 10%, which implies 
that the direct URCA process could be enabled, which 
should be reflected in a fast cooling of a neutron star. 

The Vlowk and SCGF approaches lead to similar proton 
abundances at large densities. This demonstrates that the 
evaluation of the proton abundance in β-equilibrium cannot 
directly be deduced from the symmetry  energy, since the 
former observable is derived from proton and neutron 
energies at large asymmetries (Z<<N), whereas the 
symmetry energy is calcu lated from the second derivative at 
N = Z (Eq. (28)). The BHF approach shows slightly lower 
values for Yp at high density, but the results are still in the 
same range as SCGF and Vlowk. 

At low densities the Skyrme HF approach yields large 
proton fractions as compared to the results of the other 
calculations. Large proton fractions at low densities tend to 
enhance density inhomogeneities and thus favor the 
existence of a large variety of pasta structures. Therefore the 
Skyrme HF (Sly4) and the DDRMF approach, which have 
been explored in  detail in[57, 59], should favor the formation 
of pasta structures as compared to the microscopic 
approaches. Comparing the energies of matter in 
β-equilibrium derived from the various approaches as a 
function of density (Fig. 10, lower panel) we find the same 
trends as in the case of pure neutron matter displayed in Fig. 
9. 

The equation of state of nuclear matter in β-equilibrium is 
the main input to predict mass and radii of neutron stars. A 
stiffer equation of state supports a larger maximum mass and 
a lower central density. In addition a thicker crust is found 
for the stiffer equation of state[60]. 

2.10. The Isovector Effective Mass  

Another important informat ion for the evaluation of 
dynamical features of matter in neutron stars is the density of 

states, which can be characterized by an effective mass. The 
term effective mass is used in various connections in 
many-body physics. This includes the effective masses, 
which express the non-locality of the self-energy in space 
and time, which corresponds to a momentum and energy 
dependence. Such effective masses for protons and neutrons 
determined for nuclear matter in β-equilibrium are d isplayed 
in Fig. 11 as a function of density considering 
non-relativistic approximat ion schemes. 

It is a general feature of all approaches considered that the 
effective masses for protons as well as neutrons decrease 
with increasing density. However, there is a  striking 
difference between the phenomenological Skyrme 
approximation and the BHF and Vlowk approach, which are 
based on realistic NN interactions: The effective mass for 
protons is smaller than the corresponding one for neutrons in 
neutron rich matter for the calculat ions using realistic 
interactions, while it  is opposite applying the Skyrme 
parameterization. In fact, if we define the effective masses 
for protons m p

*m  and neutrons *
nm  in terms of isoscalar 

*
Sm  and isovector masses *

Vm
 by: 
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It turns out most of the Skyrme parameterizations yield an 

effective isovector mass *
Vm , which is even larger than the 

bare nucleon mass M[61] which implies that it is larger than 

the effective isoscalar mass *
Sm . This means that the 

effective mass for neutrons is smaller than the corresponding 
one for the protons in neutron rich matter (α>0). These 
Skyrme parameterizations leading to a large effective 
isovector mass are usually favored as they correspond within 
the mean-field approach to an enhancement factor k of the 
Thomas-Reiche-Kuhn sum-rule[62, 63]. 

Non-relat ivistic descriptions of nuclear matter, which are 
based on realistic interactions yield an effective isovector 
mass *

Vm  which  is s maller than the corresponding effective 
isoscalar mass, which leads to a larger effect ive mass for 
neutrons than for protons in neutron-rich matter (Fig. 11). In 
order to analyze this finding we inspect the dependence of 

the nucleon self-energy in the BHF approximation 
BHF
i∑ , 

defined  in Eq . (7), as a funct ion of energy ω and  momentum 
k of the nucleon considered. Following the discussion of 
Mahaux and  Sartor[38] one can  define the effective k-mass: 

( ) ( )
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k k k,M1
M k k

m
−
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Figure 11.  (Color online) Effective masses for protons (lines with symbols) and neutrons (lines without symbols) as obtained for nuclear matter in 
β-equilibrium using Skyrme HF (SLy4), BHF and Vlowk approaches 

 

Figure 12.  (Color online) Effective k-mass k
*m k) (solid lines) and effective E-mass E

*m  (k) (dashed lines) for neutrons and protons (lines with symbol) 

as obtained from the BHF calculations for asymmetric nuclear matter at the density ρ = 0.17 fm−3 and a proton abundance of 25%. The Fermi momenta for 
protons and neutrons are indicated by vertical dotted lines 
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And the effective E-mass 
( ) ( )E k,

1 .
M

m  
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           (36) 

The effective mass can then be calculated from the 
effective k-mass and the effective E-mass by: 

