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Abstract  The model fo r regenerative vibration of linear orthogonal turning process is a second order time-invariant delay 
differential equation. Stability analysis resulted in lobes that combine to give transition curve that separates the paramete r 
space of spindle speed and depth of cut into stable and unstable subspaces. It is found that there is a subspace of the stable 
subspace in which  the turning process is delay-independent stable. The size of this subspace is found to be a function of 
modal parameters and increases with damping ratio of the tool. Non-linear analysis of turning by some investigators suggests 
that subcritical bifurcations always occur thus the need to design a portion of the subspace of delay -independent stability for 
global stability. The subspace of global stability is also theoretically and quantitatively demonstrated to  increase faster than 
the driving increase in damping ratio.  
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1. Introduction 
The general state space time-delay  system with constant 

real matrix coefficients is  
𝐲  𝑡 = 𝐀𝐲 𝑡 + 𝐁𝐲 𝑡 − 𝜏 + 𝐂  𝐲 𝑡 + 𝑠 d𝑠

0

−𝜏   (1) 
where 𝑡 > 0, 𝐀, 𝐁, 𝐂 ∈  ℝ × ℝ , 𝜏 ∈  ℝ+  and the 

history 𝑔 𝑡   is on – 𝜏, 0 . The coefficient matrices 𝐁 and 
𝐂 respectively captures the effects of discrete delay and 
distributed delay.  Stability analysis has been carried out for 
the scalar version of this equation on the parameter space of 
coefficients of the current and distributed delay terms [1]. 
The interest in  this work is on systems without distributed 
delay such that equation (1) becomes 

𝐲  𝑡 = 𝐀𝐲 𝑡 + 𝐁𝐲 𝑡 − 𝜏 .         (2) 
Equation (2) is said to be delay-independent stable if 

stability persists for all delay  values belonging to ℝ+ while 
it is said to be delay-dependent stable if stability is only 
retained for all delay values belonging to a subspace of 
ℝ+ [2]. Regenerative vibration of linear turning will be 
demonstrated in the next subsection to be governed by 
equation (2). It is known that one of the parameters 
affecting stability of turning operation is the spindle speed 
which is inversely proportional to discrete delay. This 
means that turning operation is delay-dependent stable. 

Trigonometric ideas are employed in a way unique to this 
work in detailed stability analysis of linear turning space  
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regenerative vibration  leading  to demarcation of parameter 
of spindle speed and dept of cut into stable and unstable 
domains. It results that a portion of the stable domain of 
damped turning that lies below certain dept of cut is 
delay-independent stable being that asymptotic stability is 
retained within  it  at all spindle speeds; a notion first s een in 
this work. 

Subcritical nature of turning bifurcat ion has been 
experimentally and analytically established. This means that 
in practical setting, the space of delay-independent stability 
is not globally stable thus the need to establish a design 
procedure that enables the delineation of a portion of g lobal 
stability in which regenerative chatter is deemed eliminated. 
The method of estimat ion of size and delineation of 
boundary of domain of g lobal stability as outlined in this 
work is another major contribution of this paper. 

Among the contributions of this paper is the d iscovery 
that sizes of sub-space of delay-independent and global 
stability increase considerably with increase in damping 
ratio since it is theoretically established that  fractional 
increase in these sizes are always greater than fractional 
increase in  damping rat io. In other words, the pain  involved 
in achieving greater damping will be more than 
compensated in gains in global stability.  

2. Equation of Regenerative Vibration of 
Turning Tool 

Figure 1 represents the turning of an external cylindrical 
surface. The workpiece at the rotational speed Ω  in 
revolutions per minute of the spindle is clamped in a chuck 
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while the tool is made to  transverse it. The mechanical model 
in figure1 represents an orthogonal turning process. In 
orthogonal cutting process, the cutting edge of the tool is 
perpendicular to the feed motion[3] as can be observed 
from figure1. The modal parameters of the turning process 
are; 𝑚 mass of tool, 𝑐  is the equivalent viscous damping 
coefficient of the tool system and 𝑘 the stiffness of the tool 
system. Chatter is an unstable vibration in machin ing due 
regenerative effects that are originally  triggered by internal 
and external perturbations. Regenerative effect as seen 
enlarged in figure1 is the effect of waviness created on a 
machined surface due to perturbed dynamic interaction 
between the tool and the workpiece. The present tool pass 
that is indicated as full curve has waviness that is not in 
phase with  the last tool p rofile indicated as dashed curve. A 
variation in chip thickness causes cutting force variation that 
results in vibration which subsequently builds up to chatter if 
cutting parameter combination is unfavourable. In this model 
a single degree of freedom vibration is assumed in 
𝑥 − direction (feed direction). The tool is fed into the 
workp iece at a speed 𝑣. Response 𝑥(𝑡) of the tool system 
is measured relative to  the unloaded equilibrium position of 
tool (or tool holder axis).The response of the tool 𝑥(𝑡) 
satisfies the equation of motion that is as derived in what 
follows; 

