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Abstract  We consider the question whether a pillage game can have infinitely many stable sets under certain regularity 
and dominance conditions. We establish a rigidity result in continuous pillage games. This property implies that in any 
continuous pillage game, an allocation's dominance structure is essentially determined by local regularity behaviours of the 
power function. Using this property, we derive a weak convergence theorem on the power set of the n-players near any point 
in the allocation space by passing any sequence of allocations through specially constructed filters subject to geometric, 
parity, and unidirectionality conditions. Combining these results, a sufficient condition for the theoretical existence of an 
infinite set of stable sets is proposed. We also discuss the extension of our results in the wider scope where some of the 
conditions are lifted. 
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1. Introduction 
Cooperative games require players to examine their 

individual strategies as well as to coordinate with other 
players to maximize the payoff of a subset of related players. 
These subsets give rise to the concept of coalitions. In pillage 
games which are a type of cooperative games, a coalition's 
strength is measured by its current possession of a given set 
of goods. 

As with other cooperative games, stable sets are a key 
interest. Conceptually, stable sets are locus of allocations for 
a coalition where once all the players in the coalition attain 
one such allocation of the goods, they suffer a loss in 
valuation determined by the power function against players 
outside of the coalition if one player unilaterally moves away 
from such allocation, i.e. a dynamic equilibrium is reached, 
similar to an attractor in a dynamical system. Jordan proved 
that the cardinality of any given stable set in continuous 
pillage games is finite [1]. McKenzie, Kerber and Rowat 
showed that the cardinality of an internally stable set is 
bounded above by 𝑅𝑅𝑐𝑐(4) − 1  where 𝑅𝑅𝑐𝑐  is the diagonal 
multicolor Ramsey number and 𝑐𝑐 is the number of players 
in the game [2]. Examining strictly monotonic sequences in 
dimensions greater than 1, Saxton showed that |𝑆𝑆| , the 
cardinality of a stable set in an n-player pillage game satisfies 
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where 𝑑𝑑 = ⌊(𝑛𝑛 − 1)/2⌋  is the floor function [3]. Using 
measure theory, Beardon and Rowat was able to represent 
any internally stable set as a finite union of sets satisfying 
certain pairwise comparison conditions, thereby proving that 
a stable set's topological dimension in an n-player, m-good 
pillage game is bounded above by 𝑚𝑚(𝑛𝑛 − 1) − 1 [4]. 

These properties on stable sets prompted the question: can 
there be a pillage game with infinitely many stable sets, 
namely is there a pillage game where the collection of stable 
set is of order ℵ0 or greater? This question is significant in 
cooperative games. Historically, Shapley found examples of 
cooperative games that have infinitely many stable sets by 
using characteristic functions [5]. In pillage games, 
McKenzie, Kerber, and Rowat constructed an example of a 
pillage game with multiple independent stable sets [2]. Thus 
the above question deserves some serious consideration. In 
this paper, we give a partial answer to this question. We 
consider the case of a single good continuous pillage game 
with non-empty core under a forward dominance structure. 
We examine a theoretical model of a continuous pillage 
game satisfying the forward dominance condition. The 
creation of a concrete model depends on a function satisfying 
the numerical constraints that permits these conditions. 
Examples will be given in this paper, we defer the task of 
finding a concrete example satisfying the many numerical 
properties set forth in his paper since such a concrete 
example requires the careful coding by a computer language 
specialist who encodes these properties in an algorithm and 
tests it on a work station with sufficient computing power  
to effect such concrete examples. As such, the primary 
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contribution of this paper is theoretical.  
The format of this paper is as follows: section 2 of the 

paper gives the basic background of pillage games. Section 3 
introduces a basic property of continuous pillage games - a 
rigidity theorem. This theorem gives the local structure of 
dominance in an infinite sequence of allocations as it 
approaches its limit point. In section 4, using the rigidity 
theorem, we establish a weak convergence theorem on the 
dominance structure of any sequence of allocations by using 
ultrafilters that select subsequences based on geometric 
properties, unidirectionality conditions, and parity 
comparison conditions. In section 5, we combine the above 
results to show a theoretical model in which a set of 
sufficient conditions for an infinite set of stable sets exists 
under a cyclic forward dominance structure. 

In the discussions of section 6, we provide a possible 
future approach to the study of pillage games and indeed 
cooperative games in general by highlighting certain    
fibre bundle properties embedded in pillage games and    
the possibility of a representation theorem for power 
functions. The fibre bundle properties are a signature 
property satisfied by pillage games without the requirement 
of continuity. Fibre bundles considerations are connected   
to measure-theoretic integrations in the broader sense. 
Integration over the base in a fibre bundle points to a 
representation theorem for pillage games similar to the Riesz 
representation theorem in classical functional analysis. As a 
result, fundamental questions in these games such as 
dominance, stability, and power dynamics among coalitions 
can be examined through questions about their respective 
fibre-theoretic analogues such as minimax plateau studies, 
fibre neighbourhood investigations, and local-global duality 
studies on function spaces over the fibre bases. 

