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Abstract  The performance of Kalman filter depends directly on the noise covariances, which are usually not known and 
need to be estimated. Several estimation algorithms have been published in past decades, but the measure of estimation 
quality is missing. The Cramér-Rao bounds represent limitation of quality of parameter estimation that can be obtained from 
given data. In this article, The Cramér-Rao bounds for noise covariance estimation of linear time-invariant stochastic system 
will be derived. Two different linear system models will be considered. Further, the performance of earlier published methods 
will be discussed according to the Cramér-Rao bounds. The analogy between the Cramér-Rao bounds and the Riccati equa-
tion will be pointed out. 

Keywords  Cramér-Rao bounds, Kalman Filter, Noise covariance estimation 

1. Introduction1 
The Cramér-Rao (CR) bounds represent a limitation of the 

estimation quality of unknown parameters from the given 
data. If the variance of the estimates reaches CR bounds, it 
can be stated that the estimation algorithm works optimally. 
In this paper, we will derive CR bounds for the estimation of 
noise covariances of a linear stochastic system. The noise 
covariances are tuning parameters of Kalman filter, and the 
filter performance depends on them. However, they are not 
known in general and hence tuning of a Kalman filter re-
mains a challenging task. The very first methods for noise 
covariance estimation were published in 70s’ by Mehra,[1,2]. 
Recently, new methods were proposed by Odelson et al. [3] 
and further modified by Rajamani et al.[4,5] and Akesson et 
al.[6]. A maximum likelihood approach was described in[7]. 
In Section 5, these two approaches will be compared to the 
CR bounds and their performance will be discussed.  In the 
last part of the paper, relationship between the Riccati equa-
tion and the CR bounds will be pointed out. 

Deriving of the noise covariance CR bounds is based on[8] 
and[9]. Additional information about CR bounds and 
Bayesian estimation can be found in[10]. 

2. Cramér-Rao Bounds 
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The task is to estimate a vector of parameters 

1 2, ,...,
T

N       from a set of measured data 1 2, ,...,
T

N T T T
N

    
y y y y . 

The upper index N emphasizes that vector yN contains N data 
samples. The conditioned probability density function (pdf) 

( )Np y    is assumed to be known. Further, the nabla op-
erator is defined as 

1 2

, ,...,
N  

           
 .             (1) 

The Fisher information matrix (FIM) ( )J   for parame-
ters   is defined as 

 ( ) ln ,
T

Np
             

yJ y         (2) 

where operator  | y   is the conditioned expected value 
defined as 

 ( ) | ( ) ( | ) .f f p d



 y y y       (3) 

Alternatively, we can define a posterior FIM (and poste-
rior CR bounds) using joint probability ( )Np y    instead of 
the conditioned one, where  ( ) ( )N Np p py y     . Prob-
ability function  p   represents prior information about the 
parameter vector  .  

Assume having an unbiased estimate of parameter vector 
̂  obtained by an arbitrary method. When the true value of 
parameter vector is compared to the unbiased estimated set, 
the following inequality holds, [8]. 

       (4) 

where  1J   represents the Cramér-Rao bound. Ine-
quality A B  means that A B  is a positive semidefi-
nite matrix. Based on (4), the following statement  can be 

http://www.ifac-papersonline.net/Detailed/50045.html


  Journal of Mechanical Engineering and Automation 2012, 2(2): 6-11 7 
  

 

concluded. Assuming that CR bound is reachable, any esti-
mation algorithm working optimally (in the sense of the 
smallest covariance of obtained estimates), must give esti-
mates whose variance is equal to the Cramér-Rao bound. If 
the CR bound is reachable, then the optimal result can be 
achieved by a maximum likelihood approach. 