 
Figure 1.  Mechanical model of orthogonal turning 

The free body diagram for the tool system is figure2 and 
gives the equation of motion at an arbit rary time of cutting 
𝑡 as 

 
Figure 2.  Free-body diagram of tool dynamics 

𝑚𝑥  𝑡 + 𝑐 𝑥  𝑡 − 𝑣𝑡 + 𝑘 𝑥 𝑡 − 𝑣𝑡 + 𝐹𝑥  𝑡 = 0  (3) 
where 𝐹𝑥  𝑡  is the 𝑥 -component of cutting force. 𝐹𝑥  
could have the empirical form found in the works of 
Tlusty[4];  

𝐹𝑥  𝑡 = 𝐶𝑤𝑓a
𝛾                   (4) 

where 𝐶  is the cutting coefficient (a property of the 
workp iece material), 𝑤 is the depth of cut, 𝑓a  is the actual 
feed rate and 𝛾  is an exponent that has typical values 
0.8 and 3 4 . The latter exponent spells the three-quarter 
rule[4, 5]. Uniform feed rate 𝑓 is the prescribed movement 
of the tool’s cutting edge in  meters per revolution of the 
workp iece thus the actual feed rate 𝑓a  could be defined as 
difference of present and one period delayed position of 
tool if discrete delay equal to period of revolution is 
adopted. Thus from figure1 it could be seen that 

𝑓a = 𝑥 𝑡 − 𝑥 𝑡 − 𝜏 .             (5) 
Putting equations (3), (4) and (5) together gives  

𝑚𝑥  𝑡 + 𝑐 𝑥  𝑡 − 𝑣𝑡 + 𝑘 𝑥 𝑡 − 𝑣𝑡 + 𝐶𝑤 𝑥 𝑡 −
𝑥𝑡−𝜏𝛾=0.                (6) 

To make the derivation more compact the following 
notations are used; 𝑥 𝑡 = 𝑥  and 𝑥 𝑡 − 𝜏 = 𝑥𝜏  . The 
notation also applies to any subsequent variable that 
involves delay. Applying the notation and re-arranging, 
equation (6) becomes  

𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥 = 𝑐𝑣 + 𝑘𝑣𝑡 − 𝐶𝑤 𝑥 − 𝑥𝜏
 𝛾 .   (7) 

The motion of the tool is a linear superposition of 
prescribed feed motion 𝑣𝑡, static transverse deflection of 
the tool system 𝑥 t (𝑡) and perturbation 𝑧(𝑡)[4] then  

𝑥 𝑡 = 𝑣𝑡 + 𝑥 t
 𝑡 + 𝑧 𝑡 .         (8) 

Straight-forward ly it goes that; 𝑥 = 𝑣 + 𝑧 , 𝑥 =

𝑧  𝑎𝑛𝑑 𝑥 t(𝑡) =
−𝐶𝑤𝑓𝛾

𝑘
  . For unperturbed motion of the 

tool 𝑣 = 𝑓 𝜏  giving rise to 
𝑥 t
 𝑡 =

−𝐶𝑤 𝑓𝛾

𝑘
 =

−𝐶𝑤  𝑣𝜏 𝛾

𝑘
.        (9) 

Equations (8) and (9) put in (7) gives  
𝑚𝑧 + 𝑐𝑧 + 𝑘𝑧 = 𝐶𝑤 𝑣𝜏 𝛾 − 𝐶𝑤 𝑣𝜏 +  𝑧 − 𝑧𝜏   

𝛾 . (10) 
Taylor’s series expansion of  𝑣𝜏 +  𝑧 − 𝑧𝜏   

𝛾  about 𝑣𝜏  
results in equation (10) becoming  

𝑚𝑧 + 𝑐𝑧 + 𝑘𝑧 = 𝐶𝑤 𝑣𝜏 𝛾

− 𝐶𝑤   𝑣𝜏 𝛾 + 𝛾 𝑣𝜏 𝛾−1 𝑧 − 𝑧𝜏  

+
𝛾 𝛾 − 1 

2
  𝑣𝜏 𝛾−2 𝑧 − 𝑧𝜏  

2 + ⋯  . 

linearization of which y ields  
𝑚𝑧 + 𝑐𝑧 + 𝑘𝑧 = −𝐶𝑤𝛾 𝑣𝜏 𝛾−1 𝑧 − 𝑧𝜏  .     (11) 

