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Abstract  In last decades, smart materials have developed extensively, and have become an important topic for re-
searchers in different areas. SMA is a good candidate for active control of the smart composite structures. In this study, 
numerical-based analysis for evaluating the natural frequencies and mode shapes of the plate with embedded shape memory 
alloy wires are presented. Plates are modelled in according to classical plate theory (CPT) as well as first-order shear de-
formation plate theory (FSDT). Also, SMA wires are modelled as a beam. The effect of axial load generated by SMA wires 
due the change of temperature on the natural frequencies is accurately studied. 
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1. Introduction 
So many structures like airplane’s wings could be mod-

elled as a two-dimensional plate. With adding surface- 
bonded or embedded induced strain actuators to plate, it is 
possible to achieve active control in order to increase stabil-
ity, reduce noise and vibrations. Strain actuators are gener-
ally made of smart materials. SMA is a good candidate for 
active control of the smart composite structures. In a low 
temperature, it is possible to make relatively large deforma-
tion such as bending, twisting, compressing or stretching. 
Also, it is possible to return to its original shape by heating. 
SMA actuators are generally embedded in structures with 
pre-strain. When an electric current pass throughout SMA 
wires, electric resistant of wires generate heat. Therefore, 
because of returning actuators to their original shape, a large 
internal force is generated, and this force is transmitted to 
structure. This generated force and also change in module of 
elasticity and density of SMA wires modify equal stiffness of 
structure, as well as increase failure limit of the system. 
Zhang et al. [1] have investigated the vibration characteristic 
of the laminated composite plates with unidirectional and 
woven SMAs by both impact vibration tests and theoretical 
analysis. Zak et al.[2] have studied the dynamic performance 
of a multi-layered composite plate with embedded shape 
memory alloy wires in terms of the changes in its relative 
fundamental natural frequency. Park et al.[3] have investi-
gated the com posite plate embedded fibers that is subjected 
to aerodynamic and thermal loading in the supersonic  
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region. Ni et al. [4] have developed the epoxy resin com-
posites filled with Ni-Ti alloy short fibers. 

There are different theories for vibration analysis of plates. 
Classical plate theory and first-order shear deformation plate 
theory are common theories that have been used to obtain 
frequencies and mode shapes. Classical plate theory is just 
suitable for thin plates, but first-order shear deformation 
plate theory could be used for moderate thick and thick 
plates. 

In the current study, natural frequencies and mode shapes 
of plate with different number of embedded SMA wires, for 
both below martensite finish temperature and above austen-
ite finish temperature are numerically evaluated. These cal-
culations are presented for different boundary conditions and 
different thicknesses of plate. The effect of axial load with 
critical buckling load and frequency jump are carefully 
studied. 

2. Theoretical Model 
In this paper, SMA wires are aligned along the x axis and 

they stand on a neutral axis (y is axis of symmetry). Figure 1 
shows the schematic figure of the plate and SMA wires. 

 
Figure 1.  Schematic illustration of the plate with embedded SMA wires 

Cross-sectional area of SMA wires is considered to be 
square. Since, the ratio of the SMA wire’s thickness to its 
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length is too small, it can be modelled as a beam. Classical 
plate theory is based on assumptions similar to those used in 
Euler-Bernoulli beam theory. Also, FSDT is similar to Ti-
moshenko beam theory. The equation of motion of the plate 
with SMA embedded wires can be obtained as follows. 

2.1. Classical Plate Theory 

According to CPT, displacement components of any 
points of a plate are given by[5]: 
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According to this theory, the kinetic energy of the plate 
( )pT  is given by[5]: 
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The strain energy of the system ( )pU  can be also ex-
pressed as[5]: 
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D is the flexural rigidity of the plate, and it can be deter-
mined as[5]: 
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2.2. Euler-Bernoulli beam theory 

In Euler-Bernoulli theory, displacement components of a 
point in the beam can be expressed as[6]: 
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According to this theory, Kinetic and strain energy of 
the beam can be expressed as[6]: 
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2.3. First-order Shear Deformation Plate Theory 

For FSDT, displacement components of any point of plate 
are[6]: 

( , , ) , ( , , ), ( , , )p x p y pu z zx y t v x y t w w x y tφ φ= − −= =       (8) 
Strain energy of the plate can be expressed as[6]: 
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Kinetic energy can be determined as[6]: 
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2.4. Timoshenko Beam Theory 

According to Timoshenko beam theory, displacement 
components of any points of a beam are given by[6]: 

