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Abstract  This work investigated the control of chaotic behavior of a harmonically  perturbed Duffing Oscillator using 

vibration absorber. The systems of two degrees of freedom governing equations were simulated numer ically using classical 

fourth order Runge-Kutta algorithm for a constant time step. The solution time history, phase plots and Poincare maps were 

used to validate the simulation. Essentially, the details of the Poincare map were used numerically to determine the 

periodicity of Duffing oscillator for spectrum of mass ratio at a constant step of 0.001.  The time h istory, phase plots and the 

Poincare at mass ratio (µ), absorber parameters (αa), and amplitude of excitation (Fo) are in agreement with what is obtained 

in open literature. The chaotic response of the Duffing-Absorber system at αa = 1.1, Fo = 0.21; and, taken respectively, the 

Duffing and the absorber initial conditions  to be (1.0, 0.0) and (0.0, 0.0), this chaotic response was rendered periodic for some 

selected mass ratio (0≤µ≤1.0). Specifically, periods 1, 2 and 4 were obtained at µ= 0.208; these periodic responses were 

obtained at respective values of αa=1.1, αa=1.7803 and αa= 1.7595. In this work, eighty percent of the mass ratio selected did 

ensure that the chaotic behaviour of the Duffing-Absorber system is rendered periodic. Th is work demonstrated the practical 

utility of vibrat ion absorber as a chaotic oscillations control tool by the mass ratio approach; and having a recorded success of 

about eighty percent.  
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1. Introduction 

The behaviour of systems under external perturbations has 

been subject of active research area in the past few centuries. 

Until recently the study of the behaviour of most dynamical 

systems has been restricted  to linear systems due to the 

limitations of exist ing classical analytical tools to handle 

systems that are nonlinear with mult i-degrees of freedom. 

Furthermore, the so-called numerical techniques to simulate 

these categories of systems are computationally  laborious, so 

the human constraints are visible in this regard. Reprieve 

came our way with the advent of personal computers; these 

machines give room for extensive insight into how and why 

some completely determin ist ic dynamical system could 

behave so strange. As of now, the computer remains the only 

„reliable‟ tool to study these categories of systems partly 

because of the resulting complex geometry and majorly due 

to the number o f iterat ions  requ ired  to  home in  on  the 

s o lu t ions  being  s ought  –  a concep t  referred  to  as 

experimental mathemat ics. The mos t  fundamental and  
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fascinating phenomenon in this behaviour is that exh ibited 

by a classical simple pendulum having unusually large 

amplitude,[1]. The usual simplifying assumption imposed on 

a simple pendulum to linearize it has hidden its unique 

features for centuries. However, it is instructive to mention 

here that not all nonlinear equations can lead to 

period-doubling and possibly chaos, see[2]. The pendulum 

model is simple but produces an astonishingly complex 

geometry. If a dynamical system involves no stochastic 

variables in its mathematical fo rmulat ions, then it should 

behave in a manner that will make predictability possible and 

the history of such a system can  be known with certainty. But, 

this is never so. Reference[3] in1963 was baffled by the 

result of his weather experiment which later brought to the 

conclusion that some dynamical systems of interest could be 

unpredictable because of their nonlinear relations and their 

sensitivity to initial conditions[4]. Th is Lorenz model are a 

simplified version of the earlier work on atmospheric flu id 

dynamics carried out by Saltzman in 1962,[5]. Sensitivity to 

initial conditions is responsible for the seemingly 

unpredictable, long-term temporal evolution of aperiodic 

motion, and in fact a vanishingly small erro r in the 

measurement of the initial conditions of any real or 

deterministic dynamical system brings about loss of 

predictability of its long-term behavioural patterns. As we 
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cannot measure any real dynamical system with infin ite 

precision the long term predict ion of chaotic motion in such 

systems is impossible, even if we know the equations that 

model the systems precisely, argued[6]. A small alterat ion in 

the system parameters could render the system chaotic. This 

chaotic behaviour is one of the ways in which nonlinear 

dynamical system manifests as written by[7]. Yet it  is 

important that scientist and engineers be able to tell the 

future characteristic or response of a system whose 

mathematical model(s) are known. In the ordinary sense of 

things everybody wants to know what the future holds. So, 

the ideal of wanting to know what the future looks like is not 

limited to the technical people.  