2. Fundamentals of Pillage Games 
A single good n-player pillage game is a game among the 

set 𝐼𝐼 of the 𝑛𝑛 players 𝐼𝐼 = {1,2,3, … . .𝑛𝑛} dividing a single 
good/commodity where the players' shares of the good are 
represented as vectors in the convex hull X with vertex at 
unity on each of the n axes in ℝ𝑛𝑛 : 

 𝑋𝑋 ≡ {(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑛𝑛)| 𝑥𝑥1  ≥ 0 and ∑𝑥𝑥𝑖𝑖 = 1}    (2) 
Each element 𝑥𝑥 ∈ 𝑋𝑋 is called an allocation of the good. 

Given an allocation 𝑥𝑥, its utility with respect to a subset of 
players 𝐶𝐶 ⊂ 𝐼𝐼 is measured by a real-valued function called 
the power function 𝜋𝜋: 2𝐼𝐼 × 𝑋𝑋 → ℝ  satisfying the three 
order axioms: 
  (WC): if 𝐶𝐶 ⊂ 𝐶𝐶′ , then 𝜋𝜋(𝐶𝐶′ , 𝑥𝑥) ≥ 𝜋𝜋(𝐶𝐶, 𝑥𝑥) ∀ 𝑥𝑥 ∈ 𝑋𝑋.  
  (WR): if 𝑦𝑦𝑖𝑖 ≥ 𝑥𝑥𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝐶𝐶 ⊂ {1,2,3, … . .𝑛𝑛} , then 
𝜋𝜋(𝐶𝐶,𝑦𝑦) ≥ 𝜋𝜋(𝐶𝐶, 𝑥𝑥). 

  (SR): if ∅ ≠ 𝐶𝐶 and 𝑦𝑦𝑖𝑖 > 𝑥𝑥𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝐶𝐶 ⊂ {1,2,3, … . .𝑛𝑛}, 
then 𝜋𝜋(𝐶𝐶,𝑦𝑦) > 𝜋𝜋(𝐶𝐶, 𝑥𝑥). 

The notation 2𝐼𝐼 denotes the power set of the n players. 
Thus a pillage game is a triple (𝑛𝑛,𝜋𝜋,𝑋𝑋) with the above 
properties. If there is the additional requirement that for each 

𝐶𝐶 ⊂ {1,2,3, … . .𝑛𝑛},  𝜋𝜋  is continuous on the allocation 
variable x, then we call (𝑛𝑛,𝜋𝜋,𝑋𝑋)  a continuous pillage 
game. 

An allocation 𝑎𝑎 dominates another allocation 𝑏𝑏, denoted 
as 𝑎𝑎 ≻ 𝑏𝑏  if 𝜋𝜋(𝑊𝑊, 𝑏𝑏) > 𝜋𝜋(𝐿𝐿, 𝑏𝑏) where 𝑊𝑊 = {𝑖𝑖|𝑎𝑎𝑖𝑖 > 𝑏𝑏𝑖𝑖} 
and 𝐿𝐿 =  {𝑖𝑖|𝑏𝑏𝑖𝑖 > 𝑎𝑎𝑖𝑖}. We call 𝑊𝑊 the win set and 𝐿𝐿 the 
lose set. The idea of dominance measured by the power 
function is that given an allocation, a more dominant player 
can move toward another allocation that confers higher 
utility. The power function therefore both informs and is 
informed by the allocation structures. Thus its properties are 
of critical interest in pillage games. 

Given 𝐴𝐴 ⊂ 𝑋𝑋, the dominion of A, denoted as 𝐷𝐷(𝐴𝐴) is the 
set of allocations that are dominated by some element of 𝐴𝐴: 
{𝑥𝑥 ∈ 𝑋𝑋| ∃𝑎𝑎 ∈ 𝐴𝐴 such that 𝑎𝑎 ≻ 𝑥𝑥}. Thus 𝐷𝐷(𝑋𝑋) is the set of 
allocations that are dominated by at least one other allocation. 
The core, denoted as 𝐾𝐾, is the set of un-dominated 
allocations, i.e. 𝐾𝐾 = 𝑋𝑋/𝐷𝐷(𝑋𝑋).  

A set 𝐴𝐴 is said to satisfy internal stability if dominance 
does not occur between allocations of 𝐴𝐴:𝐴𝐴 ⋂𝐷𝐷(𝐴𝐴) = ∅. 
Clearly the core 𝐾𝐾 is both internally stable and contained 
in any internally stable set. 𝐴𝐴 is said to satisfy external 
stability if 𝐴𝐴⋃𝐷𝐷(𝐴𝐴) = 𝑋𝑋. A set 𝐴𝐴 is called a stable set if it 
satisfies both internal and external stability. Jordan showed 
that an internally stable set of a pillage game can contain 
only finitely many allocations [1]. 

3. A Rigidity Theorem 
Let (𝑛𝑛,𝜋𝜋,𝑋𝑋) be a continuous pillage game. Let 𝑥𝑥 ∈ 𝑋𝑋 be 

an allocation. If 𝐴𝐴  and 𝐵𝐵  are two non-empty and 
non-intersecting subsets of 2𝐼𝐼, then the power function can 
assume any of the following 3 all-inclusive but mutually 
exclusive relations on 𝐴𝐴 and 𝐵𝐵 at 𝑥𝑥: 

𝜋𝜋(𝐴𝐴, 𝑥𝑥) > 𝜋𝜋(𝐵𝐵, 𝑥𝑥),𝜋𝜋(𝐴𝐴, 𝑥𝑥) = 𝜋𝜋(𝐵𝐵, 𝑥𝑥), or  
𝜋𝜋(𝐴𝐴, 𝑥𝑥) < 𝜋𝜋(𝐵𝐵, 𝑥𝑥) 

Definition 1. Let 𝑥𝑥  be an allocation in a continuous 
pillage game (𝑛𝑛,𝜋𝜋,𝑋𝑋). 