( , , ), 0, ( , , )b x b bu z x y t v w w x y tφ= − = =       (11) 
According to Timoshenko theory, Kinetic and strain en-

ergy of the beam can be expressed as[6]: 
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where K is considered to be 5/6. G can be expressed as: 
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For better results, FSDT and Timoshenko theories can be 
modified as follow[6]: 
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2.5. Modeling the effect of SMA wires 

The recovery action of the pre-strained SMA wires gen-
erate axial stress that can be determined as[7]: 
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The transformation coefficient can be determined as[7]: 
( ) ( )L Eξ ε ξΩ = −             (17) 

ξ  can be evaluated by [8]: 
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where Mξ  is considered to be 1. ( )E ξ  can be determined 
by using the mixture law: 

( ) (1 )M AE E Eξ ξ ξ= + −          (19) 
The work done by each SMA wire can be expressed as: 
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2.6. Obtaining the Natural Frequency 

Total kinetic and strain energy (plate with embedded SMA 
wires) can be evaluated by: 

SMA
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     (21) 

The module of elasticity and density of SMA are needed 
for calculating 

SMAbT and 
SMAbU , where the mechanical 

properties of the plate should be considered for calculating of 
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the terms of the Eq. (21). 
Final equation can be obtained from Lagrange’s equation 

as follows: 
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Using the separation of variables technique, ( , , )w x y t , 
( , , )x x y tβ  and ( , , )y x y tβ  can be expressed as: 
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2.6.1. Classical plate and Euler-Bernoulli beam theory 

For classic plate theory: 
( )q W t=                    (24) 

Substituting Eq. (24) into Eq. (22), gives: 
[ ] ( ) [ ] ( ) 0M W t K W t+ =            (25) 

where [ ]M  and [ ]K  are mass and stiffness matrixes, 
respectively. 
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With considering Eq. (26), Eq. (25) can be rewritten as: 
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where [ ]M  and [ ]K  are dimensionless mass and stiff-
ness matrixes of the system. 

The solution of Eq. (27) is assumed to be harmonic. So 
that: 
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where ω  is dimensionless natural frequency and it can be 

obtained by solving the Eq. (29). 
1[ ] [ ]M Kω −=                 (29) 

where 1[ ]M −  is the inverse matrix of [ ]M . 

2.6.2. First-order Shear Deformation Plate and Timoshenko 
Beam Theory 

For FSDT: 
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Substituting Eq. (30) into Eq. (22), gives: 
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To make Eq. (31) dimensionless, following quantities 
could be used: 
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The dimensionless equation can be modified as: 
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The solution of Eq. (33) is assumed to be harmonic. So, 
dimensionless natural frequency can be obtained as the same 
manner as used in Eq. (29), but in this state, [ ]M  and [ ]K  
are introduced as follows: 
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3. Results and Discussion 
In the present study, square SMA wires, NITI have been 

considered. These wires have been pre-strained to 6.7% at a 
temperature below the martensite finish temperature fM . 
The SMA wires are located at the middle layer of the plate 
and aligned along the x direction. Table 1 lists the me-
chanical and geometrical properties of SMA wires and alu-
minum alloy plate. Two applied temperature are used to 
calculate natural frequencies. One of them is under marten-
site temperature, equal to 5.6 oC , and another one is above 
austenite temperature which is equal to 49 oC . 

Natural frequencies are also evaluated for different num-
ber of SMA wires, and different boundary conditions. For 
evaluating the natural frequencies of the plate, its first and 
second mode shapes at x  and y  directions are considered. 
Plate is assumed as two perpendicular beams. The mode 
shapes of these beams for different boundary conditions are 
mentioned in[6]. Natural frequencies are calculated for two 
thickness of plate, 1h  and 2h . 1t  and 2t  are SMA wire’s 
thickness, too. This processes are performed for clamped- 
clamped-pinned-pinned (C-C-S-S) and clamped- free- free- 
free (C-F-F-F) plates. 

Figure 2 shows the natural frequencies of C-C-S-S plate 
with thickness of 4mm and different number of SMA wires 
at 5.6 oT C= , in according to CPT and FSDT theories. In 
this temperature, wires are in martensitic phase. In this figure, 
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it is clear that as the number of the SMA wires increases, the 
first three natural frequencies of C-C-S-S plate with thick-
ness of 1.4mm decrease slightly. In this condition, module of 
elasticity and density of total system are increased. Also the 
effect of density is greater than module of elasticity. Ac-
cording to the Eq. (16), the axial load at low temperature is 
small. Therefore, natural frequencies decrease with increase 
in number of wires. Since, the ratio of the plate’s thickness to 
its length is too small, the results of two theories are almost 
the same. 