The motion of the tool as described by equation (11) is 
seen to be a delay differential equation .The absolute value 
of the coefficient of  𝑤 𝑧 − 𝑧𝜏   in equation (11) is called  
the specific cutting force variation and is given as 
𝑕 = 𝐶𝛾 𝑣𝜏 𝛾−1 . Equation (11) thus becomes 

𝑚𝑧 + 𝑐𝑧 + 𝑘𝑧 = −𝑕𝑤 𝑧 − 𝑧𝜏  .       (12) 
Equation (12) could be put in modal form  

𝑧 + 2𝜉𝜔𝑛𝑧 + 𝜔𝑛
2𝑧 = −

𝑕𝑤

𝑚
 𝑧 − 𝑧𝜏       (13) 

where the natural frequency and damping ratio of the tool 
system are given in terms of modal parameters 𝑘, 𝑚 and  𝑐 
respectively as 𝜔𝑛 =  𝑘 𝑚  and  𝜉 = 𝑐 2 𝑚𝑘 . Equation 
(13) is seen to represent a delayed oscillator when 
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re-written thus 
𝑧 + 2𝜉𝜔𝑛𝑧 +  𝜔𝑛

2 +
𝑕𝑤

𝑚
 𝑧 =

𝑕𝑤

𝑚
𝑧𝜏 .      (14) 

Equation (14) is the general equation governing linear 
regenerative vibration of the tool in turning process. The 
nature of the solution of equation (14) is a reflection of 
stability condition of an operation. If the perturbation 
motion or its derivatives rises with time, there is chatter 
(unstable operation) while bounded perturbation response 
with time implies non-chatter operation. With the 
substitutions 𝑦1 = 𝑧  and 𝑦2 = 𝑧  made, equation (14) 
could be put in state differential equation form 

 
𝑦 1
𝑦 2

 =  
0 1

−  𝜔𝑛
2 +

𝑕𝑤

𝑚
 −2𝜉𝜔𝑛

  
𝑦1

𝑦2
 +  

0 0
𝑕𝑤

𝑚
0
  

𝑦1 ,𝜏

𝑦2 ,𝜏
  (15) 

where 𝑦𝑖 ,𝜏 = 𝑦𝑖 (𝑡 − 𝜏)  for 𝑖  = 1  and 2 . The time 
domain equation (15) is the substance of stability 
characterizat ion of turning process. 

3. Chatter Stability Analysis of Turning 
Equation (15) has the general form 

𝐲 = 𝐀𝐲 + 𝐁𝐲𝜏               (16) 

where 𝐀 =  
0 1

−  𝜔𝑛
2 +

𝑕𝑤

𝑚
 −2𝜉𝜔𝑛

  and 𝐁  =

 
0 0
𝑕𝑤

𝑚
0
  . This is an autonomous delay-differential 

equation with discrete delay. A t rial solution of form 
𝐲 𝑡 = 𝐊e𝜆𝑡 [6, 7] put in equation (16) g ives the equation 

𝜆𝐲 = 𝐀𝐲 + 𝐁𝐲e−𝜆𝜏 .             (17) 
The characteristic equation of the tool system is seen 

from equation (16) to be  
 𝜆𝐈 − 𝐀 − 𝐁e−𝜆𝜏  = 0.             (18) 

Upon simplificat ion equation (18) becomes  
𝜆2 + 2𝜉𝜔𝑛𝜆 + 𝜔𝑛

2 +
𝑕𝑤

𝑚
 1 − e−𝜆𝜏  = 0      (19) 

Expansion of the exponential term of equation (19) in  
Maclaurin’s series shows that the characteristic equation 
has infinitely many solutions or eigen-values also called 
characteristic roots, with each having the form 𝜆  = 𝜎 +
i𝜔. Eigen-values of the system migrate on the complex 
plane as the cutting parameters are varied. All the roots 
must have negative real parts for the turning process to be 
stable thus operation is critical whenever there exist roots 
on the imaginary  axis. Bifurcation in turning operation 
could occur when a pair of complex conjugate characteristic 
roots crosses from the left -half plane to right-half plane of 
the complex p lane .This occurrence is called the Hopf 
bifurcation of a corresponding non-linear system. The 
trivial solution to equation (14) is 𝑧 𝑡 = 𝐾e𝜆𝑡  
where   𝐾, 𝜆 ∈ 𝐶  [7]. For any pair o f complex conjugate 
roots 𝜆1,2 there exists a solution 𝑧 𝑡 = 𝐾1e𝜆1𝑡 + 𝐾2e𝜆2 𝑡 
being that equation (14) is linear. Since under bifurcation 
condition the critical characteristic roots are pure imaginary 
this solution becomes 

