
Journal of Nuclear and Particle Physics 2012, 2(2): 14-21 
DOI: 10.5923/j.jnpp.20120202.04 

 

Nuclear and Neutron Matter Properties Using BHF 
Approximation 

Hesham M. M. Mansour1, Khaled S. A. Hassaneen2,3,* 

1Department of Physics, Faculty of Science, Cairo University, Giza, Egypt 
2Department of Physics, Faculty of Science, Sohag University, Sohag, Egypt 

3Department of Physics, Faculty of Science, Taif University, Taif, Saudi Arabia 

 

Abstract  Results of cold and hot symmetric nuclear matter and pure neutron matter calculations are presented. The 
Brueckner-Hartree-Fock (BHF) approximation + two body density dependent Skyrme potential which is equivalent to three 
body interaction are used. Various modern nucleon-nucleon (NN) potentials are used in the framework of BHF approxima-
tion, e.g.: CD-Bonn potential, Nijm1 potential, Reid 93 potential and Argonne V18 potential. The bulk properties of asym-
metric nuclear matter are computed such as the equation of state (EOS) at (T = 0), pressure at (T = 0, 5 and 10 MeV), single 
particle potential, free energy at (T = 5 and 10 MeV), nuclear matter incompressibility and the symmetry energy. Also the 
bulk properties of pure neutron matter are computed such as the EOS at (T = 0), pressure at (T = 0, 3 and 6 MeV), single 
particle potential, free energy at (T = 3 and 6MeV). Good agreement is obtained in comparison with previous theoretical 
estimates and experimental data. 
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1. Introduction 
Static properties of nuclear matter e.g., binding energy, 

symmetry energy, etc; can be determined by the equation of 
state (EOS). The EOS of nuclear matter has been of great 
interest in nuclear physics and astrophysics[1-3]. The inter-
est in the equation of state of nuclear matter stems from 
different motivations and prospects. First, it appears as a 
theoretical challenge to the possibility of predicting, on the 
basis of the meson theory of nucleon-nucleon interaction, the 
EOS of nuclear matter in the density range of up to a few 
times the saturation density (central density of heavy nuclei). 

At least three main areas of research, where phenome-
nological data can be obtained, have to be mentioned: 

(1) The data on medium and heavy nuclei. The mass 
formula which fits the smooth part of the binding energy of 
nuclei throughout the nuclear mass table allows extracting 
some general properties of the EOS. Similarly, the data on 
giant resonances can give an estimate of other bulk proper-
ties of nuclear matter, in particular the incompressibility. 

(2) The knowledge of the EOS in a wide range of density 
and asymmetry is the basis of any theory of neutron star 
structure and the prediction of their properties. The possible 
confrontations of the observable data with the theoretical 

 
* Corresponding author: 
khs_94@yahoo.com (Khaled S.A. Hassaneen) 
Published online at http://journal.sapub.org/jnpp 
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved 

predictions give a serious challenge to any theory of EOS. 
(3) Heavy ion collisions (HIC) at intermediate energies 

(20 < E /A < 200 MeV) give the possibility of compressing 
and heating pieces of nuclear matter. 

Few excellent review papers have been published[4] on 
this wide subject. Symmetric nuclear matter is defined to be 
an infinite system consisting of an equal number of protons 
Z and neutrons N, the Coulomb interaction is absent, and 
the number of particles A=N+Z approach infinity. The sin-
gle-particle wave functions are taken to be plane waves. 
The nucleons occupy a volume Ω. For an infinite system, 
both A and Ω approach infinity, while the particle density ρ 
= A / Ω remains constant. The general quantum many-body 
theory is the subject of excellent textbooks[5,6]. The treat-
ment is restricted to the Goldstone[7] and the Bethe-
Brueckner-Goldstone (BBG) method[8,9]. If one considers 
the (BHFA) approximation which assumes that nucleons in 
nuclear matter move in a mean field arising from the inter-
action with all other nucleons one can reach a bound nu-
clear matter. 