 
Figure 2.  Natural frequencies of CCSS plate with thickness of 4mm at 

5.6 oT C=  

Table 1.  mechanical and geometrical properties of SMA wires and alu-
minum alloy plate 

Geometrical properties Mechanical properties 
plate NITI plate NITI 

a  0.2 1t  0.002  E  968.3 10×  ME  930 10×  
b  0.2 2t  0.02  ρ  2689  AE  970 10×  
1h  0.004   υ  0.33  Θ  0.55  

2h  0.04   refT  25 ρ  6450  

      sA  34.5  

      fA  49  

 
Figure 3.  Natural frequencies of CCSS plate with thickness of 40mm at 

5.6 oT C=  

Figure 3 shows the natural frequencies of C-C-S-S plate 
with thickness of 40mm. As shown in Fig. 3, natural fre-
quencies of C-C-S-S plate with thickness of 40mm have the 
same trends as that of previous condition, but the slope 
decrement is greater than that of the plate with thickness of 
4mm. Also, due to ratio of the thickness to length, there are 
some differences between the results of two theories. 

Due to ignoring the shear deformation in CPT, the plate 
stiffness is assumed to be high which is expected. Hence 
their natural frequency prediction is greater than other theo-
ries. For other boundary conditions, changing in behaviour 
of the frequency is similar to that of C-C-S-S plate, but 
magnitudes of natural frequency differ from that of previous 
state. 

Figure 4 shows the natural frequencies of C-C-S-S plate 
with thickness of 4mm and different number of SMA wires 
at 49 oT C= . This temperature is above austenite tem-
perature, in which module of elasticity of SMA wire in-
creases. In this figure it can be seen, when the wires tem-
peratures are above austenite finish temperature, the natural 
frequencies of C-C-S-S plate decrease with great slope as the 
number of SMA wires increases. Since axial load is com-
pressive in this condition, and its magnitude is noticeable, 
buckling should be considered. When axial load becomes 
greater than critical buckling load, frequency jump will 
happen. For instance, as shown in Fig. 4, when the number of 
wires is seven, plate directly goes to its second mode shape, 
and if axial load becomes greater by increasing the number 
of wires, it goes to its upper mode. 

 
Figure 4.  Natural frequencies of CCSS plate with thickness of 4mm at 

49 oT C=  

Figure 5 shows the natural frequencies of C-F-F-F plate 
with thickness of 4mm and tensile axial load. So, an increase 
of number of SMA wires causes the increase of natural fre-
quency. In this condition, slope has greater changes than 
previous case. Figure 6 shows the natural frequencies of 
C-F-F-F plate with thickness of 40mm. As shown in Fig. 6, 
there are some differences between the results of two theo-
ries. 
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Figure 5.  Natural frequencies of CFFF plate with thickness of 4mm at 

49 oT C=  

 
Figure 6.  Natural frequencies of CFFF plate with thickness of 40mm at 

49 oT C=  

Figure 7, 8 and 9 show the first, second and third mode 
shape of the plate. 

 
Figure 7.  The first mode shape of the plate 

 
Figure 8.  The second mode shape of the plate 

 
Figure 9.  The third mode shape of the plate 

4. Conclusions 
In this study, a numerical study on natural frequency of 

plate with embedded SMA wire actuators are presented. This 
study is performed for plates with two different boundary 
conditions in according to classical plate theory and first- 
order shear deformation plate theory. In according to this 
study, with increasing the number of SMA wires, at a tem-
perature under martensite finish temperature, the natural 
frequencies of plate decrease slightly. For clamped-clamped- 
pinned-pinned plates, natural frequencies at a temperature 
above austenite finish temperature decrease with a great 
slope and in this condition, when axial load’s magnitude is 
greater than critical buckling load, frequency jump occurs. 
With this jump, plate directly switches to its higher mode 
without transient from its lower modes due to the effect of 
axial force. 

Nomenclature 
a  : length of the plate[m] 
A : cross-sectional area[m2] 
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fA  : austenite finish temperature [℃] 

sA  : austenite start temperature[℃] 
b  : width of the plate[m] 
E  : module of elasticity[Pa] 
G  : shear module of elasticity[Pa] 
h  : thickness of the plate[m] 
K  : shear correction factor 
N  : number of the SMA wires 
t : width and thickness of the SMA wires[m] 
T  : temperature of the SMA wires[℃] 

refT  : reference temperature of the  SMA wires[℃] 
ρ  : density [Kg/m3] 
υ  : poisson’s ratio 
Θ  : coefficient of thermal expansion of the SMA 

wires[MPa/oC] 
ξ  : martensite fraction  

Mξ  : highest martensite fraction during cooling 
Lε  : strain recoverable limit 
ω  : dimensionless natural frequency 
b  : beam 
p  : plate 
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