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Abstract  The Duffing oscillator is a common model for nonlinear phenomena in science and engineering. Its 
mathematical model is a second order differential equation with nonlinear spring force used to describe the motion of a 
damped oscillator with a more complicated potential than in simple harmonic motion. In the present paper, the Duffing 
oscillator equation is solved using a new simple technique based on Taylor theory. The Duffing oscillator equation is 
solved with different values of initial conditions and damping. The solution results are compared with Runge–Kutta 4th 
order numerical solution method to investigate the accuracy and reliability of the suggested technique. Results show an 
excellent agreement between the proposed technique and the Runge–Kutta method. 
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1. Introduction 
Many physical phenomena are modeled by nonlinear 

systems of ordinary differential equations. An important 
problem in the study of nonlinear systems is to find exact 
solutions and explicitly describe travelling wave behaviours. 
Motivated by potential applications engineering the damped 
Duffing equation [1] has received wide interest, it is used for 
studying the oscillations of a rigid pendulum undergoing 
with moderately large amplitude motion. It has provided a 
useful paradigm for studying nonlinear oscillations and 
chaotic dynamical systems.  

The Duffing equation [2] given its characteristic of 
oscillation and chaotic nature, many scientists are inspired 
by this nonlinear differential equation given its nature to 
replicate similar dynamics in our natural world. The Duffing 
oscillator common model using this oscillator involves an 
electro-magnetized vibrating beam analyzed as exhibiting 
cusp catastrophic behaviour for certain parameter values. 

Surveying the literature shows that a variety of solution 
methods have been developed so far to solve the Duffing 
equation. Some researchers have applied a variety of 
approximate methods to analyze different types of 
conservative Duffing equation. The homotopy analysis 
method [3], harmonic balance method [4], homotopy 
perturbation method [5-7] frequency–amplitude formulation 
[8],  energy balance method [9-11],  max–min approach   
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[12, 13], coupled homotopy-variational approach [14] and 
modified variational approach [15] have all been employed 
to solve the conservative Duffing equation. Some 
researchers in their studies into the Duffing oscillator 
consider damping [16-20]. When the Duffing oscillator 
involves damping, the amplitude of oscillation reduces over 
time and we have a non-conservative system. 

Most analytical methods [8-15] are unable to handle 
non-conservative oscillators. However recently, two new 
methods, Laplace decomposition [21], and homotopy 
perturbation transform [22], are introduced for the solution 
of nonlinear and non-homogeneous differential equations 
which are capable of solving the non-conservative Duffing 
oscillator problem including damping. 

The differential transform is a semi-analytic and powerful 
method for solving linear and nonlinear differential 
equations. This method was first used in the engineering 
domain by Zhou [23] to analyze electric circuits. The 
differential transform solution diverges by using a finite 
numbers of terms. To circumvent this problem the modified 
differential transform method [24-28] was developed by 
combining the DTM with the Laplace transform and Padé 
approximant [29] which can successfully predict the solution 
of differential equations with finite numbers of terms. 

Our motivation in the present study is to obtain the 
solution of the forced response Duffing oscillator 
considering different damping effects and with different 
initial conditions by a simple technique based on Taylor 
expansion. In this technique the acceleration of Duffing 
oscillator is obtained by direct substitution of the initial 
conditions in equilibrium differential equation. The response 
and its velocity at the next step are obtained using Taylor 
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expansion. The acceleration of the next point is obtained 
from the equilibrium equation and so on. Results are 
compared with that obtained by the fourth order 
Runge–Kutta method. Results show a good agreement 
between the proposed technique and the Runge–Kutta 
method. 

2. Basic Fundamentals 
In this section the basic fundamentals of Taylor’s theorem 

as well as the forward, backward and central difference 
approximations of higher order derivative are reviewed. 

