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Abstract  Using resonance-based robot motion control, we design a highly energy-efficient palletizing task for 2-DOF 

robots. The 2-DOF robot is installed with a variable elastic mechanism that mechanically adjusts the elasticity in each joint. 

The tested palletizing task must solve two problems. First, it must counteract the sharply fluctuating gravity torque as the 

robot changes posture. To this end, it must rapidly adjust the elasticity during the robot’s motion. Second, owing to the 

height difference between the pallet and the table or belt conveyor, an obstacle-avoidance trajectory is required. We also 

propose solutions to both problems. The high energy efficiency of our motion control is experimentally confirmed in a 

palletizing task. 
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1. Introduction 

Vertically articulated robots are widely employed in 

palletizing tasks. Generally, palletizing robots repeatedly 

stack a pallet with products from a table or a belt conveyor 

at a different height. In many factories, wherein these 

repetitive tasks are performed for many hours, improving 

the energy efficiency of palletizing is crucial. 

To improve the energy efficiency of repetitive tasks, 

some researchers have proposed resonance-based robot 

motion control [1]. This motion control minimizes the drive 

motor torque required for periodic motion by adaptively 

adjusting the elasticity of a variable elastic mechanism 

attached to each joint of the articulated robot [2]. The 

stability of this robot motion control has been 

mathematically proven [1]. In the same study, reduction of 

the drive motor torque was experimentally demonstrated. 

Generally, the resonance is strictly defined for a linear 

system with one DOF. In contrast, the classical resonant 

model is inapplicable to multi-joint robots with multi-DOFs 

and non-linear dynamics. The non-linear robot dynamics of 

multi-DOFs were effectively controlled in [1]. In [3] and [4], 

the resonance-based robot motion control of [1] was applied 

to the periodic motion in the 2-DOF horizontal plane of a 

SCARA type robot. Consequently, a highly energy efficient 

pick-and-place task was realized by point-to-point (PTP) 

control of practical SCARA robots. 
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The PTP control research of the SCARA type robot 

suggests that resonance-based robot motion control is 

applicable to palletizing tasks such as pick-and-place tasks. 

Therefore, this paper utilizes the resonance-based robot 

motion control in a palletizing task of vertical articulated 

robots. However, due to the height difference between the 

pallet and the table or belt conveyor, the gravity torque 

greatly fluctuates. Such fluctuation is absent in the SCARA 

type robot. Moreover, the robot tip must avoid collisions 

with the table or belt conveyor. Therefore, besides PTP 

control, a trajectory control for avoiding obstacles is 

required. 

Herein, we resolve the problems of (1) sharply 

fluctuating gravity torque and (2) obstacle-avoidance 

trajectory control. Once these problems are solved, the 

resonance-based robot motion control can be applied to 

robot palletizing tasks. Because both problems are 

significant in the vertical plane of the robot’s motion, the 

following discussion is limited to the vertical plane. 

(1) Sharp fluctuation of gravity torque 

Uemura et al. [1] theoretically demonstrated that a 

variable elastic mechanism can achieve highly 

energy-efficient periodic motions, even under gravity 

fluctuations. However, because the gravity torque sharply 

fluctuates as the robot changes posture in palletizing tasks, 

the elastic value must be greatly changed during the robot’s 

motion. Varying the elastic value requires energy, reducing 

the energy efficiency of the control. To solve this problem, 

we compensate the dominant component of the 

gravitational torque by a mechanism with a fixed spring 

constant. Moreover, we combine this mechanism with a 

variable elastic mechanism and an electromagnetic motor. 
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We experimentally confirm the effectiveness of the 

proposed method in a 2-DOF robot arm moving in the 

vertical plane. 

(2) Trajectory control for avoiding obstacles 

In the resonance-based robot motion control, the motion 

pattern of the robot is basically a harmonic oscillation. The 

pick-and-place tasks of the SCARA type robot in [3] and 

[4] were achieved by setting the pickup and placement 

points to the peak values of the harmonic oscillation. 

However, palletizing tasks also require a trajectory for 

collision avoidance with the table or belt conveyor. 

To solve this problem for a 2-DOF robot arm in the 

vertical plane, we set the angular frequency ratio of each 

harmonic oscillation to 2/1. We also experimentally verify 

the effectiveness of the proposed method installed in a 

2-DOF robot arm. 