𝑧 𝑡 = 𝐾1ei𝜔𝑡 +𝐾2 e−i𝜔𝑡 = 𝐶cos 𝜔𝑡 − 𝜑         (20) 
where 𝐶 =   𝐾1 + 𝐾2

 2 −  𝐾1 − 𝐾2
 22  and 𝜑 =

tan−1  
i 𝐾1 −𝐾2  

𝐾1 +𝐾2

 . Thus 𝜔 is seen to be the frequency of the 
arising chatter vibrations. This bifurcation of Hopf type has 
been proven experimentally by Shi and Tobias [8] and 
analytically by Stepan and Kalmar-Nagy[9] to have 
subcritical nature. This subcritical nature of turning 
bifurcation has implication in design engineering of 
machine tools as will be seen later.  

The stability boundary curves also called the D-curves or 
Stability lobes are drawn to separate the stable cutting 
domain  (at which all 𝜎 < 0) from the unstable one ( at 
which some 𝜎 > 0 ). On the D-curves exist parameter 
combinations that produce a pair of roots of characteristic 
equation that are pure imaginary without any root existing 
in the right-hand plane. The D-curves could be tracked 
based on equation (19) by making the substitution 𝜆 = ± i𝜔. 
The two equations resulting are  

−𝜔2 + 𝜔𝑛
2 +

𝑕𝑤

𝑚
 1 − cos𝜔𝜏 = 0       (21) 

2𝜉𝜔𝑛𝜔 +
𝑕𝑤

𝑚
sin𝜔𝜏 = 0.           (22) 

Equation (21) is vio lated when 𝜔 = 0 suggesting that 
bifurcation of saddle node type is not expected in turning 
operation. Equations (21) and (22) could be solved to give 
expressions for crit ical cutting parameters 𝑤  and Ω as 
follows; 

From equation (22) results 
𝑕𝑤

𝑚
=

−2𝜉𝜔𝑛𝜔

sin𝜔𝜏
  , 𝜔𝜏 ≠ 𝑘𝜋 𝑓𝑜𝑟 𝑘 = 0, 1, 2.   (23) 

For positive depth of cut, equation (23) g ives the 
condition 𝑠𝑖𝑛𝜔𝜏 < 0. Equation (23) put into (21) gives  

−𝜔2 + 𝜔𝑛
2 − 2𝜉𝜔𝑛𝜔

 1−cos𝜔𝜏 

sinω𝜏
= 0.       (24) 

From the trigonometric relationship 
 1−cos𝜔𝜏 

sin𝜔𝜏
= tan

𝜔𝜏

2
 

equation (24) becomes 
−𝜔2 + 𝜔𝑛

2 − 2𝜉𝜔𝑛𝜔tan
𝜔𝜏

2
= 0.       (25) 

Since  1 − cos𝜔𝜏 > 0 then 
tan

𝜔𝜏

2
=

−𝜔2+𝜔𝑛
2

2𝜉𝜔𝑛 𝜔
< 0.                (26) 

It is implied from (23) and (26) that 𝜔𝜏

2
 lies in  any of the 

intervals  
𝜋

2
 2𝑛 + 1 <

𝜔𝜏

2
< 𝜋 𝑛 + 1 

𝜋

2
 2𝑛 + 3 <

𝜔𝜏

2
< 𝜋 𝑛 + 2 

          (27) 

where 𝑛 = 0, 1, 2, 3, 4, …… … ... From (26) sign inversion 
gives 

−tan
𝜔𝜏

2
=

𝜔2−𝜔𝑛
2

2𝜉𝜔𝑛 𝜔
> 0.            (28) 

It could be seen from equation (28) that it holds the 
constraint 

0 < tan−1  
𝜔2 −𝜔𝑛

2

2𝜉𝜔𝑛 𝜔
 <

𝜋

2

𝜋 < tan−1  
𝜔2−𝜔𝑛

2

2𝜉𝜔𝑛 𝜔
 <

3𝜋

2

           (29) 

Such that from (28) results 
𝜔𝜏

2
= 𝑗𝜋 − tan−1  

𝜔2 −𝜔𝑛
2

2𝜉 𝜔𝑛 𝜔
  , 𝑗 = 1, 2, 3,.    (30) 

Therefore  
𝜏 =

2

𝜔
 𝑗𝜋− tan−1  

𝜔2 −𝜔𝑛
2

2𝜉 𝜔𝑛𝜔
  .       (31) 
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Though positive depth of cut is assumed in  arriving  at 
equation (31), the same result is achieved for negative depth 
of cut following a similar argument. If   

𝜔2 −𝜔𝑛
2

2𝜉𝜔𝑛 𝜔
  is  

designated as 𝛽 in light of equation (31) then 

sin𝜔𝜏 =
−2𝛽

𝛽2 + 1
. 