Taylor’s Theorem: If f is a function continuous and n 
times differentiable in an interval [x, x + h], then there exists 
some point in this interval, denoted by 

x + λh for some λ є [0, 1], such that 

𝑓𝑓(𝑥𝑥 + ℎ) = 𝑓𝑓(𝑥𝑥) +  ℎ𝑓𝑓′(𝑥𝑥) + 
ℎ2

2
𝑓𝑓′′ (𝑥𝑥) + ⋯     

+ ℎn−1

(n−1)!
𝑓𝑓𝑛𝑛−1(𝑥𝑥) + ℎn−1

n!
𝑓𝑓𝑛𝑛(𝑥𝑥 + 𝜆𝜆ℎ)   (1) 

If f is a so-called analytic function of which the derivatives 
of all orders exist, then one may consider increasing the 
value of n indefinitely. Thus, if the condition holds that 

limn→∞
ℎ𝑛𝑛

𝑛𝑛!
𝑓𝑓𝑛𝑛(𝑥𝑥) = 0     (2) 

which is to say that the terms of the series converge to zero as 
their order increases, then an infinite-order Taylor-series 
expansion is available in the form of 

𝑓𝑓(𝑥𝑥 + ℎ) = ∑ ℎ j

j!
𝑓𝑓𝑗𝑗 (𝑥𝑥)∞

𝑗𝑗=0      (3) 

This is obtained simply by extending indefinitely the 
expression from Taylor’s Theorem. In interpreting the 
summary notation for the expansion, one must be aware of 
the convention that 0! = 1. 
Forward Difference: 

The first derivative of a function f(x) can be 
approximated using forward difference: 

𝑓𝑓′(𝑥𝑥) = limℎ→0
𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)

ℎ
+ 𝑜𝑜(ℎ)   (4) 

Backward Difference: 
The first derivative of a function f(x) can be 

approximated using backward difference: 

𝑓𝑓′(𝑥𝑥) = limℎ→0
𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑥𝑥−ℎ)

ℎ
+ 𝑜𝑜(ℎ)    (5) 

Central Difference:  
The first derivative of a function f(x) can be 

approximated using central difference: 

𝑓𝑓′(𝑥𝑥) = limℎ→0
𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥−ℎ)

ℎ
+ 𝑜𝑜(ℎ2)    (6) 

3. The Problem of Duffing Oscillator 
The equation of motion of Duffing oscillator is normally 

written as  

ẍ + αẋ + βx + γx3 = F0 cosωt   (7) 
With initial conditions 

𝑥𝑥(0) =  𝐴𝐴        (8) 
𝑥̇𝑥(0) = 𝐵𝐵        (9) 

Equation (7) is a simple model that can show different 
types of oscillations such as chaos and limit cycles. The 
terms associated with this system represent:  
𝑥̈𝑥 + 𝛽𝛽𝛽𝛽   Simple harmonic oscillator with angular 

frequency �𝛽𝛽  
𝛼𝛼𝑥̇𝑥 Small damping 
𝛾𝛾𝑥𝑥3 Small nonlinearity 
𝐹𝐹0 cos𝜔𝜔𝜔𝜔 Small periodic forcing term with angular 

frequency 𝜔𝜔 
This is a forced oscillator with a nonlinear spring with a 

restoring force of 3 xαβxF −−= . Different values of α 
can create either a hardening spring (where α > 0) or a 
softening spring (where α < 0). Different values of β can 
also change the dynamics of the system. For values of β less 
than zero, the Duffing oscillator displays chaotic motion.  

3.1. Methodology of the Proposed Technique 

In this technique, the differential equation (7) is 
rearranged as follows: 

ẍ(t) = −αẋ(t) − βx(t) − γx(t)3 + F cos(ω t)  (10) 
By direct substitution of the initial conditions given in (8) 

and (9) the acceleration at starting point can be written as:  
ẍ(0) = −αẋ(0) − βx(0) − γx(0)3 + F cos(ω × 0) (11) 

The approximate displacement function at time t + ∆t is 
obtained using Taylor expansion (1) up to the third term: 

𝑥𝑥(𝑡𝑡 + ∆𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑥̇𝑥(𝑡𝑡)∆𝑡𝑡 + 1
2
𝑥̈𝑥(𝑡𝑡)∆𝑡𝑡2    (12) 

The approximate velocity function at time 𝒕𝒕 + ∆𝒕𝒕  is 
obtained using the backward difference approximation of the 
first derivative (5): 

𝑥̇𝑥(𝑡𝑡 + ∆𝑡𝑡) = 𝑥𝑥(𝑡𝑡+∆𝑡𝑡)−𝑥𝑥(𝑡𝑡)
∆𝑡𝑡

    (13) 

Then, the approximate acceleration function at time 
𝒕𝒕 + ∆𝒕𝒕 is obtained using equation (10) as: 
𝑥̈𝑥(𝑡𝑡 + ∆𝑡𝑡) = −𝛼𝛼𝑥̇𝑥(𝑡𝑡 + ∆𝑡𝑡) − 𝛽𝛽𝛽𝛽(𝑡𝑡 + ∆𝑡𝑡) − 𝛾𝛾𝑥𝑥(𝑡𝑡 + ∆𝑡𝑡)3 

+𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔 × (𝑡𝑡 + ∆𝑡𝑡))              (14) 
So, the first iteration is obtained from equations (8) 

through (14) as: 

𝑥𝑥(∆𝑡𝑡) = 𝑥𝑥(0) + 𝑥̇𝑥(0)∆𝑡𝑡 + 1
2
𝑥̈𝑥(0)∆𝑡𝑡2            (15) 

ẋ(∆t) = (x(∆t) − x(0))/∆t                 (16) 
𝑥̈𝑥(∆𝑡𝑡) = −𝛼𝛼𝑥̇𝑥(∆𝑡𝑡) − 𝛽𝛽𝛽𝛽(∆𝑡𝑡) − 𝛾𝛾𝑥𝑥(∆𝑡𝑡)3 + 𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔∆𝑡𝑡)  (17) 

The recurrence formula can be written as: 

𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛−1 + 𝑥̇𝑥𝑛𝑛−1∆𝑡𝑡 + 1
2
𝑥̈𝑥𝑛𝑛−1∆𝑡𝑡2    (18) 

𝑥̇𝑥𝑛𝑛 = (𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1)/∆𝑡𝑡      (19) 
𝑥̈𝑥𝑛𝑛 = −𝛼𝛼𝑥̇𝑥𝑛𝑛 − 𝛽𝛽𝑥𝑥𝑛𝑛 − 𝛾𝛾𝑥𝑥𝑛𝑛3 + 𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔((𝑛𝑛 − 1)∆𝑡𝑡)� (20) 
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3.2. Modified Technique  
It was noted that the results obtained by the previous 

iteration formulae has a big difference with that obtained by 
Runge–Kutta 4th order method. This because that the error 
accompanied to the velocity is of order ∆t. The approximate 
velocity formula is modified to be obtained using the central 
difference approximation of the first derivative (6) as: 

 𝑥̇𝑥(∆𝑡𝑡) = (𝑥𝑥(2∆𝑡𝑡) − 𝑥𝑥(0))/(2∆𝑡𝑡)   (21) 
The first iteration of the modified technique is written as: 

𝑥𝑥(∆𝑡𝑡) = 𝑥𝑥(0) + 𝑥̇𝑥(0)∆𝑡𝑡 + 1
2
𝑥̈𝑥(0)∆𝑡𝑡2        (22) 

𝑥𝑥(2∆𝑡𝑡) = 𝑥𝑥(0) + 2𝑥̇𝑥(0)∆𝑡𝑡 + 2𝑥̈𝑥(0)∆𝑡𝑡2        (23) 
𝑥̇𝑥(∆𝑡𝑡) = (𝑥𝑥(2∆𝑡𝑡) − 𝑥𝑥(0))/(2∆𝑡𝑡)         (24) 
𝑥̈𝑥(∆𝑡𝑡) = −𝛼𝛼𝑥̇𝑥(∆𝑡𝑡) − 𝛽𝛽𝛽𝛽(∆𝑡𝑡) − 𝛾𝛾𝑥𝑥(∆𝑡𝑡)3 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔∆𝑡𝑡) (25) 

The recurrence formula of the modified technique can be 
written as: 

𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛−1 + 𝑥̇𝑥𝑛𝑛−1∆𝑡𝑡 + 1
2
𝑥̈𝑥𝑛𝑛−1∆𝑡𝑡2        (26) 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛−1 + 2𝑥̇𝑥𝑛𝑛−1∆𝑡𝑡 + 2𝑥̈𝑥𝑛𝑛−1∆𝑡𝑡2       (27) 
𝑥̇𝑥𝑛𝑛 = (𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛−1)/(2∆𝑡𝑡)         (28) 
𝑥̈𝑥𝑛𝑛 = −𝛼𝛼𝑥̇𝑥𝑛𝑛 − 𝛽𝛽𝑥𝑥𝑛𝑛 − 𝛾𝛾𝑥𝑥𝑛𝑛3 + 𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔((𝑛𝑛 − 1)∆𝑡𝑡)�  (29) 

4. Results and Discussion  
4.1. Free Vibration 

The recursive relations in sections 3.1 and 3.2 are applied 
to the duffing oscillator problem with non exciting force. 
Three case studies [29] are resolved using the present 
technique. The first case study includes low damping 
(periodic behavior), strong nonlinearity and initial 
displacement. The second case study includes critical 
damping, strong nonlinearity and initial displacement and 
the third case study is a combination of initial displacement 
and velocity with periodic behavior. They are considered as 
follows: 
Example 1 

α = 0.5,  β = γ = 25,  A = 0.1,  B = 0, F0=0  (30) 
For the values given in Eq. (30), x(t) is obtained using the 

recurrence formulae of the present technique (version 1) and 
its modification (version 2). 