The study of chaos has gained tremendous attention over 

the last few years. Control of chaotic oscillat ions by 

vibration absorber appendage based on some parameters of 

control has been reported by[8]. The duo through some 

numerical simulat ions obtained periodicity from a 

notoriously unpredictable system exhib iting strange attractor 

behaviour, but were not specific in their work what system 

parameter in  the name mass-ratio that was used to gain 

control over the chaotic system. We express no doubt that the 

Duffing Oscillator behaves chaotically. In a study of 

mechanical systems,[9] reported certain values of amplitude 

of excitation that could produce various responses – chaotic 

and periodic. To ensure that the Duffing oscillator is chaotic 

at the first instance, we chose Dowell‟s 0.21 amplitude of 

excitation. From here, we studied the Duffing Oscillator with 

the attached undamped dynamic v ibration absorber (DVA) 

and observed the system response, even with the 0.21 chaotic 

amplitude of excitation, using the mass ratio as key 

ingredient of control. In addition, Addison[6] simulated a 

simple single degree of freedom Duffing oscillator and was 

able to show that over certain values of some control 

parameters (damping coefficient and the amplitude of 

forcing), the Duffing oscillator behaves chaotically. 

Reference[10] also established similar result. The mass ratio, 

being a pure number bounded between zero and unity is 

widely known to chaoticians to be a „selector‟ or „tuner‟ for 

rendering the behaviour of such a system from chaoticity to 

periodicity. Of a fact, one can switch from chaoticity to 

periodicity and vice versa. Though[8] stated some absorber 

parameters through which  they gained control over the 

Duffing oscillator. These parameters alone are not sufficient 

to characterize the system behavior, especially when 

designing for compactness. The ratio of the absorber mass to 

the main mass defines the mass ratio.  

The present study has, among others, the objective of 

providing the mass ratio from 0.001 to 1.0 and its associated 

response in a tabular form, thus aiding design and reference 

purposes. On the other hand, the work is expected to serve as 

a design guide for engineers responsible for making 

equipment where competing frequencies are of interest. This 

work is essentially  different  from others that have preceded it 

in that it  demonstrated how caution must be exercised in 

deciding what value of vibrat ion absorber should be used 

along with the main mass or the mass of the system it is 

expected to protect. And, the work established that absorber 

parameters alone are not sufficient to charaterise the 

response of the system. 

NOMENCLATURE 

C  Damping coefficient  

Fo Amplitude of excitation  

DOF  degree of freedom 

k  linear stiffness coefficient of main mass 

ka  linear stiffness of absorber 

kc    cubic stiffness coefficient of main mass  

m main mass 

ma   mass of absorber 

t  time 

x, y  Cartesian coordinates 

x1(t )  d isplacement of the main mass  

x 2(t)  d isplacement of the absorber mass 

x'1  velocity of damper 

x"1  acceleration of main mass 

x"2  acceleration of absorber mass 

number of primes denotes number of derivatives. 

Symbols 

   nondimensional absorber parameter  

ω  circular frequency of harmonic excitation 

μ  mass ratio  

s  damper parameter  

Subscripts  

a  used to denote  parameter fo r absorber 

c  defines cubic stiffness  

o  maximum amplitude of excitation  

2. Methodology 

The procedure adopted to study this type of dynamical 

system is based purely on computer experimentation. The 

simulation was performed entirely  using FORTRAN 90/95 

code and Microsoft® Excel 2007 is used for graphical 

rendering. The specified mathematical models obtained 

from[8] were integrated numerically based on the classical 

fourth order Runge-Kutta method. The external disturbance 

whose nature is harmonic and deterministic was imposed on 

the system for several complete cycles; and one thousand 

ordinates were studied within each cycle. We verified 

whether or not the system response is chaotic by observing 

the response on a Poincare section. With this validation, we 

developed another algorithm that verified periodic motion of 

the system while varying the mass ratio finely at a constant 

step of 0.001 and keeping constant all other specified 

absorber parameters. The validity of this second algorithm 

indicating periodicity at a definite mass ratio and absorber 

parameter is demonstrated by phase plots. After series of 

crude runs to gain insight into the response of the system, the 

experiment was allowed to go finely by simultaneously 

selecting the mass ratio, absorber parameters and to decide 

whether motion is periodic or chaotic. So, each response was 

tied to a particular value of mass ratio and the associated 

absorber parameters. The mass ratio according to literature is 
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set between zero and unity with the minimum being 0.001 

and the maximum is taken to be one (1).  

2.1. The Physical and Mathematical Models  

The physical model as shown in  figure 1 is the Duffing 

Oscillator with an undamped Dynamic Vibrat ion Absorber 

(DVA) forming a two-degree-of-freedom (DOF) system. 

