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Abstract  This study introduces a novel (JTM) method for solving complex differential games. Our analysis demonstrates 
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1. Introduction 

The resolution of intricate problems frequently involves 

the amalgamation of diverse mathematical frameworks   

and computational methods. In the domains of differential 

games and bioeconomic models, characterized by complex 

interactions and dynamic systems, the accuracy and 

computational efficiency of numerical methods are crucial. 

This imperative has catalyzed the investigation into novel 

computational strategies, including the application of the 

Jacobi Tau method (JTM) approach, which has shown 

promise in tackling differential equations that are nonlinear 

and subject to complex constraints. 

Differential game theory expands upon optimal control 

theory to examine the strategic interplay among several 

agents, each aiming to optimize their outcomes in the face of 

mutual competition. Recognized for its substantial influence 

in management sciences and economics, differential game 

theory’s applications permeate through various sectors, including 

resource management and the economics of ecosystems, as 

highlighted in foundational literature [1]. These applications 

range from marketing strategies to environmental economics 

and are further exemplified in studies on competitive dynamics 

in advertising [2] and the exploration of cooperative 

strategies within stochastic frameworks [3]. 

Central to the study of differential games are equilibrium 

concepts. The Nash equilibrium serves as a cornerstone    

in concurrent games, where individual strategy adjustments 
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cannot enhance outcomes [4]. Differential games, however, 

introduce a nuanced classification: closed-loop versus 

open-loop equilibria. Strategies in the former are contingent 

on both temporal and state variables, while in the latter,  

they depend solely on time and initial conditions. Identifying 

optimal strategies within such games requires solving a 

system of equations rooted in fundamental game theory 

principles, which delineate the optimal response strategies 

among players [5]. Various analytical and numerical 

methods are employed to find solutions to these equations [6]. 

Given the limited availability of analytical solutions, 

numerical methods are indispensable for grappling with the 

complexities inherent in differential games. This area has 

been explored in depth, with studies ranging from linear 

quadratic dynamics ([7]-[11]) to nonlinear games addressing 

environmental concerns [12]. Certain scenarios, such as 

state-dependent scenarios [13] and zero-sum game frameworks 

[14], have further refined our understanding of equilibrium 

in differential games. 

Among various numerical techniques, spectral methods 

have been lauded for their precision and efficiency, leveraging 

orthogonal polynomial series to resolve differential equations 

([15]-[19]). These methods, applied within the context of 

Pontryagin’s maximum principle, are particularly potent  

for differential games, with the choice of method being 

influenced by the nature of the differential game in question 

[20,21]. This research introduces a pioneering numerical 

scheme that synergizes Pontryagin’s maximum principle 

with the JTM approach to ascertain the (OLNE) in 

noncooperative, nonzero-sum differential games.  

In the confluence of mathematical theories, game theory, 

and computational analysis, the Jacobi Tau method approach 

emerges as a formidable tool, facilitating the transition from 
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theoretical constructs to tangible, practical outcomes. This 

study ventures through the complexities of bioeconomic 

modeling and differential games, showcasing the potential of 

JTM to decode and address real-world economic and 

strategic challenges. 
The study employs the Jacobi Tau Method (JTM) in 

synergy with Pontryagin’s Maximum Principle to solve the 

OLNE in noncooperative nonzero-sum differential games. 

This approach illustrates the potential of JTM in addressing 

complex bioeconomic modeling and differential games, 

highlighting its capacity to handle real-world economic and 

strategic challenges. 

In summary, optimizing bioeconomic models involves a 

delicate balance of ecological sustainability, economic viability, 

and social acceptability. It requires an interdisciplinary 

approach that combines insights from biology, economics, 

mathematics, and social sciences. Advanced computational 

methods, like the Jacobi Tau Method, play a crucial role   

in addressing these challenges by providing more accurate 

and efficient tools for modeling and solving complex 

bioeconomic problems. In the realm of differential games 

and bioeconomic modeling, the Jacobi-Tau Method (JTM) 

stands out for its remarkable accuracy and computational 

efficiency, particularly when addressing complex interactions 

and dynamic systems. This method, developed to handle 

nonlinear differential equations and intricate constraints, shows 

a clear advantage over other methods like the Legendre  

Tau method. While the Legendre Tau method has been 

effective in solving open-loop Nash equilibrium problems in 

noncooperative games, the JTM's capability to handle more 

complex dynamics and constraints suggests a significant 

advancement in applied mathematics and engineering. Its 

potential in revolutionizing numerical analysis and enhancing 

simulation methodologies marks it as a promising tool for 

further research and applications in differential games and 

bioeconomic modeling, outperforming existing methods in 

key aspects. 

2. Problem Statement 

In this segment, we address the dynamics of a four-player 

differential game characterized by noncooperative interactions 

and non-zero-sum payoffs as delineated below: 

2.1. Definition  

We characterize a noncooperative nonzero-sum 

four-player differential game in the following manner [22]: 

Max
𝑢𝑖 . 

 𝛤𝑖  𝑢𝑖 .  ,  𝑢𝑗   .  ,  𝑢𝑘 .  ,  𝑢𝑙 .   

= 𝑚𝑎𝑥
𝑢𝑖 . 