Consider a scalar linear stochastic system 

1 ,

,
k k k

k k k

x ax v

y cx e
  

 
               (5) 

where 
k

x  and 
k

y  represent the state and the measured 

output, respectively. Stochastic inputs 
k

v  and 
k

e  are de-
scribed by normal distributions  

   0, 0,( ) , ( ) .v t Q e t R       (6) 

Using the notation of[9], the logarithms of the conditioned 
probability of the state, measurements and unknown pa-
rameters can be expressed as 

   

   
0

1 0
0

ln , | ln | ,

ln | , ln .

k
k k

i i
i
k

i i
i

p p

p p








 





x y y x

x x x

 


 (7) 

The following matrices are used for FIM calculation 

 1 11
ln | | ,

T
k
k x k k kk k k

p 

            
x xK x x x

  
 (8) 

  1 1

, 1
1 1ln | | ,

k k k

Tk k
k x k k kp

 


 

     x xK x x x  (9) 

  1 1 1

1
1 1ln | | ,

k k k

Tk
k x k k kp

  


 

     x xK x x x (10) 

  1

,
1 1ln | , | ,

k k

Tk
k x k k kp

 
    xK x x x   ,(11) 

  1 1

, 1
1 1ln | , | ,

k k

Tk
k x k k kp

 


 

    xK x x x   ,(12) 

  11 1ln | , | ,
k

T

k x k k kp
 

    K x x x    , (13) 

  ln | | ,
k k k

Tk
k y k k kp     x xL y x x

   
(14) 

  , ln | , | ,
k k

T
k

k y k k k
p      xL y x x   ,   (15) 

  ln | , | ,
k

T

k y k k k
p      L y x x    ,   (16) 

Further, recursive formulas for FIM of the state and un-
known parameters are defined as 

, , , 1 ,
1| | 1 1

, 1, 1, 1 ,
1| 1 1

, 1 1, 1 , 1
1| 1 1 1

,

,

,

x x
k k k k k k kk kk kk
x k k k x
k k k k kk kk
x x k k k k k
k k k k kk k

       

  


  

  
  

   
   

     

   

  

J J L K

J K K

J K K K

  (17) 

where  
,
| 1

, , ,
| 1

,

,

x x k
kk k k k

x x k
kk k k k
  





  

  

J K

J K
             (18) 

, ,

1, , 1
1 1

,

,

T
x x
kk kk

T
k k k k
k k

 

 
 

     
    

K K
              (19) 

and 
, , ,
| | 1
, ,
| | 1

,

.

x x k
k k k k k
x x x x k
k k k k k

  




 

 

J J L

J J L
            (20) 

Initial conditions of the recursive algorithm are set as  

 

 

00 0 0

θ θ θ

, 0,
0| 1 0

, 0
0| 1 0

,
0| 1 0

0,

ln ,

ln ,

x

T
x x

T

p

p

 

 







 
             
             

x x x

J K

J K x

J A



 θ

  (21) 

where 0
0

K  and 
0

A  represent prior information. If no 
prior probability function is known, then 0

0 00, 0. A K  
The final form of FIM of the state and parameters is 

, ,
| |

| , ,
| |

.
x x x
k k k k

k k x
k k k k



  

 
   
 
 

J J
J

J J
            (22) 

3. Cramér-Rao Bounds for Noise   
Covariances Estimation 

Consider a scalar stochastic system given by (5), where 
1.a   The noise sources are not correlated and are defined 

by (6). The probabilities used in (7) can be defined as 

   
   

1 | , , ,

| , , .
k k k

k k k

p x x Q ax Q

p y x R cx R
 






        (23) 

Now, matrices (11)-(16) can be calculated using the fol-
lowing general integral formulas, assuming 0   

   

2

2( )

2( )

22

3

,

,

( ) 0,

.
4

x

x

x

x

e dx

xe dx

x e dx

x e dx



 

 

 
















 



  


  


  







 

 









    (24) 

Further, logarithm of the Gaussian function is given by 

 2
1 1 1

ln ( , ) ln2 ln .
2 2 2

P P x
P

        (25) 

CR bounds of Q, R estimates are to be found, considering 
a scalar system with two unknown parameters. The  nabla 
operator, in this case, is of the form 

