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Abstract  In this paper, the Adaptive Generalized Predictive Control is designed to control a heat exchanger pilot plant. 
The standard Generalized Predictive Control (GPC) algorithm is presented. The Adaptive Generalized Predictive Control is 
then applied to achieve set point tracking of the output of the plant. A Single Input Single Output (SISO) model is used for 
control purposes. The model parameters are estimated on-line using an identification algorithm based on Recursive Least 
Squares (RLS) method. The performance of the proposed controller is illustrated by a simulation example of a heat 
exchanger pilot plant. Obtained results demonstrate the effectiveness and superiority of the proposed algorithm. 
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1. Introduction 
The Generalized Predictive Control (GPC) is one of the 

most favorite predictive control methods, popular in industry 
and also at universities. It was first published in 1987[1],[2]. 
The authors wanted to find one universal method to control 
different systems. GPC has been successfully implemented 
in many industrial applications, showing good performance 
and a certain degree of robustness. It is applicable[3] to the 
systems with non-minimal phase, unstable systems in open 
loop, systems with unknown or varying dead time, systems 
with unknown order and nonlinear systems approximated by 
linear models.  

The basic idea of GPC[4],[5] is to calculate a sequence of 
future control signals in such a way that it minimizes a 
multistage cost function defined over a prediction horizon. 
The index to be optimized is the expectation of a quadratic 
function measuring the distance between the predicted 
system output and some reference sequence over the horizon 
plus a quadratic function measuring the control effort. The 
predictive model is carried out based on the solving 
Diophantine equations. 

In the present paper the Adaptive Generalized Predictive 
Control method is designed to control a heat exchanger pilot 
plant and a Single Input Single Output (SISO) model is used 
for control purposes. The model  parameters are estimated  
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On-line using an identification algorithm based on Recursive 
Least Squares method. It is proved in the paper that in spite 
of important variations of the plant output; the developed 
adaptive structure maintains high level of performances 
(tracking, disturbance robustness and overshoot, cancellation 
of oscillation).   

The paper is organized as follows. Section II presents the 
Generalized Predictive Control algorithm. Section III is 
devoted the description of the adaptive control algorithm. In 
section IV, the effectiveness and superiority of the adaptive 
system, is demonstrated by simulation example. Some 
concluding remarks end the paper.  

2. Generalized Predictive Control 
Algorithm 

The GPC scheme[6] can be seen in Figure 1. It consists of 
the plant to be controlled, a reference model that specifies the 
desired performance of the plant, a linear model of the plant, 
and the Cost Function Minimization (CFM) algorithm that 
determines the input needed to produce the plant’s desired 
performance. The GPC algorithm consists of the CFM block. 

The GPC system starts with the input signal, r(t), which is 
presented to the reference model. This model produces a 
tracking reference signal, w(t) that is used as an input to the 
CFM block. The CFM algorithm produces an output, which 
is used as an input to the plant. Between samples, the CFM 
algorithm uses this model to calculate the next control input, 
u(t+1), from predictions of the response from the plant’s 
model. Once the cost function is minimized, this input is 
passed to the plant. This algorithm is outlined below. 
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Figure 1.  Basic structure of GPC 

When considering regulation about a particular operating 
point, even a non-linear plant generally admits a 
locally-linearized model[1] and[2]:  

)()1()()()( 11 twtuqBtyqA +−= −−         (1) 
Where, A and B are polynomials in the backward shift 
operator 1−q :  
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If the plant has a non-zeros dead-time the leading elements 
of the polynomial )( 1−qB  are zero.  
Where: 

u(t) is the control input. 
y(t) is the measured variable or output. 
w(t) is a disturbance term. 
In literature w(t) has been considered to be a moving 

average form:  
)()()( 1 tqCtw ξ−=                 (2) 
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In this equation )(tξ  is uncorrelated random sequence, 
and combining with (1) we obtain the CARMA (Controlled 
Autoregressive Moving Average): 

)()()1()()()( 111 tqCtuqBtyqA ξ−−− +−=     (3) 

Where, ∆ is the differencing operator 11 −− q  is the back 

shift operator such that )1()(1 −=− tytyq . For simplicity 

in the here )( 1−qC  is chosen to be 1. 
The objective of the GPC control is the output y(t) to 

follow some reference signal y*(t) taking into account the 
control effort. This can be expressed in the following cost 
function: locally-linearized model[1] and[2]:  
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Where: 

hp is the prediction horizon. 
hi is the initial horizon. 
hc is the control horizon. 
y*(t) is the output reference.  
R is the output weighting factor. 
Q is the control weighting factor. 
The control objective is to compute at each time t, control 

inputs that minimize the quadratic criterion 
),,,( thhhJ cpi  for this there are two cases: 