(1)  Let 𝑅𝑅𝑥𝑥 ,>  denote the set of all non-empty and 
non-intersecting pairs of sets (𝐴𝐴,𝐵𝐵) ∈ 2𝐼𝐼 × 2𝐼𝐼 such 
that 𝜋𝜋(𝐴𝐴, 𝑥𝑥) > 𝜋𝜋(𝐵𝐵, 𝑥𝑥). 

(2)  Similarly, let 𝑅𝑅𝑥𝑥 ,>,= denote the set of all non-empty 
and non-intersecting pairs of sets (𝐴𝐴,𝐵𝐵) ∈ 2𝐼𝐼 × 2𝐼𝐼 
such that 𝜋𝜋(𝐴𝐴, 𝑥𝑥) ≥ 𝜋𝜋(𝐵𝐵, 𝑥𝑥). 

Theorem 1. Given a continuous pillage game (𝑛𝑛,𝜋𝜋,𝑋𝑋), 
let 𝑥𝑥 ∈ 𝑋𝑋,∃𝛿𝛿𝑥𝑥 > 0  such that ∀𝑥𝑥� with |𝑥𝑥� − 𝑥𝑥| < 𝛿𝛿𝑥𝑥 , we 
have 𝑅𝑅𝑥𝑥 ,> ⊂  𝑅𝑅𝑥𝑥�,>. Here |𝑥𝑥| is the Euclidean norm on ℝ𝑛𝑛 .  

Proof. We examine the disjoints sets 𝑅𝑅𝑥𝑥 ,> , 𝑅𝑅𝑥𝑥 ,< , and 
𝑅𝑅𝑥𝑥 ,>,=. Let (𝐴𝐴,𝐵𝐵) ∈ 𝑅𝑅𝑥𝑥 ,>, by definition, 𝜋𝜋(𝐴𝐴, 𝑥𝑥) > 𝜋𝜋(𝐵𝐵, 𝑥𝑥). 
Denote 𝜋𝜋(𝐴𝐴, 𝑥𝑥) − 𝜋𝜋(𝐵𝐵, 𝑥𝑥) =  𝜎𝜎𝐴𝐴,𝐵𝐵,𝑥𝑥 > 0 . Notice 𝑅𝑅𝑥𝑥 ,>  is a 
finite set because the power set |2𝑛𝑛 | < ∞. In fact  

 𝑅𝑅𝑥𝑥 ,> ≤ � 2𝑛𝑛
2 �                (3) 

Assume without the loss of generality that 𝑅𝑅𝑥𝑥 ,>  has 
cardinality m: 𝑅𝑅𝑥𝑥 ,> = (𝐴𝐴1,𝐵𝐵1), (𝐴𝐴2,𝐵𝐵2), … , (𝐴𝐴𝑚𝑚 ,𝐵𝐵𝑚𝑚) . We 
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also have the corresponding 𝜎𝜎𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 ,,𝑥𝑥’s, one for each pair of 
(𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖) ∈ 𝑅𝑅𝑥𝑥 ,>. The continuity of (𝑛𝑛,𝜋𝜋,𝑋𝑋) means that the 
power function 𝜋𝜋(𝐶𝐶, 𝑥𝑥)  is continuous on the allocation 
variable x given a fixed set 𝐶𝐶 ∈ 𝐼𝐼. This implies for any 
𝜀𝜀 > 0, there is a 𝛿𝛿𝐶𝐶,𝑥𝑥 > 0 such that ∀ 𝑥𝑥�  with |𝑥𝑥� − 𝑥𝑥| <
𝛿𝛿𝐶𝐶,𝑥𝑥 , we have |𝜋𝜋(𝐶𝐶, 𝑥𝑥) − 𝜋𝜋(𝐶𝐶, 𝑥𝑥�)| < 𝜀𝜀.  One needs take 
caution that given an x and an 𝜀𝜀, unless uniform continuity 
is assumed, different subsets of 𝐼𝐼 = {1,2,3, … . .𝑛𝑛}  will 
require different 𝛿𝛿’s, one for each subset 𝐶𝐶 ∈ 𝐼𝐼.  