   
T

0

𝐿𝑖  t, x t , 𝑢𝑖 𝑡 ,  𝑢𝑗   𝑡 ,  𝑢𝑘 𝑡 ,  𝑢𝑙 𝑡  dt 

+  ψi x T    

subject to 

𝑥 𝑡 =  𝑓 t, x t , 𝑢1 𝑡 ,  𝑢2  𝑡 ,  𝑢3 𝑡 ,  𝑢4 𝑡  , 

 x 0 =  x0 ∈  𝑅  (1) 

where  𝑖, 𝑗, 𝑘, 𝑙 are indices that belong to the set {1, 2, 3, 4}, 

each one distinct from the others.  

Within the performance index 

𝛤𝑖(𝑢𝑖(. ),  𝑢𝑗  (. ),  𝑢𝑘(. ),  𝑢𝑙(. ))  presented in (1), the 

functions 𝑢𝑖(. ),  𝑢𝑗  (. ),  𝑢𝑘(. ),  and  𝑢𝑙(. )  denote the 

control strategies employed by players 𝑖, 𝑗, 𝑘 , and 𝑙 , 

respectively; the function 𝐿𝑖  represents the immediate 

reward for player 𝑖, and 𝜓𝑖  signifies the terminal reward. 

Each player’s objective is to optimize their respective 

performance indices through the strategic selection of their 

control actions 𝑢𝑖  where 𝑖 ranges from 1 to 4.  

The concept of an open-loop strategy refers to the predefined 

trajectory of a player’s actions over time [23]. This 

equilibrium notion is known for its temporal consistency, 

implying that no player has a reason to stray from their initial 

strategy as the game progresses. Consequently, we define an 

open-loop solution concept (equilibrium) as: 

2.2. Definition  

The collection of functions 𝜙𝑖 ∶  [0, 𝑇]  →  𝑅, for each 𝑖 
in 1, 2, 3, 4, constitutes an (OLNE) if, for any given 𝑖, there 

is an optimal control trajectory 𝑢𝑖  that resolves problem (1) 

and corresponds to the open-loop Nash strategy 𝑢𝑖  = 𝜙𝑖  [1]. 

The (OLNE) is defined by establishing Hamiltonian 

expressions to formulate the necessary first-order conditions 

for optimality in nonzero-sum differential games, indicated 

as (1). These expressions are introduced as follows [24]:  

Hi(t, x, u1, u2, u3, u4, λi) = 

 Li(t, x, ui, uj, uk, ul) + λi · f (t, x, u1, u2, u3, u4)  (2) 

for each 𝑖 within the set {1, 2, 3, 4}. Here, the variables 𝜆𝑖 , 
where 𝑖  spans from 1 to 4, are known as the adjoint or 

costate variables that are paired with the state variable 𝑥.  

For the sake of brevity in the Hamiltonian formulations, 

the time dependency in the variables 𝑥, 𝑢1, 𝑢2, 𝑢3, 𝑢4,   
𝑎𝑛𝑑 𝜆𝑖  has been omitted.  

Given that all functions in (1) possess continuous 

derivatives, the primary conditions for an optimal solution 

are provided by the Pontryagin’s Maximum Principle.  

The Pontryagin’s Maximum Principle outlines the necessary 

conditions for an (OLNE) in a nonzero-sum differential 

game as follows: 

 x  = f (t, x, u1, u2, u3, u4)   (3) 

 λi = − 
𝜕H𝑖

𝜕𝑥
 (t, x, u1, u2 , u3 , u4, λi) (4) 

 
𝜕H𝑖

𝜕𝑢𝑖
 (t, x, u1, u2 , u3, u4 , λi) = 0 (5) 

accompanied by the initial and terminal conditions:  

𝑥(0)  =  𝑥0 

𝜆𝑖  (𝑇 )  =  
(𝜕𝜓𝑖(𝑥(𝑇)))

𝜕𝑥
. 

for every 𝑖 in {1, 2, 3, 4}.  

From the stationary condition (5), the control 𝑢𝑖  is 

derived as 𝑢𝑖  = 𝜙𝑖(𝑡, 𝑥, 𝜆𝑖), where 𝑖  ranges from 1 to 4. 

Substituting this control into equations (3) and (4) leads to a 

set of differential equations solely in terms of 𝑡, 𝑥, and 𝜆𝑖   
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 𝑥˙ =  𝑥 =  𝑓  𝑡, 𝑥,  𝜙1,  𝜙2,  𝜙3, 𝜙4   (6) 

 λi˙ =  − 
𝜕H𝑖

𝜕𝑥
 (𝑡, 𝑥,  𝜙1,  𝜙2,  𝜙3, 𝜙4, λi) (7) 

with their respective boundary conditions:  

 x(0) = x0  (8) 

 λi (T) = 
𝜕𝜓𝑖 (𝑥(𝑇))

𝜕𝑥
.  (9) 

and with  𝜙𝑖  denoted as 𝜙𝑖(𝑡, 𝑥, 𝜆𝑖), for each 𝑖 within 1, 2, 3, 4.  

In general, this set of Four-Point Boundary Value 

Problems (FPBVPs) tends to be nonlinear with mixed 

boundary conditions, making the precise analytical solution 

for the (OLNE) a complex task. This complexity necessitates 

the use of a suitable numerical technique for resolution. 