It then follows from result of (23) that 

𝑕𝑤

𝑚
=

−2𝜉𝜔𝑛𝜔

−2
 
𝛽2 + 1

𝛽
 = 𝜉𝜔𝑛𝜔

 
 
 
 
  𝜔

2 − 𝜔𝑛
2

2𝜉𝜔𝑛𝜔
 

2

+ 1

 
𝜔2 − 𝜔𝑛

2

2𝜉𝜔𝑛𝜔
 

 
 
 
 
 

. 

This becomes re-arranged to give the expression for 
critical depth of cut as  

𝑤 =
𝑚

2𝑕
 
 𝜔2 −𝜔𝑛

2  
2

+4𝜉2 𝜔𝑛
2 𝜔2

𝜔2 −𝜔𝑛
2

 .           (32) 

Stability charts are most often given in terms of cutting 
parameters like spindle speed Ω and depth of cut 𝑤 to give 
the range of technological parameters for non-chatter cutting. 
The pair of equations for stability analysis of turning thus 
becomes; 

Ω =
60

𝜏
=

30𝜔

𝑗𝜋−𝑡𝑎𝑛 −1 
𝜔2−𝜔𝑛

2

2𝜉𝜔𝑛𝜔
 
             (33) 

𝑤 =
𝑚

2𝑕
 
 𝜔2 −𝜔𝑛

2  
2

+4𝜉2 𝜔𝑛
2 𝜔2

𝜔2 −𝜔𝑛
2

 .             (34) 

Spindle speed and depth of cut are non-dimensionalized to 
give 

Ω =
𝜋Ω

30𝜔𝑛
 =

𝜋𝜔

𝜔𝑛  𝑗𝜋 −tan −1 
𝜔2−𝜔𝑛

2

2𝜉𝜔𝑛𝜔
  

          (35) 

𝑤 =
𝑤𝑕

𝑚𝜔𝑛
2 =

 𝜔2 −𝜔𝑛
2  

2
+4𝜉2𝜔𝑛

2 𝜔2

2𝜔𝑛
2 (𝜔2−𝜔𝑛

2 )
.           (36) 

Equations (35) and (36) are combined to generate a 
stability lobe for a particu lar 𝑗. Stability lobes of various 𝑗′𝑠 
on the same parameter space are combined to give the 
stability transition or boundary curve for the linear turning 
process. It is seen from equation (36) that negative depth of 
cut results only when 𝜔 < 𝜔𝑛  mean ing that chatter 
frequencies are above the fundamental natural frequency of 
the tool since negative depth of cut has no practical meaning 

in turning. Also any value of 𝜔 results in the same critical 
depth of cut since 𝑗 does not appear in equation (36). For 
illustration, stability lobes for 𝑗 = 1 to 10 are generated to 
form the stability transition curve for a system with the 
parameters 𝜔𝑛 = 5700  rads−1and 𝜉 = 0.02. Th is is shown 
in figure3. Any point on the region below a combination of 
all the lobes is stable while those above are for chatter as is 
illustrated by six trajectories of figure4 generated at selected 
points of parameter space of figure3. Trajectories of figure4 
are produced for a system with parameters; 𝜔𝑛 =
5700  rads−1 and 𝜉 = 0.02 , 𝑚 = 0.0431kg , 𝐶 = 5 ×

107 Nm−7 4 ,  𝛾 = 0.75 , feed speed 𝑣 = 0.0025ms−1  
assuming a history 𝑦1 (𝑡) = 0.000001m  and  𝑦2(𝑡) =
0.0001m/s in the interval −𝜏 ≤ 𝑡 ≤ 0. Each trajectory is 
determined by the corresponding cutting parameters of 
caption of figure4. It is obvious from figure3 that there is a 
sub-region of the stable subspace in which the operation is 
delay-independent stable since stability is retained no matter 
how high spindle speed gets.  

The nature of the solution of (15) is a reflection of stability 
condition of an operation. If the perturbation motion or its 
derivatives rises with time, there is chatter (unstable 
operation) while bounded perturbation response with time 
implies non-chatter operation. It is seen from figure4 a and b 
that a point  0.000001 , 0.0001  on the phase plane at t=0 
traces the trajectory towards the origin as indicated by arrow 
as time changes. This means that the points  2,0.04  and 
 0.45,0.1  are stable in conformity with their location as 
marked  star on the stability chart. The same point spirals 
away from initial position as time progresses for the 
operating points  1.5,0.06  and  0.7,0.4  as seen in 
figure4 c and d. This implies instability which is expected 
since they are placed above the transition curve as marked 
with circle. The trajectories seem reluctant to get to origin in 
figure4e and d thus suggesting that the points almost lie on 
the stability t ransition curve as marked with diamond on the 
stability chart. 