Let (𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖) ∈ 𝑅𝑅𝑥𝑥 ,> , as before, we have 𝜋𝜋(𝐴𝐴1, 𝑥𝑥) −
𝜋𝜋(𝐵𝐵1, 𝑥𝑥) =  𝜎𝜎𝐴𝐴1,𝐵𝐵1,𝑥𝑥 > 0. Thus we have  

 
𝜎𝜎𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 ,𝑥𝑥

3
> 0                (4) 

By the continuity of the power function 𝜋𝜋, we choose 
two neighborhoods: a 𝛿𝛿𝑖𝑖,𝐴𝐴 -neighbourhood for the set 𝐴𝐴𝑖𝑖  
and a 𝛿𝛿𝑖𝑖,𝐵𝐵-neighbourhood for the set 𝐵𝐵𝑖𝑖  such that ∀𝑥𝑥� with 
|𝑥𝑥� − 𝑥𝑥| < 𝛿𝛿𝑖𝑖 ,𝐴𝐴 and |𝑥𝑥� − 𝑥𝑥| < 𝛿𝛿𝑖𝑖 ,𝐵𝐵 we have  

 |𝜋𝜋(𝐴𝐴𝑖𝑖 , 𝑥𝑥) − 𝜋𝜋(𝐴𝐴𝑖𝑖 , 𝑥𝑥�)| <
𝜎𝜎𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 ,𝑥𝑥

3
 and 

 |𝜋𝜋(𝐵𝐵𝑖𝑖 , 𝑥𝑥) − 𝜋𝜋(𝐵𝐵𝑖𝑖 , 𝑥𝑥�)| <
𝜎𝜎𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 ,𝑥𝑥

3
 . 

Let 𝛿𝛿𝑖𝑖 = min(𝛿𝛿𝑖𝑖,𝐴𝐴 , 𝛿𝛿𝑖𝑖,𝐵𝐵), then for all 𝑥𝑥� with |𝑥𝑥� − 𝑥𝑥| <
𝛿𝛿𝑖𝑖 , we have  

 0 < 𝜋𝜋(𝐴𝐴𝑖𝑖 , 𝑥𝑥�) − 𝜋𝜋(𝐵𝐵𝑖𝑖 , 𝑥𝑥�) <
2𝜎𝜎𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 ,𝑥𝑥

3
      (5) 

This means for any 𝑥𝑥� within a small neighborhood of x, 
if (𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖) ∈ 𝑅𝑅𝑥𝑥 ,> , then (𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖) ∈ 𝑅𝑅𝑥𝑥�,> . There are only 
finitely many pairs of sets �𝐴𝐴𝑗𝑗 ,𝐵𝐵𝑗𝑗 �  in 𝑅𝑅𝑥𝑥 ,> . Each pair 
�𝐴𝐴𝑗𝑗 ,𝐵𝐵𝑗𝑗 � has a corresponding 

𝜎𝜎𝐴𝐴𝑗𝑗 ,𝐵𝐵𝑗𝑗 ,𝑥𝑥

3
 

and a corresponding 𝛿𝛿𝑗𝑗 . To extend the above inclusion to 
all pairs of sets �𝐴𝐴𝑗𝑗 ,𝐵𝐵𝑗𝑗 � in 𝑅𝑅𝑥𝑥 ,>, we define  

 𝛿𝛿𝑥𝑥 = min�𝛿𝛿1,𝛿𝛿2, … , 𝛿𝛿𝑗𝑗 , … 𝛿𝛿𝑚𝑚�. 
Then for all 𝑥𝑥�  with |𝑥𝑥� − 𝑥𝑥| < 𝛿𝛿𝑥𝑥  and for all 𝑗𝑗  with 

1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, we have 

 0 < 𝜋𝜋�𝐴𝐴𝑗𝑗 , 𝑥𝑥�� − 𝜋𝜋�𝐵𝐵𝑗𝑗 , 𝑥𝑥�� <
2𝜎𝜎𝐴𝐴𝑗𝑗 ,𝐵𝐵𝑗𝑗 ,𝑥𝑥

3
        (6) 

Thus within a sufficiently small neighbourhood, we have 
the set inclusion 𝑅𝑅𝑥𝑥 ,> ⊂ 𝑅𝑅𝑥𝑥�,>. This completes the proof.  

This theorem implies that the dominance structure at a 
point is informed or “bounded” by a larger set of dominance 
structures of the points in a small neighbourhood near that 
point. In the next section, we will examine the case of a set 
of infinitely many allocations under a forward dominance 
structure. The theorem above will create certain useful 
properties in a special subset of these allocations.  

4. Weak Convergence of Dominance 
In this section, we will first examine a simple geometric 

property of the space 𝑋𝑋 of allocations based on compactness. 
With this property, we will then examine its implications in 
the case of an infinite set of allocations sets {𝑆𝑆𝑖𝑖}𝑖𝑖=1

∞  and 

derive a convergent theorem on the dominance structures.  
Jordan proved that the cardinality of a stable set in a 

pillage game is finite [1]. Thus if an infinite set of stable sets 
is possible in a pillage game with non-empty core 𝐾𝐾, each 
stable set must have finite cardinality and each 𝑆𝑆𝑖𝑖  must 
contain at least one non-core allocation 𝑥𝑥𝑖𝑖 . 