• Case 1 1, == ipc hhh   

Let us first build j-step ahead predictors with following 
Diophantine equation: 
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The polynomials )( 1−qE j and )( 1−qF j are uniquely 

defined by: )( 1−qA , )( 1−∆ q  and j. 
Using equation (1) and (5) we obtain: 
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The optimal predictor, given measured output data up to 
time t and given u(t+i) for i>1, is clearly: 
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Where, )()()( 111 −−− = qBqEqG jj  
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then the equation above can be written in the key vector 
form:  
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Where the vectors are all 1×ph : 
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Note that [ ] ∆−= −−−−− )(/)(1)()( 1111 qAqFqqBqG jjj  

so that one way to computing jG  is simply to consider the 
Z-transform plant’s step-response and to take the first j terms 
and therefore j

j
i gg =  for j=0, 1, 2 …< i independent of 

the particular G polynomial[1]. 
The matrix G is then lower-triangular of dimension  

pp hh × : 
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Note that if the plant dead time d > 1 the first d-1 rows of 
the G will be null, but if instead hi is assumed to be equal to d 
the leading element is non-zero[1]. 

From the definitions above of the vectors and with:  
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The expectation of the cost-function of (4) can be written 
as follow: 
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The solution, tU∆  minimizing the criterion can be 
explicitly found, using: 
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 it follows that: 
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Note that the first element of *

tU∆ is )(tu∆ so that the 
current control u(t) is given by: 
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• Case 2 1, =< ipc hhh   
It is possible to reduce computational burden by imposing 

a constant control input vector after a fixed horizon hc 
)h  jfor    0)1( c>=−+∆ jtu   

In this case the vector tU∆  and the matrix G become: 
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3. Adaptive Control Algorithm 
The adaptive controller which is proposed here is indirect 

controller. To estimate the unknown system parameters 
Tba ) b,  ,  , a,  , ( nb0na1 =θ the Recursive Least 

Squares (RLS) algorithm parameter estimates ∧

tθ are using 

for tuning of the Generalized Predictive Controller. Thus, the 
obtained Adaptive Generalized Predictive Controller 
generates the current control signal. 

The following (RLS) algorithm has been using: 
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Where: 
)(tε is the estimation error 

)(tΦ is the vector of data input-output 
F(t) is the adaptation gain 

)(1 tλ  and )(2 tλ represents forgotten factors.  

4. Simulation and Discussion 
In order to illustrate the behavior of the above presented 

Adaptive Generalized Predictive Control, the simulation 
results of the heat exchanger pilot plant model obtained by 
using on-line identification technique[11], are given. The 
model is chosen as follows: 

)3(0.0609-)2( 0.0451)1( 0.0254-
)3(0.2051-)2( 0.8174)1(5326.1)(

−−+−
=−−+−−

tututu
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Several experiments have been carried out to determine a 
suitable control model order an appropriate sample time for 
control. A tried order model (na=3, nb=2, delay=0) sampled 
at 1 second gave a reasonable description of a heat exchanger 
using on-line pilot plant dynamics. 

The simulation has been done with respect to the 
following considerations: 
• The sampling time T=1 
• The plant model structure na=3, nb=2 and delay=0 
• The reference is chosen as a square wave  
• The polynomial )( 1−qC chosen as 1)( 1 =−qC  
• The initial covariance matrix  10^:F(0) 6=  

4.1. Case 1: Simulation in Noise Absence Conditions  

4.2. Case 2: Simulation In Noise Presence Conditions  

In the figures above, it can be observed the comparative 
results between Generalized Predictive Control and Adaptive 
Generalized Predictive Control, the same variation of 
parameters was applied. 
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The control performances of the Generalized Predictive 
Control and Adaptive Generalized Predictive Control with 
reference to set point changes are shown in Figures (2, 3, 4, 
and 5): the Adaptive Generalized Predictive Control have the 
same response as the Generalized Predictive Control with 
less oscillation.  

The robustness of the control schemes to noises affecting 
the output has also been tested. Figures (7, 8, 9 and 10) refer 

to the case of white output noise ( ): in addition to 
previous considerations which are still fulfilled, it can be 
observed that the Adaptive Generalized Predictive Control 
shows better characteristics concerning the variances of the 
plant output and the control input.  

The behavior of the model’s parameters is shown in 
figures 6 and 11. 

            

Figure 2.  Plant output in noise absence conditions: GPC Control    Figure 3.  Control input in noise absence conditions: GPC Control 

 

Figure 4.  Plant output in noise absence conditions:   Figure 5.  Input control in noise absence conditions: 
Adaptive predictive control                          Adaptive predictive control 

01.02 =σ
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Figure 6.  Tuned parameters in noise absence conditions 
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Figure 7.  Plant output in noise case: GPC Control 

 

Figure 8.  Control input in noise case: GPC Control 

 

Figure 9.  Plant output in noise case: Adaptive predictive control 

 
Figure 10.  Input control in noise case: Adaptive predictive control 
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Figure 11.  Tuned parameters in noise case 
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5. Conclusions  
In this paper, an Adaptive Generalized Predictive Control 

strategy is applied to a heat exchanger pilot plant. It has 
proved that, even with important variations of the plant 
output, the developed adaptive structure maintains a high 
level of performances, in terms of tracking, disturbance 
robustness and overshoot, cancellation of oscillation. 
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