The predictions of non-relativistic microscopic ap-
proaches (including both the BHF and variational ap-
proaches) based on pure two-body nucleon-nucleon (NN) 
forces (2BF) do not give the empirical saturation point of 
symmetric nuclear matter (Coester band.[10]). The medium 
effects are taken into account by phenomenological or mi-
croscopic three-body forces (3BF) within non-relativistic 
contexts. Calculations with phenomenological 3BF have 
been performed both in the framework of the variational 
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approach[11,12] and the BHF approximation, [13-16]. 
In this work the equation of state (EOS), pressure, etc are 

computed using different modern NN potentials like CD- 
Bonn[17], Argonne v18[18], Nijm1, and Reid 93[19] poten-
tials in the framework of BHFA (conventional) choice plus a 
two body density dependent Skyrme potential which is 
equivalent to three body interaction. The conventional 
choice, assumes a single-particle potential U = 0 for single- 
particle states above the Fermi level, and approximate the 
energies by the kinetic energy only[20]. U is a self- consis-
tent BHF potential for k < kF. We also computed the sym-
metry energy (ESym). The symmetry energy at high densities 
is very important in nuclear astrophysics for understanding 
e.g., the cooling mechanisms in a neutron star[21]. In the 
next section we give a brief description of the BHFA theory 
and the BGE. Section (3) is devoted to present the results of 
the calculation of the nuclear matter properties while in 
section (4) the results of the neutron matter are presented. A 
summary of the present work is given in section (5). 

2. BHFA and BGE 

The G-matrix is defined by: 

( ) ( )QG V V G
H i

ω ω
ω η

= +
− +


          (2.1) 

This is known as the Beth-Goldstone equation (BGE); for 
more details see Ref[22]; here ω is the starting energy which 
is usually the sum of the single particle energies of the states 
of the interacting nucleons 

( ) ( ')e k e kΩ = +              (2.2) 
V is the bare NN potential, η is an infinitesimal small 

number, H is the unperturbed energy of the intermediate 
scattering states. Q is the Pauli projection operator, it pro-
jects out states with two nucleons above the Fermi level, and 
it is given by: 

( , ') (1 ( ))(1 ( '))Q k k k kF Fθ θ= − −       (2.3) 

where ӨF (k) = 1 for k < kF and zero otherwise, ӨF (k) is the 
occupation probability of a free Fermi gas with a Fermi 
momentum kF. In the Brueckner-Goldstone expansion, the 
average binding energy per nucleon is expanded in a series of 
terms as follows: 
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where |kk' > refers to antisymetrized two-body states. This 
first order is known as the Brueckner-Hartree-Fock ap-
proximation (BHFA). To completely determine the average 
binding energy one has to define the single particle potential 
U (k) which contributes to the single particle energies ap-
pearing in the G-matrix elements. The structure of the ex-
pression (2.4) suggests choosing the following BHF single 
particle potential 

F

U(k) kk '|G(e(k) e(k '))|kk '
k ' k

= 〈 + 〉∑
〈    (2.5) 
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The G-matrix itself depends on U (k) through the starting 
energy ω, defined in Eq.(2.2) and the lowest order ap-
proximation (2.4) along with the choice (2.5) for the single 
particle potential. The single particle energy e (k) is defined 
as  

)(
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22
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m

k
kUke +=+Γ=

       (2.7) 

where Γ is the kinetic energy. In the conventional choice for 
the single particle potential one normally takes the BHF 
potential (eq. (2.5)) for the hole states (k < kF) and zero for 
particle states (k > kF), 
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Thus introducing a large discontinuity in the single parti-
cle spectrum at the Fermi surface. However, due to the un-
physical discontinuity at the Fermi surface, this auxiliary 
potential cannot be directly related to the average potential 
felt by a particle or a hole. Moreover, many other interesting 
properties can be derived such as the momentum distribution 
and the effective mass which is properly described using a 
continuous spectrum across the Fermi surface. This was the 
main motivation which led Mahaux and collaborators [23, 24] 
to introduce the continuous choice for the single particle 
potential thus treating particles and holes in a symmetrical 
way. The use of the continuous choice potential implies that 
the G-matrix elements needed in the self-consistent calcula-
tion are complex and the prescription advocated by Mahaux 
is 

( ) Re '| ( ( ) ( '))| '
'

F

U k kk G e k e k kk
k k

= 〈 + 〉∑
〈      (2.9) 