3. Application of the Tau Technique in 
Multi-Player Differential Games 

This section details how the Tau technique can be utilized 

to solve the system of FPBVPs to ascertain the (OLNE) in a 

four-player nonzero-sum differential game.  

This method pivots on representing the function 𝑓(𝑥) in 

𝐿𝑘
𝑤  (−1, 1) as a truncated series in the form:  

𝑓(𝑥)  ≈  𝑓𝑁(𝑥)  =    𝑓𝑖   𝐽𝑖   𝑥 

𝑁

𝑖=0

 

where  𝐽𝑖  (𝑥),  𝑓𝑜𝑟 𝑖 =  0, … . , 𝑁 , denote the Jacobi 

polynomials, while  𝑓𝑖  are the corresponding spectral 

coefficients.  

It should be noted that the omission of the temporal 

variable  𝑡 in subsequent discussions is meant for simplification. 

[25] 

3.1. Definition  

The set of Jacobi polynomials  𝐽𝑖  (𝑥),  for 𝑛 ≥ 0 , is 

defined as a series of orthogonal polynomials over the 

interval [−1, 1] against the weigh. 

𝑤(𝑥)  =  (1 −  𝑥)𝛼  (1 +  𝑥) 𝛽  with 𝛼, 𝛽 >  −1 . The 

explicit form of these polynomials is given by the Rodrigues 

formula:  

𝐽𝑁
 𝛼,𝛽 

  𝑥 =  
 −1 𝑛

2𝑛  2!
  1 –  𝑥 𝛼   1 +  𝑥  𝛽  

𝑑𝑛

𝑑𝑥𝑛  
 

[ (1 −  𝑥)−𝛼  (1 +  𝑥)−𝛽(1 − 𝑥2)𝑛  ] 

These polynomials encompass the Legendre polynomials 

for 𝛼 =  𝛽 =  0, the Chebyshev polynomials of the first 

and second kind for 𝛼 =  𝛽 =  −0.5 and 𝛼 =  𝛽 =  0.5, 

respectively. 

3.2. Theorem 

Given 𝑓(𝑥)  within 𝐿𝑘
𝑤  (−1, 1)  (a Sobolev space), the 

closest approximation.  

𝑓𝑁(𝑥)  =    𝑓𝑖   𝐽𝑖   𝑥 
𝑁
𝑖=0  in the 𝐿2

𝑤  norm satisfies 

∥ 𝑓(𝑥)  − 𝑓𝑁(𝑥)  ∥𝐿2
𝑤  [−1,1] ≤  𝐶0𝑁

−𝑘  ∥ 𝑓(𝑥) ∥𝐻𝑘
𝑤  (−1,1) , 

where 𝐶0 is a constant that depends only on the chosen norm, 

not on 𝑓(𝑥) or 𝑁. 

Proof. Start by defining the Jacobi polynomial  𝐽𝑖   𝑥  as 

follows: 

 𝐽𝑖   𝑥 =  
 −1 𝑖

2𝑖  𝑖!
 
𝑑𝑖

𝑑𝑥𝑖  
 [ (1 −  𝑥)𝑘+𝑖  (1 +  𝑥) 𝑘  ] 

Next, we’ll use the properties of Jacobi polynomials to 

expand the error term 𝑓(𝑥)  − 𝑓𝑁(𝑥) as a series of Jacobi 

polynomials:  

𝑓(𝑥)  − 𝑓𝑁(𝑥)  =    𝑎𝑖   𝐽𝑖   𝑥 

∞

𝑖=𝑁+1

  

Where 𝑎𝑖  are the expansion coefficients given by: 

  𝑎𝑖 =  
  𝑓 𝑥 ,  𝐽𝑖   𝑥  𝐿𝑤2  

∥  𝐽𝑖   𝑥 ∥  
𝐿𝑤

2
2  

Here,   𝑓 𝑥 ,  𝐽𝑖   𝑥  𝐿𝑤2   w represents the inner product of 

𝑓(𝑥) and  𝐽𝑖   𝑥  in the 𝐿𝑤
2   norm, and ∥  𝐽𝑖   𝑥 ∥  𝐿𝑤2

2  is the 

norm of  𝐽𝑖   𝑥  in the 𝐿𝑤
2   norm.  

Now, we’ll use the Sobolev space property to estimate∥
𝑓 𝑥 ∥  𝐻𝑘𝑤  

  −1,1 
 . The Sobolev norm is defined as: 

∥ 𝑓 𝑥 ∥  𝐻𝑘𝑤  
  −1,1 

   

=   ∥ 𝑓(𝑥) ∥2

𝑁

𝑖=0

+   ∥   𝑎𝑖  ∥2

∞

𝑖=𝑁+1

 

1
2 

 

Using Cauchy-Schwarz inequality, we can bound ∥  𝑎𝑖 ∥
2  

as follows: 

 ∥  𝑎𝑖 ∥
2 ≤ ∥ 𝑓 𝑥 ∥  𝐿𝑤2

2  ∥  𝐽𝑖   𝑥 ∥  𝐿𝑤2
2   

Combining the expressions from the previous steps, we 

get:  