Since 𝑥𝑥𝑖𝑖  is not in the core, it is dominated by some other 
allocations. To achieve external stability, each stable set   
𝑆𝑆𝑗𝑗  with 𝑗𝑗 ≠ 𝑖𝑖  must contain at least one allocation that 
dominates 𝑥𝑥𝑖𝑖 . Conversely, 𝑆𝑆𝑖𝑖  must also contain elements 
that dominate 𝑥𝑥𝑗𝑗 ∈ 𝑆𝑆𝑗𝑗 . To maintain internal stability, none of 
the elements that dominate 𝑥𝑥𝑖𝑖  can be in 𝑆𝑆𝑖𝑖 . In particular, 𝑥𝑥𝑖𝑖  
cannot be dominated by any core element. The Jordan 
finiteness theorem means that each stable set 𝑆𝑆𝑖𝑖  must 
achieve external stability 𝑆𝑆𝑖𝑖 ∪ 𝐷𝐷(𝑆𝑆𝑖𝑖) = 𝑋𝑋 with only finitely 
many elements. Denote this set of non-core allocations in 𝑆𝑆𝑖𝑖  
by 𝐶𝐶𝑖𝑖 . Together these two conditions imply that if a 
continuous pillage game with non-empty core has infinitely 
many stable sets, each stable set 𝑆𝑆𝑖𝑖  must contain a finite set 
𝐶𝐶𝑖𝑖 = 𝑆𝑆𝑖𝑖\𝐾𝐾  with 𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖  and 𝐶𝐶𝑖𝑖  must contain allocations 
that dominate 𝑥𝑥𝑗𝑗  for all 𝑖𝑖 ≠ 𝑗𝑗. With the above observations, 
we prove an immediate property of these pillage games.  

Theorem 2. If a continuous pillage game (𝑛𝑛,𝜋𝜋,𝑋𝑋) with 
infinitely many stable sets {𝑆𝑆𝑖𝑖}𝑖𝑖=1

∞  described above exists, 
then each 𝐶𝐶𝑖𝑖  contains at least two allocations. 

Proof. Given two distinct stable sets 𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑗𝑗  in this 
setup, to satisfy external stability, 𝑆𝑆𝑗𝑗  must contain a 
non-core element in 𝑥𝑥𝑗𝑗 ∈ 𝐶𝐶𝑗𝑗  to dominate 𝑥𝑥𝑖𝑖 . In turn, 𝑆𝑆𝑖𝑖  
must contain a second element 𝑎𝑎𝑖𝑖 ,1  that dominates 𝑥𝑥𝑗𝑗  to 
achieve external stability. Furthermore, 𝑎𝑎𝑖𝑖 ,1  cannot be a 
core element because 𝑆𝑆𝑗𝑗  contains the same core 𝐾𝐾  as 𝑆𝑆𝑖𝑖  
and 𝑎𝑎𝑖𝑖 ,1 ≻ 𝑥𝑥𝑗𝑗  violates internal stability for the stable set 𝑆𝑆𝑗𝑗 . 
So there are at least two allocations 𝑎𝑎𝑖𝑖 ,1 and 𝑥𝑥𝑖𝑖  in 𝐶𝐶𝑖𝑖 . A 
symmetric argument shows that 𝑆𝑆𝑗𝑗  must also contain at least 
two elements. This completes the proof.  

Notice since 𝑎𝑎𝑖𝑖 ,1  is not in the core, it must also be 
dominated by some non-core allocations in 𝑆𝑆𝑗𝑗  ∀𝑗𝑗 ≠ 𝑖𝑖 for 𝑆𝑆𝑗𝑗   
to achieve external stability. Therefore when the non-core 
elements of 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗  are compared, there is a chain of 
dominance between these allocations. External stability of 
each stable set implies that any chain of dominance between 
allocations from two stable sets, starting with a non-core 
allocation in 𝑆𝑆𝑖𝑖  must also end with a non-core allocation in 
𝑆𝑆𝑖𝑖 . A symmetric argument shows that this is also true if we 
start with a non-core allocation in 𝑆𝑆𝑗𝑗  against 𝑆𝑆𝑖𝑖 . The 
finiteness condition along with the above analysis implies a 
structural necessity for 𝑆𝑆𝑖𝑖 :  since card (𝑆𝑆𝑖𝑖) < ∞ , each 
non-core allocation in 𝐶𝐶𝑖𝑖   must complete a dominance loop 
of finite length which also ends with an allocation in 𝐶𝐶𝑖𝑖  to 
achieve external stability. Therefore, there is a cyclicity in 
the dominance structure. This cyclicity allows closure in the 
sense that a chain starting with a non-core element in one 
stable set must return upon the same stable set when 
compared with the non-core elements in anther stable set. 
Thus a model of pillage game with infinite stable sets must 
have this cyclic closure property. Once this is achieved, the 
logical impossibility of a dominance loop never returning to 
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itself is removed. The remaining work is to find a specific 
function with the numerical characteristics that satisfies the 
above mentioned cyclic dominance structure conditions.  

Consider a continuous pillage game (𝑛𝑛,𝜋𝜋,𝑋𝑋)  with 
non-empty core 𝐾𝐾. Let {𝐶𝐶𝑖𝑖}𝑖𝑖=1

∞  be a countably infinite set 
of allocations sets, each with finite cardinality. We can find 
a non-degenerate infinite sequence of allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  
with 𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖  for each i. Since the total space of allocations 
𝑋𝑋  is compact, any non-degenerate infinite sequence in 
𝑋𝑋 contains a non-degenerate convergent subsequence. By 
an abuse of notation, we still denote this convergent 
subsequence by {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  Denote the limit point of this 
convergent subsequence by 𝑥𝑥: lim𝑛𝑛 𝑥𝑥𝑛𝑛 = 𝑥𝑥.  