, ,
Q R

        
              (26) 

where , .
T

Q R      At the first step, the arguments of the 
expectation operators in (11)-(16) are calculated as follows 
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 
 12

1ln | ,
0

k

k kT

k k

a
x ax

Qp




           
  

x x x  ,  (27) 

 
 

1

12

1

1

ln | ,
0

k

T k k

k k

x ax
Qp







 
 

        
  

x x x  , (28) 

   212 3
1

1 1
0

ln | , 2
0 0

T k k
k k

x ax
p Q Q




 
             
  

x x   ,(29) 

   22 3

0 0
ln | , 1 1

0
2

T

k
k k

p
y cx

R R

 
              

y x   .(30) 

Next, matrices (11)-(16) are obtained using integral for-
mulas (24) as 

,
1

0

0
k

k



 
   
  

K ,                 (31) 

, 1
1

0

0
i

i
 


 
   
  

K ,                 (32) 

2

1

1
0

2
0 0

k
Q



 
 
   
  

K ,            (33) 

,
0

0
k

k


 
   
  

L ,                 (34) 

2

0 0

1
0

2
k

R



 
 
 
 
  

L ,             (35) 

   0 ln
T

A p      .       (36) 

It can be seen from (31)-(35) that several of the matrices 
are zero which significantly simplifies formula (17). In par-
ticular matrix ,

|
x

k k
J  in (22) is zero and this fact allows us to 

calculate FIM for unknown covariances independently on 
the states. The resulting FIM can be written as 

, ,
1| | 1 1,k k k k k k

     
    J J L K       (37) 

where ,
0| 1
 
J  represents the prior information about un-

known parameters Q, R. If no prior information is available, 
it can be set to zero. From the above equations and the form 
of matrices in (31)-(35), it can be seen that FIM is calculated 
for each covariance independently. Formula for FIM is of the 
form 

, , 2
1| | 1

2

10 0 0
,1 2

0 0 02
k k k k Q

R

   
 

  
  
       
       

J J     (38) 

where it can be assumed that ,
0| 1 0. 
 J  A particular 

closed form solution to recursive formula (38) is given by 

2,
| 1

2

0
2 .
0

2

k k

k

Q
k

R

 


 
 
 
   
 
  

J              (39) 

4. Cramér-Rao Bounds for a System in 
Innovation Form 

In Section 2, a stochastic system was defined using (5). 
The system has two independent sources of uncertainty, the 
process noise and the measurement noise. It is assumed the 
process and the measurement noises to be normal with zero 
mean and covariances Q, R, respectively. In non-scalar case, 
variables Q, R are matrices and contain redundant informa-
tion. Noise covariances represent properties of the noise 
sources. Considering a higher order system allows us to 
model the same number of noise sources as the sum of 
numbers of states and outputs. Matrix Q would have the 
same dimension as the number of states and matrix R would 
have a dimension equal to the number of outputs. However, 
from the observed output data, only the number of noise 
sources equal to the number of outputs can be recognized. 
Therefore, we can alternatively use the so-called innovation 
form of stochastic system that represents a minimal form,[11] 
or [12]. The disadvantage of such formulation comes from 
the fact that we loose the physical background of the noise 
sources and their structure. However, in many cases, we only 
have output data at hand and no other additional information 
about the stochastic inputs. In such case, the innovation form 
of the stochastic system can be used 

1 ,

,
k k k

k k k

x ax K

y cx




  
 

              (40) 

where K is a steady state Kalman gain and ( )k  is the 
stationary innovation process. Then 

 ( ) 0, .k R                (41) 

The Cramér-Rao bounds for K, Rε estimation are derived 
using the same formulas as for the system (5). Analogously 
to formulas (27)-(30) we define 

 
 

 

13

1

12 2

ln | ,
k

k k
T

k k

k k

a
x ax

K R
p a

x ax
K R











   
             

x x x  ,(42) 

 
 

 
1

12

1

12 2

1

ln | ,
1k

k k
T

k k

k k

x ax
K R

p
x ax

K R













 
 

         
 