The model consists of two masses – the main mass, m, and 

the absorber mass, ma. The part „C‟ is a damper responsible 

for removing energy from the system. The damping  force is 

proportional to the velocity of the system. The undamped 

absorber mass is appended to the main mass via a linear 

restoring spring, ka.  

Main Mass (M)

Absorber Mass (m)

 

 

Ka

CK, Kc

 

 

     

 
 

 

 

 

 
 

 

 
 X1(t)

X2(t)
 

Figure 1.  Duffing Oscillator with Vibration Absorber 

The linear restoring spring of stiffness k and cubic 

nonlinear spring of stiffness kc are essentially one and is 

attached to the main mass. The arrow seen in this spring is 

used to indicate that cause is not proportional to effect; that 

the Hooke‟s law does not hold fo r the nonlinear spring which 

is a reflection of all real-life problems. The two masses are 

not allowed  to deflect side-ways since the mathematical 

models eliminate side thrust effect and thus confining the 

motion to the one of vertical oscillation. When excited, the 

duty of the absorber is to prevent excessive oscillation of the 

entire system in order to inhibit infinite vib ration or 

resonance. In fact, the main  mass is essentially stationary 

while the absorber oscillates. According to[11], the natural 

frequency of the undamped DVA is tuned to match the 

natural frequency of the main mass, thereby producing a 

force that is equal but opposite in d irection  to the excitation 

force, thus nullifying vibration at the resonant frequency. 

More extensive details about the principles of operation of a 

DVA can be found in the book by[12].  

The mathematical model is a system of two second order 

nonlinear ordinary  differential equations, (1) and (2). The 

equations are modified to include the mass ratio and are 

presented as equations (1a) and (2b). Though, no alteration 

was performed on (2b). Since the classical fourth order 

Runge-Kutta method cannot handle order higher than one, 

the equations had to be transformed into four sets of first 

order ordinary differential equations; and are simulated in 

this form. They are respectively equations (3), (4), (5) and 

(6). 

x"1+(c/m)x'1-(k/m)x1+(kc/m)x1
^
3+(ka/ma)(x1- x2 ) 

 = (Fo/m)sin(ωt)                               (1) 

x"2+(ka/ma)( x 2- x 1) = 0            (2) 

The Modification Made: μ = ma/m 

x"1+(c/m)x'1-(k/m)x1+(kc/m)x1^3+μ*(ka/ma)(x1-x2 ) 

  =Fsin(ωt)                                   (1a) 

x"2+(ka/ma)( x 2- x 1) = 0          (2b) 

Equations (1a) & (2b) are transformed into the manner 

that is suitable for the Runge-Kutta model as follows: 

y'1 = y2                       (3) 
y'2 = - s*y2 + 1 y'1 - c y1

^
3-μa(y1-y3)+Fsinωt    (4) 

y'3 = y4                        (5) 
y'4 = -a(y3-y1)                  (6) 

where y1= x 1, y2= x'1, y3 = x 2, y4 = x
'
2,   

s = (c/mω), 1= (k/mω
2
), c= (kc/mω

2
),  

2= (ka/mω
2
), a= (ka/mω

2
), F =Fo/mω

2
 

Further, in  the study of a buckled beam[13], using the 

following parameter values: s = 0.168, 1= c= 0.5, Fo = 0.21 

and ω = 1, showed that the Duffing oscillator is chaotic. 

These parameters are used in this present study in order to 

ensure that the Duffing oscillator is chaotic before 

proceeding on finding the mass ratio for the purpose of 

controlling the system response. 

2.2. Numerical Simulation 

This numerical experiment involves studying the response 

of the system at the manipulation of the absorber parameters 

and the mass ratio of the system. In experimental analysis of 

this nature, it is necessary that we use certain established 

procedure to verify the outcome of the simulation. The 

simulation after hours of processing on a personal computer 

returns hundreds of data which we subjected to validation by 

examining the history of the system on phase space plots and 

Poincare maps. These data were used to determine the results 

that we have in the following paragraph.  