Since |𝐾𝐾| < ∞, elements in the core can be discarded 
from a non-degenerate infinite set of allocations. Thus we 
can assume {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ ∩ 𝐾𝐾 = ∅. We can filter this convergent 
subsequence further to give a non-degenerate subsequence 
monotone in each of the n coordinate indices {1,2,3, … . .𝑛𝑛} 
using a geometric filter as follows. In this context, 
monotonicity means for each of the index 𝑘𝑘 ∈ {1,2,3, … . .𝑛𝑛}, 
the sequence of real numbers {𝑥𝑥𝑖𝑖𝑘𝑘}𝑖𝑖=1

∞  is either an increasing 
sequence of real numbers, or a decreasing sequence of real 
numbers, or a constant non-changing sequence consisting of 
a single real number. To apply the geometric filter, notice 
that for an arbitrary non-degenerate sequence of real 
numbers {𝑎𝑎𝑖𝑖}𝑖𝑖=1

∞  in ℝ , there is a monotone convergent 
subsequence. Thus for the convergent non-degenerate 
subsequence of allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ in ℝ𝑛𝑛 , we can find a 
monotone subsequence of {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  by passing to a monotone 
subsequence of real numbers in each one of the n coordinate 
indices starting with the first one. For example, if we denote 
the sequence of real numbers formed by the kth coordinate  
of all the allocations in the convergent sequence of 
allocations in its full multi-index expansion notation by 
{𝑥𝑥1

𝑘𝑘 , 𝑥𝑥2
𝑘𝑘 , 𝑥𝑥3

𝑘𝑘 , … 𝑥𝑥𝑛𝑛𝑘𝑘  } , then we can find a strictly monotone 
subsequence for this sequence of real numbers. We form a 
new convergent subsequence in the original convergent 
sequence of allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  in ℝ𝑛𝑛  by including only 
those allocations for which the monotone subsequence is 
positioned. So for example, if every fourth element in the 
sequence of real numbers {𝑥𝑥1

𝑘𝑘 , 𝑥𝑥2
𝑘𝑘 , 𝑥𝑥3

𝑘𝑘 , … 𝑥𝑥𝑛𝑛𝑘𝑘  } is discarded by 
this geometric filter, then every corresponding fourth 
element in the original sequence of convergent allocations 
{𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  in ℝ𝑛𝑛  is discarded. An example of the geometric 
filter is given below.  

Example: consider the following non-degenerate infinite 
sequence of allocations in a 1-good 3-player pillage game:  

{(0.4, 0.3 + (1/4)𝑖𝑖 , 0.3 + (−1)𝑖𝑖+1(1/4)𝑖𝑖)}𝑖𝑖=1
∞  

If we pass the sequence formed by the second coordinate 
through the geometric filter, then a monotone increasing 
convergent subsequence is achieved by selecting all the even 
terms {0.3 + (1/4)2𝑖𝑖}𝑖𝑖=1

∞ . The reader is cautioned that in 
doing so, not only are the odd terms in the sequence of real 
numbers formed by the second coordinate discarded, odd 
terms in the allocations are also discarded. Therefore, the 
geometric filter gives the following convergent subsequence, 
monotone in each of the three indices:  

{(0.4, 0.3 + (1/4)2𝑖𝑖 , 0.3 − (1/4)2𝑖𝑖)}𝑖𝑖=1
∞  

The reader is further cautioned that in the above example 
the second coordinate and the third coordinate are 
algebraically coupled.  

It is possible that in the original sequence of allocations 
{𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ , one or more coordinates is already degenerate before 
we apply the geometric filter. That is, for a particular index k 
with 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 , the sequence {𝑥𝑥1

𝑘𝑘 , 𝑥𝑥2
𝑘𝑘 , 𝑥𝑥3

𝑘𝑘 , … 𝑥𝑥𝑛𝑛𝑘𝑘  } consists 
of only finitely many real numbers. In that case, we choose 
one real number for this index and retain all the terms in 
which this real number appears. Since the original sequence 
of allocations is non-degenerate, there is at least one index 
where the sequence of real numbers must consist of infinitely 
many non-equal real numbers. We start with the first index 
1 ∈ {1,2,3, … . .𝑛𝑛} and repeat the process up to the nth index. 
Since there are only finitely many indices, the geometric 
filter will result in a convergent non-degenerate sequence 
monotone in each of the n indices. Due to numerous upper 
indices, lower indices, and the many filters, we still denote 
the resulting sequence of allocations as {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ . Notice the 
filtered sequence has the property that in each coordinate 
1 ≤ 𝑘𝑘 ≤ 𝑛𝑛, each one of the following conditions holds: 

 𝑥𝑥1
𝑘𝑘 < 𝑥𝑥2

𝑘𝑘 < ⋯ < 𝑥𝑥𝑛𝑛𝑘𝑘 < ⋯ 
 𝑥𝑥1
𝑘𝑘 = 𝑥𝑥2

𝑘𝑘 = ⋯ = 𝑥𝑥𝑛𝑛𝑘𝑘 = ⋯ 
 𝑥𝑥1
𝑘𝑘 > 𝑥𝑥2

𝑘𝑘 > ⋯ > 𝑥𝑥𝑛𝑛𝑘𝑘 > ⋯ 
With this filtered sequence, we now consider a forward 

dominant structure where the more dominant allocations are 
the ones with higher indices:  