Eqs. (2.1) and (2.8) represent the main equations that one 
needs to solve self-consistently. In order to obtain such a 
self-consistent solution one often assumes a quadratic de-
pendence of the single-particle energy on the momentum of 
the nucleon in the form 
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Where m* is the effective mass of the nucleon and ∆ is a 
constant. Starting with an appropriate choice for the pa-
rameters for the effective m* and the constant ∆, one can 
solve the Bethe-Goldstone equation and evaluate the sin-
gle-particle energy[22]. The parameters m* and the constant 
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∆ can then be readjusted in such a way that the parameteri-
zation eq. (2.10) reproduces these two energies. This pro-
cedure is then iterated until a self-consistent solution is ob-
tained. The parameterization of eq. (2.10), however, is useful 
not only to simplify the self-consistent solution of the BHF 
equations; but also leads to a simplification of the numerical 
solution of the Bethe-Goldstone equation. 

3.1. EOS of the Symmetric Nuclear Matter at (T = 0) 
The EOS is the relationship between energy per nucleon 

and Fermi momentum kF or density ρ, the minimum point of 
the curve is called the saturation point. In the present work 
one may introduce a Skyrme effective interaction density 
dependent term in addition to the BHF potential. 
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δ
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This is a two-body density dependent potential which is 
equivalent to three-body interaction. Where ti and xi are 
interaction parameters, Pσ is the spin exchange operator, ρ is 
the density, r1and r2 are the position vectors of the particle (1) 
and particle (2) respectively and αi = (1/3, 2/3, 1/2 and 1). 

The results are shown in the figure (3.1), where the energy 
per particle (E / A) in MeV is plotted against density ρ in fm-3, 
for symmetric nuclear matter using different potentials in 
comparison with Freidman and Pandharipande (F and P) 
[25]. 
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Figure 3.1.  E / A in MeV for symmetric nuclear matter at (T=0) as a 
function of density using different potentials for conventional choice in 
comparison with F and P[25] 

In Fig. (3.1) for conventional choice at T=0, the CD-Bonn 
potential, the Nijm1 potential, the Argonne v18 potential and 
the Reid 93 potential are compared by F and P[25]. Good 
agreement is obtained for small values of kF around the 
minimum. 
Table 1.  The saturation points as a function of Fermi momentum kF in 
terms of density ρ0 for various potentials 

The potential Conventional choice 
kF (fm-1 ) ρ0 (fm-3 ) E/A (MeV) 

CD-Bonn 1.355 0.168 -16.112 
Nijm 1 1.358 0.169 -16.108 

Arg. V18 1.344 0.164 -16.043 
Reid 93 1.344 0.164 -16.043 

Table (1) shows the saturation points for the different 

potentials as a function of Fermi momentum kF in (fm-1) in 
terms of the density ρ in (fm-3) for the conventional choice. 

3.2. Pressure of the Symmetric Nuclear Matter at (T = 0) 

The pressure for symmetric nuclear matter at T = 0 is de-
fined in terms of the energy per particle as 

ρ

ρ
ρρ

∂

∂
=

))(/(
)(

2 AE
p             (3.2) 

The results are shown in Fig. (3.2). The values of the 
pressure are plotted against the density ρ for symmetric 
nuclear matter for conventional choice using the CD-Bonn 
potential, the Nijm1 potential, the Argonne v18 potential and 
the Reid 93 potential in comparison with F and P[25]. From 
figure (3.2) it is observed that when the density of symmetric 
nuclear matter increases the pressure of nuclear matter in-
creases. 
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Figure 3.2.  The pressure of symmetric nuclear matter at (T = 0) as a 
function of density using different potentials for conventional choice in 
comparison with F and P[25] 
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Figure 3.3.  The single particle potential for symmetric nuclear as a func-
tion of momentum k at (kF = 1.333 fm-1) for different potentials for con-
ventional choice 

3.3. Single Particle Potential of the Symmetric Nuclear 
Matter 

The single particle potential of e.g. a proton U is defined 
together with the kinetic energy as the energy required to 
remove this proton from the nuclear system leaving a hole in 
the state. The dependence of the single particle potential on 
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the momentum k for symmetric nuclear matter at kF = 1.333 
fm-1 for various potentials for conventional choice are shown 
in figure (3.3). The results for all potentials are similar in the 
conventional choice i.e. the single particle potential U in-
creases with increasing the momentum k. There is another 
indication for the differences between the interactions con-
sidered: The local interactions Argonne V18 and Reid 93 are 
stiffer than the nonlocal CD-Bonn and Nijm 1 potentials. 
Therefore a larger part of the attraction in the effective in-
teraction originates from the particle-particle ladder contri-
butions to the G-matrix. 