3. Results and Discussion 

3.1. Results 

The results of this computer experiment are as shown in 

table 1. It  comprises the so-called absorber parameters, the 

response of the system and the mass ratio at which these 

responses are observed. Figures two (2) through six were 

plotted by choosing from the pool of the values of mass ratio 

along with stated absorber parameters.  
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Table 1.  The concise results of tuning the mass ratio (μ) finely (at a step of 0.001) from 0 to 1.0 keeping constant all other specified absorber parameters 
1
 

Mass ratio (μ) 

Periodicity or Chaoticity at different levels of a 

a=1.1 a=1.7803 a=1.9575 a=1.9576 

0 .001 -  .005 Chaos Chaos Chaos Chaos 
0.006 2 Chaos Chaos Chaos 

0.007 -0.008 Chaos Chaos Chaos Chaos 

0.009 1 Chaos 8 8 

0.0100 1 Chaos 4 4 

0.0110 1 4 Chaos Chaos 

0.012 1 4 2 2 

0.013– 0.014 1 2 2 2 

0.015 1 2 2 Chaos 

0.016 1 2 Chaos 2 

0.017- 0.018 1 Chaos Chaos Chaos 

0.019 1 2 Chaos Chaos 

0.020 - 0.108 1 Chaos Chaos Chaos 

0.1090 1 Chaos Chaos 1 

0.1100 -0.124 1 Chaos 1 1 

0.1250 1 Chaos 2 Chaos 

0.1260 1 Chaos 4 4 

0.1270 1 Chaos Chaos 4 

0.1280 1 Chaos 4 4 

0.1290 1 Chaos Chaos Chaos 

0.1300 - 0.134 1 Chaos Chaos Chaos 

0.1350 1 5 Chaos Chaos 

0.1360- 0.1410 1 1 Chaos Chaos 

0.1420 1 1 Chaos 4 

0.1430 1 1 4 Chaos 

0.1440 1 1 4 4 

0.1450 1 1 4 Chaos 

0.1460 1 1 Chaos 4 

0.1470 1 1 4 Chaos 

0.1480 1 1 Chaos Chaos 

0.1490-0.1500 1 1 Chaos 4 

0.1510 -0.2000 1 1 Chaos Chaos 

0.2010 -0.2070 1 1 4 4 

0.2080


 1 2 4 Chaos 

0. 2090 -0.214 1 2 2 2 

0.2150 1 Chaos 2 2 

0.2160 -0.2170 1 2 2 2 

0.2180 1 4 2 2 

0.2190 -0.220 1 Chaos 2 2 

0.2210 1 2 2 2 

0.2220-0.2230 1 Chaos 1 1 

0.2240-0 .2420 1 2 1 1 

0.2430-0.8020 1 1 1 1 

0.8030 1 4 1 1 

0.8040-0.8070 1 1 1 1 

0.8080-0.8090 1 2 1 1 

0.8100 1 1 1 1 

0 .8110-0.8120 1 2 1 1 

0.8130- 0.8640 1 1 1 1 

                                                                 
1
 Chaotic response is defined in this work as the response when periodicity exceeds two hundred and fi fty six.  


 Columns two, three and four agreed with the results obtained by [6], while the last column does not. 
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0.8650 1 1 4 4 

0.8660 1 1 1 1 

0.8670-0.8700 1 1 4 4 

0.8710 1 1 1 1 

0.8720 1 1 4 4 

0.8730-0.9150 1 1 2 2 

0.9160 1 2 2 2 

0.917-0.932 1 1 2 2 

0.9330 1 2 2 2 

0.934-1.0000 1 1 2 2 

 

 

Figure 2.  The Poincare map of a Duffing Oscillator 

Historically, figure 2 is a Poincare map confirming that the 

data generated by the Runge-Kutta algorithm is chaotic and 

the attractor is strange, this is in agreement with the works of 

Dowell, and Narayanan, et al. This kind of attractor neglects 

the absorber mass effect. Other figure like 3 depicts the 

response of the system as period one motion. From table 1, 

we see that when the mass ratio (μ) is 0.012, the motion 

recorded is period one (1) at a=1.1; and period two (2) 

motions when a=1.7803, a=1.9575 and a=1.9576. These 

responses are examined for both the absorber and the main 

masses on phase space trajectories.  

  

Figure 3.  The Phase Plot of Main Mass 

For the main mass, the phase space trajectory in figure 3 

indicates periodic response when absorber parameter, a = 

1.1 and mass ratio μ = 0.0280. Th is is a period one (1) 

motion. Qualitatively, this oval ob ject (figure 3) confirms 

that the motion is periodic since no intertwined loop is 

present – a limit  cycle indeed. W ith a clearly  defined locus of 

points, a view of th is motion produces a “dot” on the 

Poincare map, as shown in figure 4. 

 

Figure 4.  The Corresponding Poincare section for period one (1) motion 

The Poincare map is the time h istory of the system. For a 

chaotic response, a complicated locus of point is observed 

on a phase plot having infinitely many points.  