The remainder of this paper is organized as follows. In 

Sections 2 and 3, we describe the drive system of the robot 

and propose the gravity countermeasure, respectively. In 

Section 4, we define the investigated palletizing task and 

propose the obstacle -avoidance method. The high energy 

efficiency of the palletizing task is experimentally 

confirmed in Section 5, and the applicability of the 

proposed method to other vertical articulated palletizing 

robots is discussed in Section 6. 

2. Robot System 

2.1. Parallel Drive System 

The electromagnetic motor and variable elastic element 

installed in each joint of the robot are shown in Fig. 1. The 

mechanical viscosity, Coulomb friction and static friction are 

reduced by decreasing the gear ratio of the reduction gear 

attached to the drive motor. In this mechanism, the driving 

motor and elastic element are driven in parallel. To achieve a 

highly energy-efficient periodic motion, we adjust the 

elasticity of the variable elastic element to a suitable value 

for the motion. 

 

Figure 1.  Parallel drive joint of a palletizing robot 

In Fig. 1,  1,2iq i   and  1,2ik i   are the angle 

and elasticity coefficient, respectively, of the ith joint. 

2.2. Variable Elastic Mechanism 

Among several variable elastic mechanisms that 

mechanically adjust the elasticity [2], [5]–[12], we employ 

the variable elastic mechanism in [2]. This mechanism, 

schematized in Fig. 2, reduces the energy consumption of the 

variable elastic mechanism motor. It also has a sliding screw 

with a self-lock function. Therefore, it maintains a constant 

elastic value in the absence of a motor torque. The elasticity 

is determined by the geometric relationship shown in the 

right diagram of Fig. 2. The elasticity around the equilibrium 

position is uniquely determined by the nut position of the 

mechanism. 

  

Figure 2.  Variable elastic mechanism 

3. Countermeasure of Gravity 

In resonance-based robot motion control [1], the harmonic 

oscillation has been mathematically proven to converge to 

the desired trajectory, even under gravitational effects. When 

the motion is strictly horizontal, as in [1] and [3], the 

elasticity can be set to a constant value using the variable 

elastic mechanism of [2] after minimizing the motor torque. 

Therefore, no energy is consumed in changing the elasticity. 

In contrast, as seen in Fig. 1, when the drive motor and 

variable elastic mechanism in each joint operate under 

gravity, the perceived gravity depends on the robot’s motion. 

Therefore, we must generate a gravity compensation torque 

by driving the motor or changing the elasticity of the variable 

elastic mechanism. This action might significantly reduce 

the energy efficiency. 

This problem can be solved by mechanical gravity 

compensation. Spring-based gravity compensation has 

already been proposed [13]–[15]. If we can optimally 

compensate gravity by mechanical means, we can realize a 

resonance-based robot motion control using the variable 

elastic mechanism, and hence treat both horizontal motion 

and motion under gravity. However, mechanical gravity 

compensation increases the weight of the robot and 

complicates the robot mechanism. If the robot’s weight is 

increased by the gravity compensation mechanism, the 

elasticity must be increased to achieve the same natural 

frequency. The increased elasticity requires heavier 

peripheral components, such as the spring of the variable 

elastic mechanism, further increasing the weight of the robot. 

In the second-order linear dynamics of a resonant state, the 

motor torque compensates only the viscous component to 

maintain periodic motion. However, herein, the robot 

dynamics are nonlinear, so the inertia and elasticity terms do 

not completely negate at the desired harmonic oscillation 

frequency. To realize the desired motion, the motor must 

compensate the torque component and the viscosity term, 
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which cannot be negated. Therefore, increasing the robot’s 

weight would increase the necessary motor torque, reducing 

the energy efficiency. 

The above discussion clarifies that when the torque 

component of the robot is largely contributed by the gravity 

term in the palletizing task, a gravity compensation 

mechanism is required. However, the weight of the robot 

increases when gravity compensation mechanisms are 

installed in all joints of the robot. Therefore, we partially 

compensate the dominant gravity torque by the gravity 

compensation mechanisms. 

Generally, when the robot is to perform various motion 

patterns of different magnitudes, it is theoretically difficult to 

select the joints that should use a gravity compensation 

mechanism.  

4. Palletizing Task using the Double 
Angular Frequency Method 

4.1. Palletizing Task 

The palletizing task investigated herein is shown in Fig. 3. 

The shaded area indicates an obstacle such as a table or a belt 

conveyor (hereafter referred to as the table). The variables in 

Fig. 3 are defined as follows: 

 

Figure 3.  A trajectory of a palletizing task 

 ,
T

s sx yS : desired point on upper table; 

 ,
T

e ex yE : desired point on lower table; 

 ,
T

c sx yC : edge of upper table; 

 ,
T

x yX : tip point of robot; 

0l : y-position of the base link; and 

 1,2il i  : length of each link.  