Figure 1 shows the comparison between the results 
obtained using the present techniques (version 1) and its 
modification (version 2) and the fourth-order Runge–Kutta 
numerical method. It is clear that the results using the 
modified technique have good agreement with the results 
obtained using the fourth-order Runge–Kutta numerical 
method. The version 1 of the present technique has a big 
difference with that obtained by the fourth-order 

Runge–Kutta numerical method since the error in version 1 
is of order (∆𝑡𝑡) while in version 2 is of order (∆𝑡𝑡2). 
Example 2 

α = 2,  β = 1,  γ = 25,  A = 0.1,  B = 0,  F0=0  (31) 
For the values given in Eq. (31), x(t) is obtained using the 

recurrence formulae of the present technique (version 1) and 
its modification (version 2). 

Figure 2 shows the comparison between the results 
obtained using the present techniques (version 1) and its 
modification (version 2) and the fourth-order Runge–Kutta 
numerical method. It is clear that the results using the 
modified technique have good agreement with the results 
obtained using the fourth-order Runge–Kutta numerical 
method. The version 1 of the present technique has a big 
difference with that obtained by the fourth-order 
Runge–Kutta numerical method since the error in version 1 
is of order (∆𝑡𝑡) while in version 2 is of order (∆𝑡𝑡2). 
Example 3 

α = 1,  β = 20,  γ = 2,  A = −0.2,  B=2,  F0=0  (32) 
For the values given in Eq. (32), x(t) is obtained using the 

recurrence formulae of the present technique (version 1) and 
its modification (version 2). 

Figure 3 shows the comparison between the results 
obtained using the present techniques (version 1) and its 
modification (version 2) and the fourth-order Runge–Kutta 
numerical method. It is clear that the results using the 
modified technique have good agreement with the results 
obtained using the fourth-order Runge–Kutta numerical 
method. The version 1 of the present technique has a big 
difference with that obtained by the fourth-order 
Runge–Kutta numerical method since the error in version 1 
is of order (∆𝑡𝑡) while in version 2 is of order (∆𝑡𝑡2). 

As shown in Figures 1, 2, and 3 the results of the solution 
of the Duffing equation by the proposed technique has 
excellent agreement with that obtained by the Runge-Kutta 
4thorder (RK4) method. 

4.2. Forced Vibration 

The responses of the forced duffing oscillators given in 
the previous examples are obtained using the modified 
proposed technique. The amplitude of the exciting force   
F0 =1 and the exciting frequency ω =0.5.  

For the same data given in Example 1, Example 2 and 
Example 3 with F0 =1 and ω =0.5, the responses x(t) of the 
forced duffing oscillator are obtained using the recurrence 
formulae of the present technique (version 2). The results are 
compared with that obtained using the fourth-order 
Runge–Kutta method and shown in figures 4, 5 and 6. The 
comparison shows an excellent agreement between the 
present technique and Runge–Kutta 4th order. 
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Figure 1.  Solution of Duffing Oscillator of Example 1 

 

 

Figure 2.  Solution of Duffing Oscillator of Example 2 
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Figure 3.  Solution of Duffing Oscillator of Example 3 

 

 

Figure 4.  Solution of Force Duffing Oscillator of Example 1 
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Figure 5.  Solution of Force Duffing Oscillator of Example 2 

 

Figure 6.  Solution of Force Duffing Oscillator of Example 3 

 

5. Conclusions 
In the present study, a simple technique based on the 

Taylor expansion was applied to determine an approximate 
solution for a nonlinear Duffing oscillator with damping 
effect under different initial conditions. A comparison of 

results with fourth-order Runge–Kutta method indicates 
excellent accuracy of the solution. We conclude that the 
modified technique is an accurate tool in handling a 
nonlinear oscillator with a high level of accuracy. Using the 
suggested technique, there is no need to transform the higher 
order differential equations to state space. 
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