 
Figure 3.  Stability chart of linear turning with 𝜔𝑛 = 5700 rads−1, 𝜉 = 0.02 
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Figure 4.  linear turning trajectories with the determining parameters (a) Ω = 2 and 𝑤 = 0.04 (b) Ω = 0.45 and 𝑤 = 0.1 (c) Ω = 1.5 and 𝑤 = 0.06 
(d) Ω = 0.7 and 𝑤 = 0.4 (e) Ω = 1.3541 and 𝑤 = 0.0408 and (f) Ω = 0.3704 and 𝑤 = 0.0408 

4. Effect of Choice of Modal Parameters 
on Delay-independent Stability 

From the equation 
d𝑤 

dΩ 
=

d𝑤 

d𝜔

dΩ 

d𝜔
 = 0       (37) 

results the polynomial equation 

𝜔 𝜔4 − 2𝜔𝑛
2𝜔2 + 𝜔𝑛

4 −4𝜉2𝜔𝑛
4  𝑗𝜋 − tan−1  

𝜔2 − 𝜔𝑛
2

2𝜉𝜔𝑛𝜔
  

2

 

= 0                                          (38) 
which has the roots 𝜔1 = 0, 𝜔2 = 𝜔𝑛 2𝜉 + 1 , 𝜔3 =

−𝜔𝑛 2𝜉 + 1 , 𝜔4 = 𝜔𝑛 2𝜉 − 1 , 𝜔5 = −𝜔𝑛 2𝜉 − 1 , 
𝜔6 = 𝜔𝑛  𝜉tan𝑗𝜋 +  𝜉2tan2 𝑗𝜋 + 1 = 𝜔𝑛  and 𝜔7 =

𝜔𝑛  𝜉tan𝑗𝜋 −  𝜉2tan2 𝑗𝜋 + 1 = −𝜔𝑛 . Being that 𝜔  is 
positive and real and machine tools usually have low 
damping, generally, 𝜉 ≈ 0.005 − 0.02[4], 𝜔3 , 𝜔4 , 𝜔5  and 
𝜔7  are neglected. The turning point frequencies thus become 
𝜔1 = 0 , 𝜔2 = 𝜔𝑛 2𝜉 + 1  and 𝜔6 = 𝜔𝑛 . These are 
respectively put into equations (35) and (36) to give the 
turning points of the transition curve on the Ω − 𝑤  
parameter space as ( 0, −1

2 ), 
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 𝜋 2𝜉 + 1  𝑗𝜋 − tan−1 1  2𝜉 + 1    , 2𝜉  𝜉 + 1  and 

(  1 𝑗 , ∞ ). Only the turning points 

( 𝜋 2𝜉 + 1  𝑗𝜋 − tan−1 1  2𝜉 + 1    , 2𝜉  𝜉 + 1 ) at  
𝜔2 = 𝜔𝑛 2𝜉 + 1 are seen to make practical sense thus earn 
the emphasis here. The second derivative given by the 
equation  

d 2𝑤 

dΩ 2 =  
d𝑤 

d𝜔
∙

d

d𝜔
 1

dΩ 

d𝜔
  +

d

d𝜔
 

d𝑤 

d𝜔
 ∙  1

dΩ 

d𝜔
    1

dΩ 

d𝜔
    (39) 

results in a quantity 𝑄 𝜉, 𝜔𝑛
  that is a function of  modal 

parameters at the turning point boundary frequency of 
interest 𝜔2 = 𝜔𝑛 2𝜉 + 1. 𝑄 𝜉 , 𝜔𝑛

  is a positive quantity 
for positive damping. The meaning is that the countable 
infinite number of turning points 
 𝜋 2𝜉 + 1  𝑗𝜋 − tan−1 1  2𝜉 + 1    , 2𝜉  𝜉 + 1   are 

minima on the Ω -𝑤  parameter plane. It is seen that the 
minimum crit ical depth of cut is the same for all the stability 
lobes. It is also seen that increase in damping rat io results in 
increase in the min imum critical depth of cut. If the 
designations Ω t