The desired trajectory is a reciprocating motion between 

point S on the upper table and point E on the lower table. To 

avoid interference with the table, the spatial trajectory must 

satisfy the following expressions. 

if ,

if .

s c

e c

y y x x

y y x x

 

 
            (1) 

Furthermore, the ranges of the three points S, E and C  

(at the edge of the upper table) satisfy 

0 , 0e c s e sx x x y y     . When the harmonic 

motion of each joint provides PTP control between points S 

and E, that PTP control might violate the spatial conditions 

of Eq. (1). This spatial trajectory problem, which arises in 

the presence of obstacles, was not addressed in the original 

resonance-based robot motion control. 

To find a motion pattern that satisfies the spatial 

conditions of Eq. (1) while maintaining the resonant state, 

we combine a half-cycle trajectory and a straight line 

trajectory, as shown in Fig. 3. Industrial robots often follow 

the trapezoidal velocity profile shown in Fig. 4. Here, we set 

the motion from time 0 to time 2T  as the half-cycle 

trajectory and the motion from time 2T  to time 4T  as the 

straight-line trajectory. 

 

Figure 4.  A trapezoidal velocity profile 

where  1, ,4iT i    is the switching time. 

The motion shown in Fig. 4 is given by Eqs. (2)–(5). 
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where 

    ,
T

d dx t y t  and v  denote the desired trajectory 

and desired velocity, respectively, and t  is the time 

variable. 

 

Figure 5.  Trajectory of a palletizing task following a trapezoidal velocity 

profile 

As an example, we set the points on the upper table, lower 

table, and edge of the upper table as 

   , 1.65,0.5
T T

s sx y  ,    , 1.65,0.5
T T

s sx y  , and 

   , 1.9,1.0
T T

s sx y  , respectively. We also set the 

lengths of the base link, first link and second link as 67.00 l , 

4.11 l , and 
2 1.25l   m, respectively. These parameter 

values are used in practical palletizing robots. The resulting 

tip trajectory of the robot is described in Fig. 5. 

Fig. 6 shows the trajectories of each joint calculated from 

the tip trajectory equations (2) and (4). The calculation was 

performed by inverse kinematics. 

In Fig. 6, for every two cycles of the first joint angle (a), 

the second joint angle completes one cycle (b). Moreover, 

from their shapes, we can assume that the trajectories of 

both joints are harmonic oscillations. Accordingly, herein, 

we set the angular frequency ratio of each harmonic 

oscillation to 2/1.  

4.2. Double Angular Frequency Method 

4.2.1. Double Angular Frequency Method 

Figure 7 illustrates our proposed trajectory method for 

connecting the desired points S and E, while preventing the 

tip of the robot from intercepting the table (shaded area in 

Fig. 7). On the basis of the results of Fig. 6, we produce the 

trajectory for avoiding the table by setting the angular 

frequency ratio of the first and second joints to 2/1. 

In Fig. 7, 01q  is the first-joint equilibrium angle of the 

harmonic oscillation. The proposed method is governed by 

Eqs. (6) and (7) below. 

 1 cos2 ,dq t t             (6) 

 2 cos ,dq t t              (7) 

where 

   1,2diq t i   are the desired joint angle trajectories 

and , ( )   and , ( )   are the desired amplitude (offset 

angles) of joints 1 and 2, respectively,   is the desired 

angular frequency.  

 

 

Figure 6.  Joint angle trajectory of a palletizing task following a trapezoidal velocity profile 
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Figure 7.  A palletizing task using the double angular frequency method 

4.2.2. Range Setting between Two Points 

The ranges of points S and E are geometrically limited by 

the values of the link parameters 0 1 2, ,l l l . 

Furthermore, we must satisfy the following two 

conditions: 

(i) The tip velocity of the robot must be zero when the tip 

of the robot reaches point S or E. In other words, the 

proposed method requires that the angular velocity of 

each joint calculated by Eqs. (6) and (7) 

simultaneously becomes 0. 

(ii) In Eqs. (6) and (7), the angular frequency ratio of the 

first and second joints is 2/1. 

The two conditions (i) and (ii) ensure that the first joint 

angle of point S accords with the first joint angle of point E. 

In this case, the coordinates of points S and E must satisfy the 

following positional relation within the circle formed by the 

motion of the second link. 