∥ 𝑓 𝑥 − 𝑓𝑁 𝑥 ∥  𝐿𝑤2
  ≤     ∥   𝑎𝑖 ∥

2∞
𝑖=𝑁+1  

1
2   

≤    ∥ 𝑓 𝑥 ∥  𝐿𝑤2
2  ∥  𝐽𝑖   𝑥 ∥  𝐿𝑤2

2∞
𝑖=𝑁+1  

1
2 

  

We can bound ∥  𝐽𝑖   𝑥 ∥  𝐿𝑤2
2  using properties of Jacobi 

polynomials and 𝑤(𝑥). Since  𝐽𝑖   𝑥  are orthogonal with 

respect to the weight function 𝑤(𝑥) in the 𝐿𝑤
2  norm, we 

have:  

∥  𝐽𝑖   𝑥 ∥  𝐿𝑤2
2 =   𝐽𝑖   𝑥 

2 𝑤(𝑥)𝑑𝑥 
1

−1
=

2

 2𝑖 + 1
  

Plugging this result into the previous expression, we get: 

∥ 𝑓 𝑥 − 𝑓𝑁(𝑥) ∥  𝐿𝑤2
  ≤     ∥ 𝑓 𝑥 ∥  𝐿𝑤2

2  
2

 2𝑖 + 1

∞
𝑖=𝑁+1  

1
2 

  

Now, we can estimate the sum in the above expression by 

an integral: 

∥ 𝑓 𝑥 − 𝑓𝑁 𝑥 ∥  𝐿𝑤2
   

≤    ∥ 𝑓 𝑥 ∥  𝐿𝑤2
2  

2

 2𝑖 + 1
 𝑑𝑖 

∞

𝑁+1
 

1
2 

  

Since 𝑘 >  0, we have 𝐻𝑘𝑤
  −1,1 ⊂  𝐿𝑤

2 (−1, 1), which 

means that ∥ 𝑓 𝑥 ∥  𝐿𝑤2
  is bounded by  ∥ 𝑓 𝑥 ∥  𝐻𝑘𝑤

  −1,1 
 .  

Finally, we can simplify and bound the expression: 
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∥ 𝑓 𝑥 − 𝑓𝑁 𝑥 ∥  𝐿𝑤2
   

≤    ∥ 𝑓 𝑥 ∥  𝐻𝑘𝑤
  −1,1 

 .
2

 2𝑁 + 1
 𝑑𝑖 

∞

𝑁+1
 

1
2 

  

This establishes the desired inequality: 

∥ 𝑓(𝑥)  − 𝑓𝑁(𝑥)  ∥𝐿𝑤2  ≤  𝐶0𝑁
−𝑘  ∥ 𝑓(𝑥) ∥𝐻𝑘𝑤

  

Where 𝐶0 =   
2

 2𝑁 + 1
, and the constant 𝐶0 depends only 

on the chosen norm, not on  𝑓(𝑥)  or 𝑁. This completes the 

proof of Theorem 3.2.  

As per Theorem 3.2, the convergence rate of the Jacobi 

polynomial approximation is 𝑁−𝑘  . The core principles and 

the convergence properties of the proposed method derive 

from the Jacobi Polynomial Approximation Theorem.  

3.3. Theorem 

(Jacobi Polynomial Approximation Theorem) For any 

function f in 𝐿w
2   −1,1 . 

and 𝑁 as a natural number, there exists a unique 

polynomial approximation 𝑓 𝑁
∗  𝑖𝑛  𝐽𝑁, the polynomial space 

of degree at most N with Jacobi polynomials, that minimizes 

the norm: 

 ∥ 𝑓 − 𝑓 𝑁
∗  ∥𝑤  =    𝑖𝑛𝑓 

𝑓𝑁∈𝐽𝑁

  ∥ 𝑓 − 𝑓𝑁 ∥𝑤  

where 𝑓 𝑁
∗  (𝑥) is defined in terms of the orthogonal Jacobi 

polynomials  𝐽𝑛
(𝛼,𝛽)

(x) as: 

𝑓 𝑁
∗   𝑥 =   𝑁

𝑛=0 𝐶𝑛  𝐽𝑛
(𝛼,𝛽)

(x) 

Here, the coefficients 𝐶𝑛  are determined by the inner 

product of 𝑓 and the Jacobi polynomials: 

𝐶𝑛 =
 f, 𝐽𝑛

(𝛼,𝛽)
  𝑤

∥ 𝐽𝑛
(𝛼,𝛽)

∥  𝑤
2

 

Proof. We aim to prove the existence and uniqueness    

of a polynomial 𝑓 𝑁
∗  (x) in 𝐽𝑁  that minimizes the norm 

 ∥ 𝑓 − 𝑓 𝑁
∗  ∥𝑤   using Jacobi polynomials. We express 

𝑓 𝑁
∗  (x) as a linear combination of the Jacobi polynomials 

𝐽𝑛
(𝛼,𝛽)

(x) up to degree 𝑁, i.e., 𝑓 𝑁
∗   𝑥 =   𝑁

𝑛=0 𝐶𝑛  𝐽𝑛
(𝛼,𝛽)

(x). 