( ) ( ) ( )( )Ek
** kk k

M M M
mm* m ω = ε

=          (37) 

Results for the effective k-mass and E-mass as obtained 
from BHF calcu lations for asymmetric nuclear matter at a 
density ρ = 0.17 fm−3 and a proton abundance Yp of 25% (α = 
0.5) are displayed in Fig. 12. We notice that the effective 
k-mass for the protons is significantly below the 
corresponding value for the neutrons at all momenta. Since 
the k-masses tend to increase as a function of the nucleon 
momentum k, the difference in the Fermi momenta for 
protons and neutrons enhance the difference 

( ) ( )Fn Fpk,n k,p
* *m k m k .−  

The effective k-mass describes the non-locality of the 
BHF self-energy. This non-locality and thereby also these 
features of the effective k-mass are rather independent on the 
realistic interaction used. Furthermore it turns out that the 
values for the k-mass are essentially identical if one derives 
them from the nucleon BHF self-energy using the G-matrix 
or from the bare interaction V or from Vlowk[2]. This 
non-locality of the self-energy is dominated by Fockexchange 
contribution originating from ρ-exchange. In neutron-rich 
matter this contribution leads to a stronger depletion for the 
proton mass than for the neutron mass[4, 64]. 

Anyway, the enhancement of the effective  mass m*, 
which is due to the effective E-mass in Equation (34) is not 
strong enough to compensate the effects of the k-mass. 
Therefore the final effective mass is below the bare mass M 
and the effective mass for neutrons remains larger than the 
corresponding one for protons. 

2.11. The Symmetry Potential Usym 

Regarding Un/p as functions of the asymmetry parameter a, 
one can easily verify that the following approximate relation 
applies: 

( ) ( ) ( )symn/p n/pk, , k, , 0 U k, ,U Uρ α ≈ ρ α = ± ρ α   (38) 

with the ± referring to neutron/proton, respectively. The 
difference between the neutron and proton potentials then 
gives an accurate estimate for the strength of the isovector or 
symmetry potential in asymmetric nuclear matter, i.e .: 

n p
sym

U U
U 2

−
=

α
             (39) 

which is of particular interest and importance fo r nuclear 
reactions induced by neutron-rich nuclei. The isovector part 
of the nucleon potential as a function of nucleon kinetic 

energy is illustrated in Fig. 13 at asymmetry parameter a = 
0.2 (upper panel) and at a  = 0.4 (lower panel). The strength of 
the isovector nucleon optical potential, i.e., the symmetry or 
Lane potential[65], can be ext racted from Equation (39) at ρ0. 
Systematic analysis of a large number of nucleon-nucleus 
scattering experiments at beam energies below about 100 
MeV indicates undoubtedly that the Lane potential decreases 
approximately linearly with increasing the beam energy Ekin, 
i.e., ULane = a-bEkin where a ≈ 22-34 MeV and b ≈ 0.1-0.2. 

Figure 13 shows the theoretical symmetry potentials that 
have been calculated in both BHF and SCGF approaches in 
comparison with the Lane potential constrained by the 
experimental data. The vertical bars are used to indicate the 
uncertainties of the coefficients a and b. It is seen that the 
strength of symmetry potential decreases with increasing 
energy .This trend is in agreement with that extracted from 
the experimental data. At the saturation density, the nuclear 
symmetry potential is found to change from positive to 
negative values at a nucleon kinetic energy of about (200 
MeV). Th is is a very interesting result as it implies that the 
proton (neutron) feels an attractive (repulsive) symmetry 
potential at  lower energies but a repulsive (attractive) 
symmetry potential at higher energies in asymmetric nuclear 
matter. It has been shown that[64] the Usym is almost 
independent of the isospin asymmetry a within the BHF 
framework, imply ing a linear dependence of neutron and 
proton single-particle potentials on α and providing a 
microscopic support for the empirical assumption of the 
Lane potential[65]. A lso the present results indicate that the 
Usym is almost independent of the isospin asymmetry  a within 
the BHF and SCGF approaches. 