∙∙∙≻ 𝑥𝑥𝑛𝑛 ≻ 𝑥𝑥𝑛𝑛−1 ≻ ⋯ ≻ 𝑥𝑥1         (7) 
Forward dominance relations have appeared in previous 

studies of stable sets. For example, McKenzie, Kerber, and 
Rowat constructed a non-transitive forward dominance loop 
in a 1-good 4-player pillage game  

𝑎𝑎 ≻ 𝑑𝑑 ≻ 𝑏𝑏 ≻ 𝑐𝑐 ≻ 𝑎𝑎 
to show the non-uniqueness of stable sets [2]. Each of the 
above four elements is an “exceptional allocation” in the set 
𝐸𝐸 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} that dominates all other allocations in 𝑋𝑋/𝐸𝐸 
except for the elements in the core 𝐾𝐾. In their example, the 
power function has the special numerical property that it uses 
two different sets of double linear weights with the sum    
of 1, placed at three different coordinates to equalize the 
valuations for 𝑎𝑎  and 𝑏𝑏  and likewise for 𝑐𝑐  and 𝑑𝑑 . With 
these numerical constraints satisfied, the stable sets in this 
1-good 4-player pillage game are  

�{𝐾𝐾},𝑎𝑎, 𝑏𝑏� and �{𝐾𝐾}, 𝑐𝑐,𝑑𝑑� 
Hence a non-transitive forward dominance structure is 

carefully constructed using numerical analysis. This 
construction reveals certain intricate complexities that the 
simple order axioms set forth in the definition of pillage 
games allow. As such, special numerical analytic 
constructions can be achieved to allow for these “exotic” 
features of pillage games satisfying a set of rational and 
minimal expectations similar to the philosophical impasse in 
Arrow’s impossibility theorem. In contrast, our approach is a 
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classic algebra-geometric approach where analytic concepts 
such as compactness and bounded convergence are used to 
derive the existence of sequences of allocations with special 
properties. Recall that the current convergent sequence of 
allocations is monotone in each of the n indices. With the 
above forward dominance structure, we have 

Lemma 1. There exists a subsequence of {𝑥𝑥𝑖𝑖}𝑖𝑖=1
∞  in the 

above setup such that for any subset 𝐶𝐶  of {1,2,3, … . .𝑛𝑛}, 
only one of the following three mutually exclusive relations 
holds: 

𝜋𝜋(𝐶𝐶, 𝑥𝑥1) < 𝜋𝜋(𝐶𝐶, 𝑥𝑥2) < 𝜋𝜋(𝐶𝐶, 𝑥𝑥3) < ⋯ 
𝜋𝜋(𝐶𝐶, 𝑥𝑥1) = 𝜋𝜋(𝐶𝐶, 𝑥𝑥2) = 𝜋𝜋(𝐶𝐶, 𝑥𝑥3) = ⋯ 
𝜋𝜋(𝐶𝐶, 𝑥𝑥1) > 𝜋𝜋(𝐶𝐶, 𝑥𝑥2) > 𝜋𝜋(𝐶𝐶, 𝑥𝑥3) > ⋯ 

Proof. Since {𝑥𝑥𝑖𝑖}𝑖𝑖=1
∞  is strictly monotone in each index, if 

𝐴𝐴 is a subset of {1,2,3, … . .𝑛𝑛} where the 𝑥𝑥𝑖𝑖’s are increasing 
in their indices 𝑗𝑗 ∈ 𝐴𝐴 ⊂ {1,2,3, … . .𝑛𝑛}, then by the SR axiom, 
we have 

𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖+𝑘𝑘) > 𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖),∀𝑘𝑘 ∈ 𝕫𝕫+        (8) 
Conversely, if 𝐵𝐵 is a subset of {1,2,3, … . .𝑛𝑛} where the 

𝑥𝑥𝑖𝑖’s are decreasing in their indices 𝑗𝑗 ∈ 𝐵𝐵 ⊂ {1,2,3, … . .𝑛𝑛}, 
then by the SR axiom, we have 

𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖+𝑘𝑘) < 𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖),∀𝑘𝑘 ∈ 𝕫𝕫+        (9) 
If 𝐶𝐶 is a subset of {1,2,3, … . .𝑛𝑛} where the 𝑥𝑥𝑖𝑖’s contain 

both increasing and decreasing indices, we use a 
unidirectionality filter to achieve monotonicity in 
{𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞  as follows. As a sequence of real numbers, 
{𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞ either consists of an infinitely many real 
numbers or it consists of only finitely many real numbers.  