To minimize  ∥ 𝑓 − 𝑓 𝑁
∗  ∥𝑤

2
 
 , where 

∥ 𝑓 – 𝑓 𝑁
∗  ∥𝑤

2  = ∥ 𝑓 ∥𝑤
2 − 2  

𝑁

𝑛=0

𝐶𝑛  f, 𝐽𝑛
 𝛼,𝛽 

  
𝑤

 

+  

𝑁

𝑛=0

𝐶𝑛
2

 
∥  𝐽𝑛

(𝛼,𝛽)
∥𝑤

2 ,  

we leverage the orthogonality property of Jacobi 

polynomials: if 𝑖 ≠  𝑗 , then   𝐽 (𝛼, 𝛽) 𝑖 , 𝐽(𝛼, 𝛽) 𝑗  𝑤 =  0 , 

and if 𝑖 =  𝑗 , then  𝐽𝑖
(𝛼,𝛽)

 , 𝐽𝑖
(𝛼,𝛽)

  𝑤 >  0 . By taking 

derivatives with respect to 𝐶𝑘  and setting them equal to zero, 

we find 𝐶𝑘  =
 f,𝐽𝑛

(𝛼,𝛽)
  𝑤

∥𝐽𝑛
(𝛼,𝛽 )

∥ 𝑤
2

 , yielding coefficients that minimize 

the norm and provide 𝑓 𝑁
∗ (𝑥) . To establish uniqueness, 

assuming two polynomials 𝑓 𝑁
1 (𝑥)  and  𝑓 𝑁

2 (𝑥) 

minimizing  ∥ 𝑓 − 𝑓 𝑁
  ∥𝑤  , we observe  ∥ 𝑓 − 𝑓 𝑁

1  ∥𝑤  =
 ∥ 𝑓 − 𝑓 𝑁

2  ∥𝑤  . After repeating the minimization process, 

we find that the coefficients for both polynomials are 

identical, confirming the uniqueness of the approximation.  

To adapt the Jacobi polynomials for the interval [0, 𝑇], the 

domain is transformed by:  

𝑥 =
2𝑡

𝑇
− 1 

We approximate the solution functions 𝑥  and 𝜆𝑖 , with 

𝑖 =  1, 2, 3, 4, for the FPBVPs by a sum of shifted Jacobi 

polynomials: 

  𝑥 ≈ 𝑥𝑁 =  𝑎𝑖
𝑁
𝑖=0 𝐽𝑖

∗ (10) 

 𝜆1 ≈ 𝜆1𝑁 =  𝑏𝑖
𝑁
𝑖=0 𝐽𝑖

∗ (11) 

 𝜆2 ≈ 𝜆2𝑁 =  𝑐𝑖
𝑁
𝑖=0 𝐽𝑖

∗  (12) 

 𝜆3 ≈ 𝜆3𝑁 =  𝑑𝑖
𝑁
𝑖=0 𝐽𝑖

∗  (13) 

 𝜆4 ≈ 𝜆4𝑁 =  𝑒𝑖
𝑁
𝑖=0 𝐽𝑖

∗  (14) 

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖  and 𝑒𝑖are coefficients to be determined, 

and 𝐽𝑖
∗ = 𝐽𝑖

  
2𝑡

𝑇
− 1 for i = 0,… , N denote the shifted Jacobi 

polynomials on the interval [0, T]. 

The approximate values for the first derivatives of 𝑥 and 

𝜆𝑖 , with 𝑖 ranging from 1 to 4, are represented as: 

 𝑥 ≈ 𝑥 𝑁 =
2

𝑇
 𝑎𝑖
𝑁
𝑖=0 𝐽𝑖

∗/
  (15) 

 𝜆 1 ≈ 𝜆 1𝑁 =
2

𝑇
 𝑏𝑖
𝑁
𝑖=0 𝐽𝑖

∗/
  (16) 

 𝜆 2 ≈ 𝜆 2𝑁 =
2

𝑇
 𝑐𝑖
𝑁
𝑖=0 𝐽𝑖

∗/
  (17) 

  𝜆 3 ≈ 𝜆 3𝑁 =
2

𝑇
 𝑑𝑖
𝑁
𝑖=0 𝐽𝑖

∗/
  (18) 

 𝜆 4 ≈ 𝜆 4𝑁 =
2

𝑇
 𝑒𝑖
𝑁
𝑖=0 𝐽𝑖

∗/
  (19) 

These approximations can be reformulated in a vectorized 

manner as:  

  𝑥  ≈ 𝑥𝑁= AT S  (20) 

  𝜆1 ≈ 𝜆1𝑁= BT J*  (21) 

 𝜆2 ≈ 𝜆2𝑁= CT J* (22) 

  𝜆3 ≈ 𝜆3𝑁= DT J* (23) 

 𝜆4 ≈ 𝜆4𝑁= ET J* (24) 

  𝑥   𝑥 = AT S (25) 

 𝜆 1  𝜆 1𝑁= BT S  (26) 

 𝜆 2  𝜆 2𝑁= CT S  (27) 

 𝜆 3  𝜆 3𝑁= DT S  (28) 

 𝜆 4  𝜆 4𝑁= ET S  (29) 

where A, 𝐵, 𝐶, 𝐷 and 𝐸 denote the coefficient vectors, J* is 

the vector of modified Jacobi polynomials, and S represents 

the scaled derivatives of these polynomials.  