   
2 2

22 .s e s ex x y y l          (8) 

4.2.3. Desired Trajectory 

The desired points S and E are set, and the joint angles 

 1 2,
T

s sq q  of point S and  1 2,
T

e eq q  of point E are 

determined from inverse kinematics. In this method, the first 

joint angle of points S and E is set to 1 1s eq q . Therefore, 

the desired trajectory of the first joint angle calculated by Eq. 

(6) is represented in terms of the first joint equilibrium angle 

of harmonic oscillation and the amplitude 1 01sq q  as: 

   1 1 01 01cos2 .d sq t q q t q      (9) 

In Eq. (9), 01q  can be set arbitrarily. When 01q  is large, 

the amplitude also becomes large, and the tip of the robot 

tends to move away from the shaded area. Here, we use the 

first joint equilibrium angle of harmonic oscillation as a 

parameter for avoiding the shaded area. 

The desired trajectory of the second joint angle is 

computed from the joint angles of S and E in Eq. (10). 

  2 2 2 2
2 cos ,

2 2

s e s e
d

q q q q
q t t

    
    
   

 (10) 

where 

1 01sq q   ; 

01q  ; 

2 2

2

s eq q



 ; 

2 2

2

s eq q



 . 

Fig. 8 compares the trajectories of a typical palletizing 

task and the proposed method with 01q  set to five different 

constants. 

 

Figure 8.  Trajectories of a standard palletizing task following a 

trapezoidal velocity profile and the proposed method with five values of 

01q  

As shown in Fig. 8, the y-coordinate of the peak of the tip 

trajectory is increased with increasing 01q  of the first joint. 

Accordingly, the tip of the robot moves away from the 

shaded area. 

Figure 9 plots the time trajectory of each joint. In Fig. 9(b), 

the second joint angles 2 2,s eq q  are determined when 

points S and E are determined. Therefore, the proposed 

method implemented by Eq. (10) synchronizes all desired 

trajectories of the second joint. 

5. Experiment  

5.1. Palletizing Robot 

The experimental setup of the 2-DOF robot for the 

palletizing task is shown in Fig. 10. This 2-DOF robot is 
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driven by parallel operation of the drive motor and the 

variable elastic mechanism. Moreover, the gravity 

compensation mechanism of the first joint has a fixed spring 

constant [17], because the first joint is heavier than the 

second joint. However, in the second joint, the robot is 

driven by the drive motor and the variable elastic mechanism 

with no gravity compensation mechanism to restrain its 

weight. This experiment evaluates the overall performance 

of the robot, and the energy consumptions of the drive motor 

and the variable elastic mechanism. 

Tables 1, 2 and 3 give the robot parameters, the 

specifications of the drive motors and the specifications of 

the variable elastic mechanism, respectively. If the gear ratio 

of the reduction gear of the drive motor is large, the Coulomb 

friction and mechanical viscosity are increased; 

consequently, the heat energy loss increases. Therefore, the 

driving motor of the robot uses a low reduction gear ratio. 

The sampling period of the robot system is 0.001 s. 

Table 1.  Parameters of the palletizing robot 

 1st link 2nd link 

Mass [kg] 1.89 0.55 

Link length [m] 0.29 0.24 

Center gravity of link [m] 0.2 0.04 

Table 2.  Parameters of the joint drive motors 

 1st link 2nd link 

Motor power [W] 60 60 

Nominal torque (max. continuous torque) [mNm] 0.29 0.24 

Gear ratio 1:11 1:4.8 

Resolution of encoder [rad] 0.006 0.006 

In this experiment, the coordinates of points S (on the 

upper table), E (on the lower table) and C (at the edge of the 

upper table) are specified as    , 0.44,0.15
T T

s sx y S , 

   , 0.27, 0.02
T T

s sx y  Ε , and    , 0.355,0.15
T T

s sx y C . 

The length of the base link is 0 0.0l   m. In the fixed 

gravity compensation mechanism, the spring constant is set 

to 167.7 N / m. 
 