𝑗
= 𝜋 2𝜉 + 1  𝑗𝜋 − tan−1 1  2𝜉 + 1     

and 𝑤 t = 2𝜉 𝜉 + 1  are made, a p lot of local minimum 
points as damping ratio varies  from 0 to 0.1 is shown for 
𝑗 = 1  in figure5. This means that size of sub-region of 
delay-independent stability increases with damping ratio. 
Increase in damping ratio is effected by favourable variation 
of the tool modal parameters. It can be read from figure5 that 
increase in damping ratio will increase the sub-area of 
delay-independent stability by shifting the minimum critical 
points somewhat upwards and rightwards. If damping ratio  is 
changed by the amount ∆𝜉 , the fractional increase in 
sub-area of delay-independent stability is  

𝐼f =
 2𝜉 +1 ∆𝜉+ ∆𝜉 2

𝜉  𝜉+1 
.                 (40) 

Since damping rat io of machine tools are small, it could  be 
writing that  ∆𝜉 = 𝛼𝜉 causing equation (40) to be 

𝐼f = 𝛼  1 + 𝜉
 𝛼+1 

 𝜉+1 
 .                (41) 

It is seen from equation (41) that fractional increase in the 
area of delay-independent stability is greater than that of 
damping ratio. In relative terms this means that there is 
considerable increase of delay-independent stable subspace 
of turning by increase of damping ratio.   

5. Design Implications 
It is already seen that linear turning is delay-independent 

stable in the sub-region below the line 𝑤 = 2𝜉 𝜉 + 1 . In 
practical situation highest spindle speed of a turning machine 
normally  lies either within low or high spindle speed 
domains. High spindle speed domain encompasses spindle 
speeds that are comparable with  tool fundamental natural 
frequency. It lies within the first three lobes. For this reason 
the area of delay-independent stability enclosed by the lines 
Ω = 𝜋 2𝜉 + 1  𝑗𝜋 − tan−1 1  2𝜉 + 1     and 𝑤 =

2𝜉 𝜉 + 1  together with the Ω  and 𝑤  axes of size  

𝐴
din

𝑗  𝜉 =
2𝜋𝜉  𝜉+1  2𝜉 +1

𝑗𝜋 −tan −1 1  2𝜉 +1  
            (42) 

where 𝑗 takes value depending on attainable spindle speed, 
is a function of positive slope of  𝜉 as is easily seen from 
figure6. Th is means that this area of delay-independent 
stability of turning increases as damping ratio increases. 

 
Figure 5.  T rajectory of minimum point of first lobe with  𝜉 
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Figure 6.  Variation of the bounded area Adin

1  ξ  with damping ratio 𝜉 

 
Figure 7.  Variation of design depth of cut wd with damping ratio 𝜉 for different lobes 

Closed form bifu rcation analysis has been conducted at 
the min imum points[9] in which it  is found that though linear 
stability analysis suggests global stability at 
non-dimensionless depth of cut below 2𝜉 𝜉 + 1  that 
bifurcation could still occur at a subcritical point due to 
non-linearity. This means that if min imum unstable depth of 
cut is specified  for a turn ing tool and two modal parameters 
are known, the third modal parameter can be designed using 
the equation   

𝑤d =
𝑚𝜔𝑛

2𝐹𝑛  𝑤 t

𝐶𝛾 𝑣
2𝜋

𝜔𝑛Ω
 

t
𝑗

 
 

𝛾−1.              (43) 

This is re-written to give the design equation 

𝑤d =
22−𝛾𝑚𝜔𝑛

1+𝛾
𝐹𝑛 𝜉 𝜉+1  

𝐶𝛾
 
𝑣 𝑗𝜋 −tan −1 1  2𝜉 +1   

 2𝜉+1
 

1−𝛾

    (44) 

where  𝐹𝑛  is the design  factor of safety that ensures 
global stability and 𝑗 is specified by the first min imum 
critical speed to be greater than the  maximum spindle 
speed of the machine. Alternatively equation (44) could be 
used to establish the depth of cut below which g lobal 

stability of a g iven turning is ensured.  𝐹𝑛  is chosen to 
preclude the possibility of non-linearit ies and perturbations 
triggering unstable vibrations at subcritical points. It has 
been measured experimentally that at the minimum points, 
chatter does not occur below 87%  of critical depth of cut 

𝑤t =
𝑚𝜔𝑛

1+𝛾

𝐶𝛾
 𝑤 t  𝑣

2𝜋

Ω t
𝑗

 
 

1−𝛾

[8]. Based on this result it will 

amount to reliable design to specify that 𝐹𝑛 ≤ 0.87. It is 
seen that as 𝑗 increases, the maximum depth of cut that 
ensures delay independent stability increases. This means 
that the depth of cut designed by equation (44) increases as 
maximum spindle speed specification of the machine 
decrease. This result is seen clearly from figure7 in which 
𝑤𝑑  is plotted against 𝜉  for different values of 𝑗 =
1, 2, 3… … . .10  with 𝐹𝑛 = 0.7  . Figure7 highlights the 
positive effect of damping rat io on global stability of 
turning. It also shows the importance of use of the biggest 𝑗 
that specifies crit ical speed higher than the maximum 
spindle speed in equation (44) since slope rises with 𝑗. It 
should be noted from the way the two terms 
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“delay-independent stability” and “global stability” are used 
that the latter is a sub-domain of the former.  