2.12. Free Energy of the S ymmetric Nuclear Matter at 
Finite Temperatures 

Many attempts were made to  use the BHF calculations at 
fin ite temperature[8, 43, 66, 67]. In Fig. 14, the internal 
energy F of nuclear matter in  MeV is p lotted against the 
density ρ in fm-3 and the values obtained with the low 
temperature expansion (26). The results are shown in Fig. 14, 
for symmetric nuclear matter using different potentials. For 
both T = 8 (upper graph) and T = 12 MeV (lower one), for 
continuous choice. Fig. 14 gives the results obtained using 
the CD-Bonn potential (solid line), the Nijm1 potential 
(dashed line) and the Reid 93 potential (dashed–dot line) in 
comparison with a more elaborate calculat ion using Argonne 
V14 plus microscopic 3BF[43] (dashed double dotted line). 
From the plotted figures it is observed that the internal 
energy first decreases with increasing the density until it 
reaches a minimum then it increases with increasing the 
density. Our results are comparable to those obtained in 
Ref.[43]. The same results have been done using the 
conventional choice of the auxiliary potential in Ref.[68]. 
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Figure 13.  The symmetry potential as a function of the nucleon kinetic energy at nuclear matter density (ρ = 0.16 fm−3) and at asymmetry parameter δ = 0.2 
(upper panel) and at δ = 0.4 (lower panel). The predictions are obtained with the CD-Bonn potential and compared with the empirical information from the 
nuclear optical potential data (shaded area) 
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Figure 14.  The internal energy at T = 8 MeV (upper figure)  and T=12 MeV (lower one) for symmetric nuclear matter as a function of density using 
different potentials for continuous choice compared with Argonne V14 plus microscopic 3BF by Baldo and Ferreira[43] 

3. Conclusions 
We have investigated the effect of different modern 

nucleon-nucleon potentials on the EoS, i.e., the nuclear 
matter binding energy per nucleon, within BHF approach. It 
is found that our calculations lead to results, which lie  along 
a line (Coester line) shifted with respect to the 
phenomenological saturation point (ρ0 = 0.16 fm-3, EA = -16 
MeV). 

We have reviewed the current status of the Coester line, 
i.e., the saturation points of nuclear matter obtained within 
BHF approach using the conventional and continuous choice 
for the auxiliary potential and employing the modern 
nucleon-nucleon potentials. It is found that our results 
confirm the concept of a “line”, density and energy of the 
various saturation points being strongly linearly correlated. 

We have presented a microscopic calculation of the 
equation of state of nuclear matte when protons and neutrons 
have different Fermi momenta. The techniques to evaluate 
the single-particle green’s function in a Self-Consistent 
G-matrix approach (SCGF). The continuous choice has been 
adopted for the auxiliary potential. The single-particle 
energy is calculated self-consistently using BHF and SCGF 
approximations. The contribution of the hh terms leads to a 
repulsive contribution to the single-particle energy which 
decreases with momentum. The dependence of the EoS on 
the neutron excess parameter is clearly linear as a function of 
a2. The inclusion of the hole-hole ladders and the 
self-consistent treatment of the Green’s function in the 

SCGF approach leads to a small reduction of the binding 
energy per nucleon as compared to the BHF approximation. 

Various approaches to the nuclear many-body problem 
have been investigated to explore their pred ictions for 
nuclear matter at high density and large proton-neutron 
asymmetries. Two of these approaches, the Skyrme 
Hartree-Fock and the Density Dependent Relativistic Mean 
Field approach are predominantly of phenomenological 
origin. Their parameters have been adjusted to reproduce 
data of finite nuclei. However, the parameters have been 
selected in such a way that also bulk propert ies of 
asymmetric nuclear matter derived from microscopic 
calculations are reproduced. The other three approaches are 
based on realistic NN interactions, which fit the NN 
scattering phase shifts. In these approximation schemes 
(Brueckner Hartree Fock BHF, Self-consistent Greens 
Function SCGF and Hartree Fock using a renormalized 
interaction Vlowk) a isoscalar contact interaction has been 
added to reproduce the empirical saturation point of 
symmetric nuclear matter. 

These various approximat ion schemes lead to rather 
similar predictions for the energy per nucleon of symmetric 
and asymmetric nuclear matter at high densities. In detail one 
finds that the relativistic DDRMF leads to a rather stiff 
Equation of State (EoS) for symmetric matter while the BHF 
approach leads to a relatively soft EoS, a feature which is 
compensated within the microscopic framework by the 
repulsive features of the hole-hole ladders included in SCGF. 
These features are also reflected in the study of nuclear matter 
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in the β-equilibrium and lead to moderate differences in the 
predictions for proton abundances and EoS. 

More significant differences are observed when we 
inspect details like the effective masses, in particular the 
isovector effect ive mass. In neutron-rich  matter the 
microscopic approaches predict a positive difference 
between neutron and proton effective masses. This feature 
can be related to the non-locality o f the self-energy induced 
by one-pion exchange term and is expressed in terms of an 
effective k-mass. 

Also the symmetry potential has been calcu lated as a 
function of the nucleon kinetic energy. We observe that the 
strength of the predicted symmetry potential decreases with 
energy, a behavior which is consistent with the empirical 
informat ion. It is interesting to note that at normal density (ρ 
= 0.16 fm−3), the nuclear symmetry potential changes from 
positive to negative values at nucleon kinetic energy around 
200 MeV. More details can be read in Ref.[69]. 
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