3.4. Free energy of the Symmetric Nuclear Matter at 
Different T 

The free energy of nuclear mater is defined by 
F = ET=0 – T ST              (3.3) 

Where F is the free energy of the system, ET=0 is the total 
energy at T = 0, ST is the entropy of the system at tempera-
ture T and T is the temperature in (MeV). 

By using equation (3.3) the free energy[26] of the system 
at temperature T is defined by 
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where m* is the effective mass of the nucleon at saturation. 
The free energy of nuclear matter in MeV is plotted against 
the density ρ in fm-3. The results are shown in the figures (3.4) 
and (3.5), for symmetric nuclear matter using different po-
tentials in comparison with F and P[25]. 

At T = 5 MeV, for conventional choice Fig. (3.4) the 
CD-Bonn potential, the Nijm1 potential, the Argonne v18 
potential and the Reid 93 potential are compared by F and P. 
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Figure 3.4.  The free energy at (T = 5 MeV) for symmetric nuclear matter 
as a function of density using different potentials for conventional choice 
compared by F and P[25] 

At T = 10 MeV, for conventional choice Fig. (3.5), the 
CD-Bonn potential, the Nijm1 potential, the Argonne v18 
potential and the Reid 93 potential are compared with F and 
P. From the plotted figures it is observed that the free energy 
first decreases with increasing the density until it reaches a 

minimum then it increases with increasing the density. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-40

-20

0

20

40

60

80

100

120

140

160

F 
(M

eV
)

ρ (fm-3 )

 CD-Bonn
 Nijm 1
 Arg. V18
 Reid 93
 F and P

 
Figure 3.5.  The same as Fig. (3.4) but at T=10 MeV 

3.5. Pressure of the Symmetric Nuclear Matter at   
Different T 

At (T = 5 and 10 MeV), the following equation is used for 
calculating the pressure of symmetric nuclear matter by 
using the T2-approximation[26] 
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where m* is the effective mass of the nucleon. 
The results are shown in Fig. (3.6). The values of pressure 

at (T = 5 MeV) are plotted against the density ρ for sym-
metric nuclear matter for conventional choice, using the 
CD-Bonn potential, the Nijm1 potential, the Argonne v18 
potential and the Reid 93 potential are compared with F and 
P. 
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Figure 3.6.  The pressure for symmetric nuclear matter at (T = 5 MeV) as a 
function of density using different potentials for conventional choice com-
pared by F and P [25] 

In Fig. (3.7), the values of pressure at (T = 10 MeV) are 
plotted against the density ρ for symmetric nuclear matter for 
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conventional choice using the CD-Bonn potential, the Nijm1 
potential, the Argonne v18 potential and the Reid 93 poten-
tial are compared with F and P. From the figures (3.6) and 
(3.7) it is observed that when the density of symmetric nu-
clear matter increases the pressure of symmetric nuclear 
matter first decreases and after that increases. 
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Figure 3.7.  The same as Fig. (3.6) but at T=10 MeV 

3.6. Nuclear Matter Incompressibility 
The incompressibility κ0[27] can be calculated from the 

following equation: 

0

2
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          (3.6) 

The incompressibility κ 0 can be used to explain the stiff-
ness of the EOS. The experimental value of the incom-
pressibility of nuclear matter at its saturation density ρ0 has 
been determined to be 210 ± 30 MeV[28]. 

The incompressibility at the saturation point is computed 
in terms of saturation density ρ0 using different potentials. It 
is found that, for conventional choice the values of incom-
pressibility for the CD-Bonn potential, the Nijm1 potential, 
the Reid93 potential and the Argonnev18 potential are: 
(228.97, 260.02, 235.95 and 233.42 MeV) respectively. 