To simultaneously quantify the notion that global stability 
is a sub-domain of the delay-independent stability and the 
finding that variation of modal parameters in a way that 
reflect as increase in damping rat io increases 
delay-independent stability and its subset of global stability, 
stability charts are generated for systems with parameters; 
𝜔𝑛 = 5700  rads−1  and damping ratios 𝜉 = 0, 0.01, 0.02 
and 0.025 respectively as seen in figures 8a, b, c, and d.   It 
is seen from figure8.a that there is no delay-independent 
stable subspace for a turning tool with zero damping ratio. 
Delay-independent stable subspace is seen to exist when the 
damping ratio is non-zero  as seen in figures 8b, c and d. 
Every stability chart of nonzero damping ratio  on the right 
hand side is magnified portion of the adjacent chart to further 
reveal the subspace of delay-independent stability that lies 
below the line 𝑤 = 𝑤 t = 2𝜉 𝜉 + 1 . The increase in this 
area with damping ratio  is very noticeable as is expected 
from equation (41). The portion of this area for g lobal 
stability depend on the maximum spindle speed and choice 
of the design factor 𝐹𝑛 ≤ 0.87. For example if 𝐹𝑛 = 0.7, 

𝜔𝑛 = 5700  rads−1 , 𝑚 = 0.0431kg , 
𝐶 = 5 × 107Nm−7 4 ,  𝛾 = 0.75 , 𝑣 = 0.0025ms−1  and 
maximum non-dimensionless spindle speed of the machines 
Ω m = 1 3 , use made of equation (44) results in what is 
presented in the table1 below. Column 4 of table1 is for area 
of global stability 𝐴gs . Th is area for each  chart of figure8 is 
enclosed within a b lack rectangle OABC and is seen to 
increase considerably with damping ratio  according to 
equation (41). In conclusion, choice or variation of modal 
parameters of turning tool in a way that results in increase in 
damping rat io considerably improves  both delay- 
independent stability and global stability. Through the 
method outlined in this work, the domain of global stability 
could be delineated for a real turn ing machine with known 
modal parameters.  

Table 1.  Design depth of cut and area of global stability 

𝜉 𝑤d [mm] 𝑤 d  𝐴gs = 𝑤 d × Ω m  
0.01 0.04 0.014 0.0047 
0.02 0.08 0.028 0.0093 

0.025 0.1 0.035 0.0117 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 8.  Stability charts of linear turning showing domains of global stability for (a) 𝜔𝑛 = 5700 rads−1 and 𝜉 = 0, (b) 𝜔𝑛 = 5700 rads−1  and 
𝜉 = 0.01, (c) 𝜔𝑛 = 5700 rads−1 and 𝜉 = 0.02, (d) 𝜔𝑛 = 5700 rads−1 and 𝜉 = 0.025 

6. Conclusions  
Modelling and stability analysis of linear turning is carried 

out.  It is found that variation of modal parameters in a way 
that results in increase in damping rat io improves stability. 
Ideas borrowed from results of non-linear analysis of turning 
are utilized in design to determine the domain and size of 
global stability which is a portion of the subspace of 
delay-independent stability in which subcritical chatter is not 
expected. The size of sub-space of global stability at any 
value of damping ratio depends on how conservative the 
design factor of safety 𝐹𝑛  is where the basic condition 
satisfied is 𝐹𝑛 ≤ 0.87 . It is established that sizes of 
sub-space of delay-independent and global stability increase 
considerably with increase in  damping ratio since it  is 
theoretically d iscovered in this work that their fract ional 
increase is always greater than that of damping rat io causing 
it as equation (41) suggests. For example, row 2 and row 3 of 
table1 give that a percentage increase of 25.81 in area of 
global stability 𝐴𝑔𝑠  results from a percentage increase in 
damping rat io of 25  while equation (41) leads to 
computation of percentage increase in 𝐴gs  as 𝐼f × 100 =

0.25 × 100 1 + 0.02  0.25 + 1  0.02 + 1   = 25.61 . 
Any discrepancy between results of table1 which is 
developed from design equation (44) and those deriving 
from equation (41) stems from round off errors.  
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