In the Tau method, one integrates these equations, 

substituting Equations (20) through (29) into the original 

differential equations to construct the residuals: 

R1 = 𝑥 𝑁- f( 𝑡, 𝑥𝑁 , 𝑢1𝑁 
, 𝑢2𝑁 , 𝑢3𝑁 

, 𝑢4𝑁) 

R2 = 𝜆 1𝑁 +
𝜕𝐻1

𝜕𝑥𝑁
(𝑡, 𝑥𝑁 , 𝑢1𝑁 

, 𝑢2𝑁 , 𝑢3𝑁 
, 𝑢4𝑁 , 𝜆1𝑁) 
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R3 = 𝜆 2𝑁 +
𝜕𝐻2

𝜕𝑥𝑁
(𝑡, 𝑥𝑁 , 𝑢1𝑁 

, 𝑢2𝑁 , 𝑢3𝑁 
, 𝑢4𝑁 , 𝜆2𝑁) 

R4 = 𝜆 3𝑁 +
𝜕𝐻2

𝜕𝑥𝑁
(𝑡, 𝑥𝑁 , 𝑢1𝑁 

, 𝑢2𝑁 , 𝑢3𝑁 
, 𝑢4𝑁 , 𝜆3𝑁) 

R5 = 𝜆 4𝑁 +
𝜕𝐻2

𝜕𝑥𝑁
(𝑡, 𝑥𝑁 , 𝑢1𝑁 

, 𝑢2𝑁 , 𝑢3𝑁 
, 𝑢4𝑁 , 𝜆4𝑁) 

These residuals are minimized by multiplying them by 

 𝑇𝑖
∗ and integrating over the interval [0, 𝑇], setting the result 

to zero, which leads to an algebraic system: 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

0

𝑇
𝑅1𝐽𝑖

∗𝑑𝑡 = 0

 
0

𝑇
𝑅2𝐽𝑖

∗𝑑𝑡 = 0

 
0

𝑇
𝑅3𝐽𝑖

∗𝑑𝑡 = 0

 
0

𝑇
𝑅4𝐽𝑖

∗𝑑𝑡 = 0

 
0

𝑇
𝑅5𝐽𝑖

∗𝑑𝑡 = 0

𝑥𝑁(0) = 𝑥0

𝜆𝑗𝑁 (𝑇) =
𝜕𝜓𝑗  𝑥𝑁 𝑇  

𝜕𝑥𝑁
, 𝑗 = 1,2,3,4

  

The coefficients of the vectors 𝐴,𝐵, 𝐶, 𝐷 , and 𝐸  are 

determined by solving this system. 

4. Exemplary Demonstration 

This part evaluates the application of the Jacobi polynomial 

approach (JTM) on a bioeconomic model’s differential game 

to assess the method’s precision and computational 

effectiveness. In this ecological-economic context, four 

companies competitively exploit a shared regenerative 

natural asset (consider a fisheries scenario, for instance).  

The rationale for choosing this particular bioeconomic 

framework is its complex nonlinear structure of (FPBVPs). 

This complexity is more pronounced than in several other 

economic models, such as those involving strategic 

marketing decisions like in Sorger [26]. Such complexity 

provides a robust test for the JPA’s precision and 

computational efficiency. 

We define the temporal evolution of the shared renewable 

resource’s population within the time span [0, 𝑇] via the 

subsequent state dynamic and initial state expression [27]: 

x˙(t) = F (x(t)) − q1x(t)u1(t) − q2x(t)u2(t) 

 − q3x(t)u3(t) – q4x(t)u4(t), 

x(0) = x0, 

where the smooth function 𝐺(. ) ∶  𝑅 →  𝑅  signifies the 

resource’s intrinsic proliferation rate, taking the logistic 

growth form as  

𝐺(𝑥(𝑡))  =  𝑟𝑥(𝑡) (1 −
𝑥 𝑡 

𝐾
 ), 

with r embodying the intrinsic proliferation rate and k the 

environment’s carrying threshold. Here, 𝑥(𝑡)  >  0  is the 

population magnitude of the resource at any time 𝑡, while 

u1(t) ≥ 0, u2(t) ≥ 0, u3(t) ≥ 0 and u4(t) ≥ 0 represent the 

respective harvesting efforts of the enterprises at any given 

time 𝑡 , and 𝑞1 >  0, 𝑞2 >  0, 𝑞3 >  0 and 𝑞4 >  0  are 

the catch efficiency parameters.  

For any enterprise 𝑖  from the set {1, 2, 3, 4}, the 

cumulative benefit throughout the interval [0, 𝑇] is stated a 

𝛤𝑖 𝑢1 .  , 𝑢2 .  , 𝑢3 .  , 𝑢4 .    

=    𝜋𝑖𝑞𝑖𝑥 𝑡 𝑢𝑖 𝑡 −
1

 2
𝑢𝑖

2
 
 𝑡  

 

 

𝑑𝑡 

𝑇

0

 

where  𝜋𝑖  denotes the per-unit revenue from the resource 

for the 𝑖𝑡ℎ   firm. The term 
1

2
𝑢𝑖

2  is indicative of the cost 

incurred due to harvesting at the effort 𝑢𝑖  [27]. 