Table 3.  Parameters of the variable elastic mechanism 

 1st link 2nd link 

Motor power [W] 4.5 4.5 

Lead of slide screw [mm/r] 2.0 2.0 

Spring constant [kN/m] 10.8 1.4 

5.2. Controller 

5.2.1. Elasticity Adaptation Controller 

The elasticity of the variable elastic mechanism is tuned 

by the following adaptive control law:  

  , k ΓQ Δq Bs Δq           (11) 

where 

1 2( , )Tk kk  and 1 2( , )Tk kk    are the elasticity 

coefficient vector and its time derivative, respectively, 

1 2diag( , )s s Γ  is the adaptive gain matrix, 

1 1 2 2diag( , )e eq q q q  Q , 1 2diag( , )b bB  is the 

position feedback gain matrix, 

1 2( , )Tq q    dΔq q q , 1 2( ( ), ( ))T
d dq t q tdq  is 

the desired angular position vector, 

      1 1 2 2,
T

s q s q  s Δq  is the saturated function 

vector [16]. 

 

 

Figure 9.  Joint angle trajectory of a palletizing task following a standard trapezoidal velocity profile and the proposed method with five values of 01q  
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Figure 10.  Palletizing robot system 

The adaptive control law Eq. (11) was proposed in the 

resonance-based robot motion control described in [1]. The 

drive motor torque is minimized when the current elasticity 

converges to the time integrated value of Eq. (11). For 

convergence to the elasticity, the motor torque control input 

of the variable elastic mechanism is given by 

, k pkτ K Δk              (12) 

where 1 2( , )Tk k    eΔk k k , and k  and ek  

denote the elasticity calculated by Eq. (11) and the actual 

elasticity coefficient of the variable elastic mechanism, 

respectively. 1 2diag( , )pk pkk kpkK  is the position 

feedback gain matrix. 

The motor torque input of the variable elastic mechanism 

is governed by the P control law because the slide screw has 

sufficient mechanical viscosity. The actual elasticity 

coefficient of the variable elastic mechanism is determined 

by the nut position of the variable elastic mechanism shown 

in Fig. 2. In our experiment, we control the nut position 

rather than elastic values. 

5.2.2. Motor Controller 

The control input for the drive motor torque that generates 

the desired periodic motion is given by 

   p vτ K s Δq K Δq,         (13) 

where 1 2diag( , )p pk kpK  and 1 2diag( , )v vk kvK  

are the position and velocity feedback gain matrices, 

respectively. 

5.3. Evaluation of Energy Consumption 

To confirm the energy efficiency of the palletizing task, 

we calculate the energy consumption per cycle by the 

following equation. 

1
,

i

i

T

i T
J dt


 

T
i v             (14) 

1
,

i

i

T

i T
J dt


 

T
k ki v            (15) 

where 

1 2( , )Ti ii  and 1 2( , )T
k ki iki  denote the current 

vectors of the drive motor and the variable elastic 

mechanism, respectively. The corresponding voltages are 

1 2( , )Tv vv  and 1 2( , )T
k kv vkv . ( 1, , )iT i n   

is the start time of a motion cycle, and iJ  is the i-th energy 

consumption. 

After one cycle, the tip of the robot has moved from point 

S to E, and back to point S. 

5.4. Results 

The experimental results of the palletizing task are shown 

in Fig. 11. The results are divided into two time sections. The 

first section is the time of periodic motion, during which the 

elasticity of the variable elastic mechanism is adaptively 

tuned to minimize the drive motor torque by Eqs. (13) and 

(15). In the second section, the robot uses the elasticity 

converged from the first section to perform the palletizing 

task. In this experiment, the first section was executed for 50, 

providing sufficient time for the elasticity to converge to a 

constant. The results of Fig. 11 are detailed below. 

In panels (a) and (b), the tip trajectory of the robot in the 

Cartesian coordinate system converges to the desired 

trajectory after the first cycle. At points S and E, the mean 

squared error of the tip position is approximately 10 mm. 

In panels (c) and (d), the noise in the actual and desired 

angular velocities was reduced by a digital low-pass filter. 

The cut-off frequency was set to 8.0 rad/s. 

In panels (e) and (f), the second joint angle accurately 

follows the desired trajectory, but the tracking accuracy of 

the first joint is degraded. Because the first joint’s gravity 

torque depends on the attitude of the second link, we 

attribute this deterioration to error in the gravity 

compensation torque. 

In the first cycle, of panel (g), the drive motor torque of the 

first joint reached the upper and lower limits of the possible 

output torque. However, these limits were not reached after 

the second cycle, indicating a reduction in the drive motor 

torque. Here, the absolute value of the negative direction of 

the motor torque exceeds the absolute value of the positive 

direction. Again, we attribute this effect to the attitude of the 

robot, which changes the gravity torque. The drive motor 

torque of the second joint also reduced after the second 

cycle. 