3.7. Symmetry Energy of the Asymmetric Nuclear  
Matter 

The symmetry energy is defined as  
2

2 0
( , )1( ) [ ]2

ττ τ=τ

∂ ε ρ αε ρ = α∂α
         (3.7) 

where ατ is the neutron excess parameter. In Fig. (3.8) for 
conventional choice, symmetry energies in MeV are plotted 
against the density ρ in (fm-3), in comparison with the ex-
perimental data using the CD-Bonn potential (solid line), the 
Nijm1potential (dashed line), the Reid 93 potential (dashed 
dot line) and the Argonne v18 potential (dot line), and the 
experimental data[29] are represented by dashed double dots 

line. From figure (3.8), it is observed that when the density of 
nuclear matter increases the symmetry energy of the system 
increases. For all the potentials at the saturation density (ρ0 = 
0.16 fm-3) it is found that the nuclear symmetry energy is 
around 32 MeV. 
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Figure 3.8.  The symmetry energy in (MeV) as a function of density ρ in 
(fm-3) is compared by exp. data [29] using different potentials for conven-
tional choice 

4.1. EOS of the Pure Neutron Matter at (T = 0) 
By using the values of t1, t2, x1 and x2 (interaction pa-

rameters) from table (2) the EOS of the pure neutron matter 
is calculated by adding the BHF calculation to the Skyrme 
one. 

Table 2.  The interaction parameters for various potentials 

The potential Conventional choice 
t1 t2 x1 x2 

CD-Bonn -1092.4 1876.4 0.1964 -0.1874 
Nijm 1 -1018.8 1663.3 0.0655 -0.3101 

Arg. V18 -969.7 1521.2 0.2985 -0.2077 
Reid 93 -969.7 1521.2 0.0368 -0.366 
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Figure 4.1.  E / A in MeV for pure neutron matter at (T = 0) as a function of 
density in (fm-3) using different potentials for conventional choice compared 
by SKM*[30], F and P [25] 

The results are shown in figure (4.1) where the energy per 
particle (E / A) in MeV is plotted against density ρ in fm-3, 
for pure neutron matter using different potentials. The results 
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obtained are compared by SKM*[30], and F and P[25]. 
From figure (4.1) it is observed that when the energy per 

nucleon increases the density increases, and all potentials 
behave in the same way as the SKM* potential. 
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Figure 4.2.  Pressure of the pure neutron matter in (MeV.fm-3) at (T = 0) as 
a function of density ρ in (fm-3) using different potentials for conventional 
choice in comparison with F and P [25] 

4.2. Pressure of the Pure Neutron Matter at (T = 0) 

Adding the quantity ∆P (ρ) (Skyrme) to the pressure cal-
culated by the Brueckner-Hartre-Fock approximation, the 
results are shown in figure (4.2), the values of pressure are 
plotted against the density ρ, for pure neutron matter using 
different potentials in comparison with F and P[25]. From 
Fig. (4.2) it is observed that when the density of pure neutron 
matter increases the pressure increases. 

4.3. Single Particle Potential of the Pure Neutron Matter 
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Figure 4.3.  The single particle potential for the pure neutron matter in 
(MeV) as a function of momentum k at (kF = 1.333 fm-1) for conventional 
choice of different potentials 

The single particle potential for the pure neutron matter is 
calculated using the CD-Bonn potential, the Argonnev18, the 
Nijm1 potential and the Reid 93 potential for conventional 
choice. In figure (4.3) the dependence of the single particle 
potential on the momentum k for the pure neutron matter at 
kF = 1.333 fm-1 is plotted for various potentials .It is observed 
that the results for all potentials are similar in the conven-

tional choice. The single particle potential increases with 
increasing the momentum k. 

4.4. Free Energy of the Pure Neutron Matter at Different 
T 

The free energy of the pure neutron matter is defined by 
F = ET=0 – T ST                   (4.1) 

Where F is the free energy of the system, ET=0 is the total 
energy at T = 0 and ST is the entropy of the system at tem-
perature T. Using T2-approximation[25], the entropy of pure 
neutron system at temperature T is defined by 
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By substituting equation (4.2) in equation (4.1) then the 
free energy F is given by:  
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where *
nm  is the effective mass of the neutron 
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Figure 4.4. The free energy at (T = 3 MeV) for pure neutron matter in [MeV] 
as a function of density in [fm-3] using different potentials for conventional 
choice compared by F and P[25] 
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Figure 4.5.  The same as figure (4.4) but at T=6MeV 

The results are shown in figures (4.4) and (4.5), for the 
pure neutron matter using different potentials in comparison 
with F and P[25]. In Fig. (4.4) for conventional choice at T = 
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3 MeV, the CD-Bonn potential, the Nijm1 potential, the 
Argonne v18 potential and the Reid 93 potential are compared 
with F and P. In Fig.(4.5) for conventional choice at T = 6 
MeV, the CD-Bonn potential, the Nijm1 potential, the Ar-
gonne v18 potential and the Reid 93 potential are compared 
with F and P.From the figures (4.4) and (4.5), it is observed 
that when the density of pure neutron matter system in-
creases the free energy of this system increases and all po-
tentials have the same behaviour. 