To deduce the Nash equilibria for the companies in this 

ecological-economic interaction, the Hamiltonian for each 

firm is formulated as: 

 𝐻𝑖 𝑡, 𝑥, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝜆𝑖  

=  𝜋𝑖𝑞𝑖𝑥𝑢𝑖 − 
1

2
𝑢𝑖

2 + 𝜆𝑖(𝐺 𝑥 − 𝑞𝑗𝑥𝑢𝑗 )
4

𝑗=1
 

Minimizing 𝐻𝑖 𝑡, 𝑥, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝜆𝑖  with respect to 

𝑢𝑖  gives the (OLNE) for each entity 𝑖 as: 
𝜕𝐻𝑖

𝜕𝑢𝑖
= 0 ⇒ 𝜋𝑖𝑞𝑖𝑥 − 𝑢𝑖 − 𝜆𝑖𝑞𝑖𝑥 = 0  

 ⇒ 𝑢𝑖 = 𝑞𝑖𝑥 𝜋𝑖 − 𝜆𝑖 .   (30) 

The adjoint dynamics for the 𝑖𝑡ℎ  agent is given by: 

𝜆˙𝑖  =
𝜕𝐻𝑖

𝜕𝑥
=  − 𝜋𝑖𝑞𝑖𝑢𝑖 + 𝜆𝑖  𝑞𝑗𝑢𝑗

4
𝑗=1  − 𝜆𝑖

𝜕𝐺

𝜕𝑥
  𝑥 , (31) 

where, upon substituting equilibrium strategies, one obtains 

a system of differential equations governing each  𝜆𝑖 .  

The FPBVPs for this differential game are characterized 

by a series of equations corresponding to state, control, and 

adjoint variables for every firm 𝑖.  

Assume that the state equation’s unique trajectory, 

respecting the initial condition, is signified by 𝑦, and the 

unique solutions of the adjoint dynamics conforming to the 

terminal conditions are 𝛾1, 𝛾2, 𝛾3, and 𝛾4, each pertaining to 

an individual competitor.  

According to the ensuing theorem, these conditions 

uniquely describe the (OLNE) for the quartet of players in 

the presented bioeconomic game.  

4.1. Theorem  

The exclusive (OLNE) for the described differential game 

is uniquely determined by  

 𝑢1  = 𝑞1𝑦 𝜋1 − 𝜆1  .  (32) 

  𝑢2  = 𝑞2𝑦 𝜋2 − 𝜆2  .  (33) 

 𝑢3  = 𝑞3𝑦 𝜋3 − 𝜆3  .  (34) 

 𝑢4  = 𝑞4𝑦 𝜋4 − 𝜆4  .  (35) 
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Proof. For preset control actions 𝑣𝑖  ≥  0 , where 𝑖 =
 1, 2, 3, 4 , we consider the following optimal control 

formulations: 

 For competitor 1: 

𝑚𝑎𝑥𝑢1
≥ 0 𝛤1(𝑢1 .  , 𝑣2 .  , 𝑣3 .  , 𝑣4 .  ) 

=  (𝜋1𝑞1𝑥𝑢1 −
1

2

𝛤

0

𝑢1
2) 𝑑𝑡 

under the constraint: 𝑥 = 𝐹 𝑥 − 𝑞1𝑥𝑢1 − 𝑞2𝑥𝑣2 −
𝑞3𝑥𝑣3 − 𝑞4𝑥𝑣4, 𝑥 0 = 𝑥0 

 For competitor 2:  

 

𝑚𝑎𝑥𝑢2
≥ 0 𝛤1(𝑣1 .  , 𝑢2 .  , 𝑣3 .  , 𝑣4 .  ) 

=  (𝜋2𝑞2𝑥𝑢2 −
1

2

𝛤

0

𝑢2
2) 𝑑𝑡 

with the boundary condition: 𝑥 = 𝐹 𝑥 − 𝑞1𝑥𝑣1 − 𝑞2𝑥𝑢2 −
𝑞3𝑥𝑣3 − 𝑞4𝑥𝑣4 , 𝑥 0 = 𝑥0 

The behavior and constraints for competitors 3 and 4 

follow suit.  

For each participant 𝑖, the integrand of the performance 

measure 𝐽𝑖  demonstrates concavity as a function of 𝑢𝑖 , 

indicated by:  
𝜕2𝛤𝑖

𝜕𝑢𝑖
2 = −1 <  0, 𝑖 =  1, 2, 3, 4.  

 

 

 

Figure 1.  Plots of approximate (OLNE) for exemplary demonstration when N = 14 
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The remaining part of the proof would similarly address 

the calculations for the other competitors [28].  

The system of FPBVPs constitutes a series of nonlinear 

differential equations with segmented boundary conditions 

which usually do not permit an analytical solution. The 

parameters for a standard scenario are provided as: 

 𝑥0 =  0.1, 𝑞1  =  𝑞2  =  𝑞3  =  𝑞4  =  1, 

 𝜋1  =  2,  𝜋2  =  1.5,  𝜋3  =  𝜋4  =  1, 

 𝑟 =  0.1, 𝑘 =  100, 𝑇 =  1 

This system of FPBVPs also incorporates the equations 

for  𝜆3 and 𝜆4.  