  

x x x  ,(43) 

 

   

   

1

2 2

1 12 4 2 3

2 2

1 12 3 2 3 2

ln | ,

1 1 1

2
1 1 1

2

T

k k

k k k k

k k k k

p

x ax x ax
K R K R K

x ax x ax
R K R R K

 

  



 

 

     
 
     
   
     
  

x x  

(44) 
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   2
2 3

0 0

1 1ln | ,
0

2

T

k
k k

p
y cx

R R 

 
 
           
  

y x   (45) 

The expected values are calculated using integral formulas 
(24). Matrices (11)-(16) are of the form 

,
1

0

0
k

k



 
   
  

K ,                   (46) 

, 1
1

0

0
k

k
 


 
   
  

K ,                   (47) 

2

1

2

2 1

1 1
2

k

K KR

KR R



 



 
 
 
 
 
 
  

K ,           (48) 

,
0

0
k

k


 
   
  

L ,                   (49) 

2

0 0

1
0

2
k

R





 
 
   
 
 

L .               (50) 

The formula for FIM calculation is of the form (37). Sub-
stituting (48) and (50) to (37) leads to the resulting formula  

2
,

2

2

.k

k k

KRK
k k

KR R

  

 

 
 
 
   
 
 
  

J            (51) 

5. Comparison of the Methods for Noise 
Covariance Estimation 

In the previous sections, we derived the CR bounds for 
noise covariances estimation. In this chapter, a comparison 
of ALS (Autoregressive least squares) method and maxi-
mum likelihood method will be presented. The ALS method, 
[3-5], uses the assumption that estimated autocorrelation 
function calculated from the finite set of data converges to 
the true autocorrelation function. In[7], it is shown that the 
assumption of fast convergence is not correct and this fact 
can significantly limit the quality of the estimates. In the 
same paper, a maximum likelihood approach is demon-
strated using a simple maximum seeking method. We can 
compare performance of both approaches according to the 
CR bounds. The ALS algorithm prior setting contains the 
optimal Kalman filter gain and the maximum lag for auto-
correlation calculation 15dN  . The ML method searches 
the maximum in the interval 0.1 to 10. The grid is logarith-
mic and contains 80 80  points. 

Consider a system of the form (5) where 0.5a   , 
1,c  10Q   and 2R  . The estimation algorithm uses 

k time samples and is repeated 300 times. Then, the resulting 

variance of the estimates is calculated. The dependence of 
the variance of the estimated Q-parameters on the number of 
used data samples is shown in Figure 1. 

 
Figure 1.  Cramér-Rao bound for Q estimation and variance of estimated Q 
using ALS and Maximum likelihood method 

In Figure 2, an analogous result for R estimation is shown. 
We can state that ML method converges faster to the CR 
bound than ALS. ML algorithm gives better estimates in case 
of covariance Q than ALS even with very small sets of data 
(around 50 samples).  

 
Figure 2.  Cramér-Rao bound for R estimation and variance of estimated R 
using ALS and Maximum likelihood method 

6. Relationship between Cramér-Rao 
Bounds and Riccati Equation 

In this section, we will point out the relationship between 
Riccati equation (RE) and CR bounds. It is well known, that 
under some conditions, Kalman filter is optimal. It was 
stated in the previous section, that CR bounds represent a 
limit of estimation quality. Therefore, it can be expected that 
RE should converge to CR bounds for state estimation of a 
linear system. Using formulas (8)-(10) and (14), the CR 
bounds for state estimation can be easily obtained, 
Tichavský et al. (1998). We have 
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1 , 1 1
1 1
1 1 1
1

, ,

, .

k T k k T
k k
k k T
k k

  
 
  


  

 

K A Q A K A Q

K Q L C R C
     (52) 

Now, the recursive formula for FIM calculation, Šimandl 
et al. (2001), is of the form 

 1 1, , 1
1 1 1 1 1 .k k k k k k k

k k k k k k k
  

       J K K J K L K    (53) 

Using (52) we obtain resulting formula 

 
1

1 1 1 1 1
1 .T T T

k k


    

    J Q Q A J A Q A C R C A Q (54) 

Riccati equation is of the form 

 
1

1 .T T T T
k k k k k



    P AP A AP C CP C R CP A Q (55) 

It can be stated, that kP  and 1
k
J  converge to the same 

matrix. Moreover, if initial values 1
0 0

P J , then trajecto-

ries of kP  and 1
k
J  are the same. This fact proves the op-

timality of Kalman filter. Equivalency of equations (54) and 
(55) is proved in Appendix 1. 