 

Figure 5.  The Phase Space of the Absorber 

And for a = 1.1 at the same value of μ we obtained period 

one (1), shown in figure 5 for absorber motion. For the case 

in which a = 1.7803 at the same value of μ we obtained 

period two (2) as shown in figures 6 and 7 respectively for 

the main mass and absorber motions.   
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For a period two (2) mot ion, the Poincare map has two 

“dots” on its plane, see figure 8.  

 

Figure 6.  The Period Two Phase Plot of Main Mass at µ=0.2080 and 

αa=1.7803 

 

Figure 7.  The Period Two Phase Plot of Absorber at µ=0.2080 and 

αa=1.7803 

 

Figure 8.  The Corresponding Poincare map for period two (2) motion 

3.2. Discussion 

The values of the mass ratio and the absorber parameters 

were used in this study with a focus on its temporal and 

spatial responses. If the stroboscopic time for any of such a 

point to revisit a particular point where it earlier v isited is 

equal to or more than two-hundred and fifty six periods of 

excitation, then we interpret this response as  chaotic. For this 

type of situation our algorithm returns „zero‟ and the motion 

is considered chaotic. 

Where the system repeats at regular t ime interval, the 

motion is regarded as periodic and the mass ratio and the 

absorber parameter for which this response occurs are noted. 

Inserting these values into an algorithm designed to test for 

periodic or chaotic response, the algorithm returns a set of 

data which is plotted as phase-space trajectories and 

Poincare maps. 

From table 1, the first five result (i.e . from row one), the 

simulation returned zero as seen under the following 

respective values of a: a=1.1, a=1.7803, a=1.9575 and 

a=1.9576 at μ  = 0.001-0.005 suggesting that the system 

behaved chaotically.  

Furthermore, in row two of this table, the system 

responded like a linear system at a=1.1 (co lumn 2) and at a 

corresponding value of μ= 0.006 (mass ratio), this mot ion is 

recorded as period two (2) motion. And, at a=1.7803, 

1.9575 and 1.9576, at the same value of μ (i.e. 0.006), the 

system gave a typical response indicating chaos.  For a μ = 

0.016, we have one (1) period motion. At the same 0.016 

mass ratio, it is a period two (2) motion. On a Poincare map, 

this should give two distinct points. This period doubling is 

generally in  agreement with some of the earlier works; that, 

period doubling is a form of harbinger of chaos. As expected, 

the motion is chaotic after the period two (2) mot ions, and 

was followed by another period 2 motion. Again, this is 

clearly in agreement with the open literature, that periodic 

response is still possible after observing chaos. 

Further, during the interval where μ is between 0.201 –  

0.207 at a=1.1 and 1.7803 we recorded period one (1) 

motion (i.e. from columns 2 and 3); and, at a=1.9575 and 

1.9576 the simulation recorded period four (4) mot ions for 

both 1.9575 and 1.9576 values of a , from columns 4 and 5. 

However, the row in bold face (from table 1) was 

highlighted to point to the difference(s) between the results 

of our numerical experiment and the one conducted by[8]. 

With specified absorber parameters obtained from[8], it is 

expected that we obtain the same result. This is true for 

columns 2, 3 and 4 but the last column of this highlighted 

portion of the table does not agree with the results of the 

work of[8]. Th is particular response points to our submission 

that absorber parameters alone (without µ) are not sufficient 

to render a Duffing oscillator periodic, yet are a necessary 

condition. 

4. Conclusions 

The chaotic responses exhibited by the two degrees of 

freedom (DOF) Duffing-Absorber system studied in this 

work were rendered periodic by making the ratio of the 

absorber mass to the main mass as the key parameter used to 

gain control over the system. This work also confirmed the 

age-long understating that when the time for a part icular 

attractor to revisit a point in space is too far, we concluded 

that the system is chaotic and predictability becomes 

impossible for such a dynamical system. The absorber 
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parameters specified were part icularly invaluable in 

searching through the chunks of data returned by the 

simulation. It should be noted that absorber parameters alone 

are not sufficient to charaterise the system response. We 

picked the value(s) of the mass ratio that correspond with a 

particular absorber parameter while also noting the nature of 

the motion at play. In the study of nonlinear deterministic 

dynamical system, this kind of behaviour – transition from 

chaoticity to periodicity is one of many signs that show that 

cause is not directly proportional to effect as it is for linear 

systems. We do note that by specifying the mass ratio along 

with known absorber parameter values, this kind of 

nonlinear system would be made to behave like a linear 

system. 
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