4.5. Pressure of the Pure Neutron Matter at Different T 
At (T = 3 and 6 MeV) the following equation is used to 

calculate the pressure of the pure neutron matter by using 
T2-approximation [26] 

3/13/1)3(
*2

18
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2

2

0
ρπ



nmTPP
TT +=

=
   (4.4) 
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Figure 4.6.  Pressure of the pure neutron matter in (MeV.fm-3) at (T = 3 
MeV) as a function of density in [fm-3] using different potentials for con-
ventional choice 
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Figure 4.7.  The same as figure (4.6) but at T=6MeV 

The results are shown in Fig. (4.6). Values of the pressure 
at (T = 3 MeV) are plotted against the density ρ for pure 
neutron matter for conventional choice using the CD-Bonn 
potential, the Nijm1 potential, the Reid 93 potential and the 
Argonne v18 potential in comparison with F and P. 

In Fig. (4.7), values of the pressure at (T = 6 MeV) are 

plotted against the density ρ for pure neutron matter for 
conventional choice using the CD-Bonn potential, the Nijm1 
potential, the Reid 93 potential and the Argonne v18 potential 
in comparison with F and P . From the figures (4.6) and (4.7) 
it is observed that when the density of pure neutron matter 
increases the pressure of pure neutron matter increases and 
all potentials have the same behaviour. 

Summary 
The bulk properties of symmetric nuclear matter and pure 

neutron matter are computed such as the equation of state 
(EOS), pressure, entropy, free energy, single particle poten-
tial, nuclear matter incompressibility and the symmetry 
energy as a function of the density. The calculation of the 
above properties for symmetric nuclear matter and pure 
neutron matter are made by using BHF interaction + two 
body density dependent Skyrme interaction which is 
equivalent to three body interaction. In this way we were 
able to obtain the correct experimental value of E/A for 
nuclear matter. Also we obtained the correct behaviour of the 
symmetry energy in comparison with the experimental work 
of Shetty et al.[29]. Modern NN interactions as the CD-Bonn 
potential, the Nijm1 potential, the Reid 93 potential and the 
Argonne v18 potential are used in order to analyse the de-
pendence of the results on the nuclear interaction. The EOS 
and the pressure for both symmetric nuclear matter and pure 
neutron matter are calculated at (T = 0). 

The free energy and the pressure of symmetric nuclear 
matter at (T= 5 and 10 MeV) and of pure neutron matter at 
(T= 3 and 6 MeV) have been calculated by using 
T2-approximation[26]. The results are good in comparison 
with F and P[25]. One concludes that the calculations is only 
suitable at low densities and are comparable at higher den-
sities. By this method good agreement is obtained in com-
parison with previous theoretical calculation using realistic 
potential of F and P and the experimental data. We conclude 
that the BHF theory in addition to our suggested contact 
interaction are able to produce the experimental saturation 
point for the equation of state and overall good agreement 
with the realistic force calculation of F and P for T=0 (among 
the different choices of the sets of parameters t i and x i best 
results were obtained for the set of parameters given here 
using the values 1/3 and 2/3 for α). The parameters were 
obtained by fitting the values of E/A and the pressure at the 
saturation density besides two points from the symmetry 
graph. Comparable results are obtained for finite tempera-
tures. Good agreement is obtained for the symmetry energy 
with a noticeable increase with the density in comparison 
with the experimental data. Two terms are used only in our 
suggested potential but one can add more terms to calculate 
other physical quantities (the neutron matter data were not 
taken in the fitting procedure in the present work). In this 
case the treatment will be more involving. One final com-
ment is that similar results were obtained using the con-
tinuous choice in comparison with the conventional choice 
presented here. 
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