7. Conclusions 
In this paper, Cramér-Rao bounds for the noise covariance 

estimation were derived for two different stochastic models. 
From (31)-(35), it can be seen that matrices ,

1
k

k

K , , 1

1
k

k
 
K  

and ,k
k
L  are zero, that means that the information between 

state and noise covariances is not correlated. It can be con-
cluded that the covariances and the states can be estimated 
independently of each other. Another observation can be 
done on matrices (33) and (35). It can be seen that there is no 
correlation between information about the covariances. That 
means that CR bounds can be calculated for each covariance 
separately. Considering limit cases, Q converging to zero 
and R being arbitrary large, CR bound for Q estimation will 
converge to zero either. It means that there exists a method 
that can estimate Q up to an arbitrary level of accuracy. 

CR bounds can be used as a quality measure for all newly 
proposed estimating algorithms. We have compared a 
maximum likelihood approach with ALS method of Odelson 
et al. (2005) according to the CR bounds. Based on these 
examples (Figure 1 and Figure 2), it can be observed that the 
CR bounds for the noise covariances converge to zero rela-
tively fast even for small sets of data (200 to 400 samples).  

In Section 6, we pointed out a relationship between Fisher 
information matrix recursive formula and Riccati equation. 
Equivalence of the equations is proved in Appendix 1. We 
concluded that this is another proof of optimality of Kalman 
filter. 

APPENDIX 1 
Consider two recursive equations (56) and (57) that are 

Fisher information matrix recursive equation and discrete 
Riccati equation. Both equations are equivalent and 

1
k k

P J  for sufficient large k, not necessarily k   . 

 
1

1 1 1 1 1
1

T T T
k k


    

    J Q Q A J A Q A C R C A Q (56) 

 
1

1 .T T T T
k k k k k



    P AP A AP C CP C R CP A Q (57) 

The right side of equation (56) is modified using substi-
tution 1

k k
 J P  

 
 

  
 

  
 

1
1 1 1 1 1

1
1 1 1 1 1 1

1 1 1 1 1

1
1 1 1 1

1 1 1 1

1
1 1 1 1

1

T T T
k

T T T T
k

T T T
k

T T T
k

T T
k

T T T
k


    


      

     


   

    


   

   
         

   

   

 

  

Q Q A J A Q A C R C A Q

Q A A QA P A Q A C R C A Q

Q A A QA P A Q A C R C

P A Q A C R C A Q

Q A A QA P C R C

P A Q A C R C A Q

 

Now, both sides of the equation are inverted, so the left 
side is 1kP  and the right side is of the form 

  
 

 

  
 

  
 

1 1 1 1

11 1 1 1

1 1 1

11 1 1 1 1

1 1 1

11 1

11 1

T T
k

T T T
k

T T T
k

T T
k

T T T
k

T T
k

T T
k

    

   

   

   

   

 

 



   

  

  

  

  

  

Q A A QA P C R C

P A Q A C R C A Q

QA P A Q A C R C

P C R C A Q A A Q

QA P A Q A C R C

P C R C A

A P C R C A Q
  (58) 

Further, an inversion lemma  

   1 11 1 1 1 1        A BD C A A B D CA B CA (59) 

will be applied on the expression   11 1T
k

 P C R C . 
The final formula is of the form 

 
1

1 ,T T T T
k k k k k



    P AP A AP C CP C R CP A Q  

which is exactly Riccati equation. 
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