To resolve these FPBVPs, we consider approximations for 

𝑥, 𝜆1, 𝜆2, 𝜆3, and 𝜆4: 

 𝑥 ≈  𝑥𝑁  =  𝑎𝑖  𝐽𝑖
∗

𝑁

𝑖=0

=  𝐴𝑇  𝐽∗  

𝜆1  ≈  𝜆1𝑁  =  𝑏𝑖  𝐽𝑖
∗

𝑁

𝑖=0

=  𝐵𝑇  𝐽∗  

𝜆2  ≈  𝜆2𝑁  =  𝑐𝑖  𝐽𝑖
∗

𝑁

𝑖=0

=  𝐶𝑇  𝐽∗  

𝜆3  ≈  𝜆3𝑁  =  𝑑𝑖  𝐽𝑖
∗

𝑁

𝑖=0

=  𝐷𝑇  𝐽∗  

𝜆4  ≈  𝜆4𝑁  =  𝑒𝑖  𝐽𝑖
∗

𝑁

𝑖=0

=  𝐸𝑇  𝐽∗  

In this approximation,  𝐽∗  =  [𝐽0
∗ , . . . , 𝐽𝑁

∗  ]𝑇   represents 

the column vector of shifted Jacobi Polynomials.  

For 𝑅1, representing the differential equation of 𝑥 : 

𝑅1  =
𝑑𝑥𝑁

𝑑𝑡
− (0.1𝑥𝑁 − 3.501𝑥𝑁

2   

+𝑥𝑁
2λ1𝑁 + 𝑥𝑁

2λ2𝑁 + 𝑥𝑁
2λ3𝑁 + 𝑥𝑁

2λ4𝑁+) 

For 𝑅2, expressing the dynamics of λ 1:  

𝑅2  =
𝑑λ1𝑁

𝑑𝑡
+ 4𝑥𝑁 + 0.1λ1𝑁 − 5.502𝑥𝑁λ1𝑁 

 + 𝑥𝑁λ1𝑁
2   

+ 𝑥𝑁λ1𝑁λ2𝑁 + 𝑥𝑁λ1𝑁λ3𝑁 + 𝑥𝑁λ1𝑁λ4𝑁 

For 𝑅3, depicting the evolution of λ 2:  

𝑅3  =
𝑑λ2𝑁

𝑑𝑡
+ 2.25𝑥𝑁 + 0.1λ2𝑁 − 5.002𝑥𝑁λ2𝑁 

 + 𝑥𝑁λ2𝑁
2   

+ 𝑥𝑁λ2𝑁λ2𝑁 + 𝑥𝑁λ2𝑁λ3𝑁 + 𝑥𝑁λ2𝑁λ4𝑁 

For 𝑅3, which constitutes the differential equation for λ 3:  

𝑅4  =
𝑑λ3𝑁

𝑑𝑡
+ 𝑐𝑥𝑁 + 0.1λ3𝑁 − 𝑘𝑥𝑁λ3𝑁 

 + 𝑥𝑁λ3𝑁
2   

+ 𝑥𝑁λ1𝑁λ3𝑁 + 𝑥𝑁λ2𝑁λ3𝑁 + 𝑥𝑁λ3𝑁λ4𝑁 

wherein 𝑐  and 𝑘  are specific constants akin to those in 

preceding formulae. For 𝑅3, the differential equation for λ 4:  

𝑅5  =
𝑑λ4𝑁

𝑑𝑡
+ 𝑑𝑥𝑁 + 0.1λ4𝑁 −𝑚𝑥𝑁λ4𝑁 

 + 𝑥𝑁λ4𝑁
2   

+ 𝑥𝑁λ1𝑁λ4𝑁 + 𝑥𝑁λ2𝑁λ4𝑁 + 𝑥𝑁λ3𝑁λ4𝑁 

where 𝑑 and 𝑚 are constants, consistent with the framework of 

earlier equations. 

The numerical outcomes for the optimal payoff functions 

𝛤1, 𝛤2, 𝛤3, and 𝛤4 with varying 𝑁 values are presented in the 

following tables. The graphs of approximate solutions for 

(OLNE) for 𝑁 =  14 are given in Figure (1). 

Table 1.  Optimal payoff function 𝛤1, 𝛤2, 𝛤3 , and 𝛤4  for the four-player 

illustration with JTM 

N Γ1
JTM

 Γ2
JTM

 Γ3
JTM

 Γ4
JTM

 

8 0.0174203 0.0102587 0.0133674 0.0092498 

10 0.0168851 0.0100012 0.0131123 0.0090017 

12 0.0165058 0.0098053 0.0129051 0.0090017 

14 0.0163802 0.0097479 0.0128425 0.0087481 

5. Conclusions 

This research marks a significant stride in the field of 

economic game theory and computational economics by 

introducing an efficient algorithmic approach through the 

(JTM) method. By demonstrating the JTM’s capability to 

solve complex differential games more accurately than 

traditional methods, this paper contributes to the precision of 

economic forecasts and decision-making processes. The 

implications of these findings have the potential to refine 

economic models, optimize market strategies, and improve 

regulatory policies. Looking ahead, the application of JTM 

could catalyze advancements in financial engineering, market 

analysis, and resource management, shaping the future of 

economic theory and practice. 
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