In the first time section of panels (h) and (i), the motor 

torque of the variable elastic mechanism is higher in the 

second joint than in the first joint, because there is no gravity 

compensation mechanism in the second joint. Therefore, the 

variable elastic mechanism works to reduce the output of the 

drive motor torque. Consequently, in the first section of Fig. 

11(i), the desired nut positions corresponding to the elasticity 
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of the second joint fluctuates periodically. The actual nut 

position also fluctuates periodically, and the motor torque of 

the variable elastic mechanism is enlarged in the second 

joint. 

In contrast, after convergence to the desired nut position in 

the first joint, the actual nut position settles to a constant 

value, and the motor torque of the variable elastic 

mechanism is low. 

In the second time section, because the nut positions of 

each joint are fixed as shown in Fig. 11(i), the motor torque 

of the variable elastic mechanism becomes 0 (Fig. 11(h)). 

However, because the motors of each joint must output the 

torque generated by the variable elastic mechanism in the 

first section, the drive motor torque of the second joint 

slightly increases in the second section. 

In the first time section, of panel (j), the energy 

consumptions of the drive motor and the variable elastic 

mechanism motor are both reduced after the first cycle. 

Furthermore, the variable elastic mechanism motor 

consumes much less energy than the drive motor. We 

confirmed that this robot approximately compensates the 

gravity torque even without mounting the gravity 

compensation mechanism in the second joint. 

Moreover, because of its characteristics, the variable 

elastic mechanism maintains a constant elasticity without 

outputting a torque. Therefore, in the second section, the 

energy consumption of the variable elastic mechanism motor 

falls to zero. 

 

 

Figure 11.  Experimental results of the palletizing task (details are given in Section 5) 
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Here, the energy consumptions of each element are 

calculated from the motion and the torques generated by the 

driving motor, the variable elastic mechanism and the 

gravity compensation mechanism. To achieve periodic 

motion in the second section, the driving motor consumes 

16.8 J/cycle. Assuming that the drive motor outputs the 

torque generated by the variable elastic mechanism, the 

average required energy consumption is 176.6 J/cycle. 

Similarly, if the drive motor outputs the torque generated 

from the gravity compensation mechanism, the average 

required energy consumption is 167.9 J/cycle. Thus, the total 

energy consumption is 361.3 J. The proportion of each 

energy consumption is 5% (the drive motor), 49% (the 

variable elastic mechanism) and 46% (the gravity 

compensation mechanism). 

6. Discussion 

In this paper, we applied resonance-based robot motion 

control to a 2-DOF robot moving in the vertical plane, and 

experimentally confirmed the effectiveness of our method. 

However, palletizing tasks in three-dimensional space 

require a vertically articulated 3-DOF robot. Here, we 

discuss the possibility of applying the resonance-based robot 

motion control to such a robot by the proposed method. 

Therefore, we must overcome the following problems. 

(1) Changing moment of inertia in the pivot 

As mathematically proven in [1], resonance-based robot 

motion control [1] realizes highly energy efficient periodic 

motions of nonlinear multi-DOF robots. For this reason, we 

consider that the proposed method is applicable to vertically 

articulated 3-DOF robots. However, changing the posture of 

a link in the vertical plane alters the moment of inertia of the 

pivot. These shifts might compromise the energy efficiency. 

In future work, we will experimentally measure the 

performance of the specific energy efficiency because this 

performance depends on the robot system. 

(2) Trajectory control for avoiding obstacles in 

three-dimensional space 

The motions of 3-DOF vertically articulated robots in 

three-dimensional space can be divided into pivoting 

motions (first joint) and vertical plane motions (second and 

third joints). Therefore, the proposed method is applied to 

the desired trajectories of the second and third joints, which 

move in the vertical plane. The first joint, which performs 

pivoting motions, is governed by a harmonic oscillation. The 

angular frequency ratio of each joint is set to 1:2:1, relative to 

the first joint (pivot). In this case, the obstacle avoidance 

trajectory can be selected as shown in Fig. 8. 

7. Conclusions 

Applying resonance-based robot motion control, we 

generated periodic motions under gravity by driving the 

variable elastic mechanism, the drive motor and the gravity 

compensation mechanism in parallel. The periodic motions 

performed a palletizing task with high energy efficiency. For 

the palletizing task, we set the angular frequency ratio of 

each harmonic oscillation to 2/1 as the desired periodic 

motion. The energy efficiency of the proposed method was 

experimentally verified in a vertical palletizing task 

performed by a 2-DOF robot. 
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