If it is infinite, then {𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1
∞  either contains a 

non-degenerate monotone increasing subsequence or a 
non-degenerate monotone decreasing subsequence. Assume 
without the loss of generality that {𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞  contains a 
monotone increasing subsequence. Then a new subsequence 
can be achieved by discarding the terms in {𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞  
with indices j where the jth term in {𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞  is not 
monotone increasing. We are then left with a non-degenerate 
subsequence of allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  where for the subset 
𝐶𝐶 ⊂ {1,2,3, … . .𝑛𝑛} , the sequence of real numbers 
{𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞  is a monotone increasing sequence. We still 
denote the newly filtered subsequence of allocations by 
{𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ . 
If the sequence of real numbers {𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞  is a finite 
set, then we take the one of the valuations assumed by the 
power function restricted to the subset 𝐶𝐶. Notice because the 
geometrically filtered allocation sequence {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  is 
monotone in each of the n indices, the first case where 
{𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞  is an infinite set will occur by the SR axiom. 
Since there are only finitely many subsets of {1,2,3, … . .𝑛𝑛}, 
after finitely many filtering steps, we arrive at a 
non-degenerate sequence of allocations, monotone in each 
index with the property that for each subset 𝐶𝐶  of 
{1,2,3, … . .𝑛𝑛}, {𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞  is a monotone sequence of real 
numbers. This completes the proof.  

The unidirectionality filter establishes a uniformity in the 
valuation by the power function with respect to any subset  
of {1,2,3, … . .𝑛𝑛} . We now consider the comparison of 

valuations by the power function with respect to any pair of 
non-empty and disjoint subsets of {1,2,3, … . .𝑛𝑛}. For any 
pair of disjoint and non-empty sets 𝐴𝐴 × 𝐵𝐵 𝑜𝑜𝑜𝑜 2𝐼𝐼 × 2𝐼𝐼  with 
𝐴𝐴 ∩ 𝐵𝐵 ≠ ∅ , we examine the sequence of equalities and 
inequalities that exists between  𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖) and 𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖) for 
the filtered allocation sequence {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ . We have 
Lemma 2. There exists a subsequence of {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  such 
that for each pair of disjoint and non-empty subsets 𝐴𝐴 × 𝐵𝐵 
of 2𝐼𝐼 × 2𝐼𝐼 , only one of the following three mutually 
exclusive relations holds for all allocations in the sequence: 

𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖) > 𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖) 
𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖) = 𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖) 
𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖) < 𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖) 

Proof. For each pair of disjoint non-empty subsets 𝐴𝐴 × 𝐵𝐵, 
at least one of the parity relations >, =, or < exists for 
infinitely many terms. It is certainly possible that two or all 
three parity relations exist for infinitely many terms in 
{𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  for a particular pair 𝐴𝐴 × 𝐵𝐵 . We select a further 
subsequence of {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  by the following parity comparison 
filter.  

If only one of the three above parity relations exists for 
infinitely many allocations in {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ , then there are at most 
only finitely many allocations in the sequence where the 
other two parity relations exist. In this case, we filter {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  
by discarding the finitely many terms for which the other two 
parity relations hold. For example, if for the pair 𝐴𝐴 × 𝐵𝐵, all 
but finitely many terms in {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  have 𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖) > 𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖), 
then we discard the finitely terms where 𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖) = 𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖) 
and 𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖) < 𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖).  

If two or more of the above parity relations exist for 
infinitely many allocations in {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ , then we select 
precisely one relation and discard the other allocations for 
which the chosen relation does not hold. Since there are only 
finitely many proper subsets of {1,2,3, … . .𝑛𝑛}, there are only 
finitely many disjoint non-empty pairs of 𝐴𝐴 × 𝐵𝐵. Therefore 
the parity comparison filter will stop after all finitely many 
such pairs 𝐴𝐴 × 𝐵𝐵 have been filtered, each resulting in an 
infinite non-degenerate subsequence of allocations. For the 
convenience of notations, we still denote the final filtered 
sequence of allocations as {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ . This completes the proof.  
Recall that we denoted by 𝑥𝑥  the limit point of the 

convergent allocation sequence {𝑥𝑥𝑖𝑖}𝑖𝑖=1
∞ . We now prove a 

local regularity property of the filtered sequence.  
Theorem 3. There exists an 𝛿𝛿 > 0  such that in an 

𝛿𝛿 -neighborhood of 𝑥𝑥 , the following equivalence of 
dominance structure holds:  

 𝑅𝑅𝑥𝑥𝑖𝑖 ,>,= = 𝑅𝑅𝑥𝑥𝑘𝑘 ,>,=           (10) 

Proof. With the final convergent sequence thus filtered, 
we have that for every pair of disjoint non-empty subsets 
𝐴𝐴 × 𝐵𝐵, the entire filtered sequence satisfies the same parity 
relations: <, =, or >. But these pairs of disjoint non-empty 
subsets 𝐴𝐴 and 𝐵𝐵 are precisely the pair of subsets that define 
the dominance relations for each allocation 𝑥𝑥𝑖𝑖 . That is, these 
pairs are precisely the pairs of subsets that define the win sets 
and lose sets for 𝑥𝑥𝑖𝑖  against any other allocation. For 
example, if 𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖) > 𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖), then we have 
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 (𝐴𝐴,𝐵𝐵) ⊂ 𝑅𝑅𝑥𝑥𝑖𝑖 ,>,=              (11) 

Therefore, if 𝜋𝜋(𝐴𝐴, 𝑥𝑥𝑖𝑖) > 𝜋𝜋(𝐵𝐵, 𝑥𝑥𝑖𝑖)  for all indices in the 
ultrafiltered sequence of allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  for each pair of 
disjoint non-empty subsets, then we have  

 𝑅𝑅𝑥𝑥𝑖𝑖 ,>,= = 𝑅𝑅𝑥𝑥𝑘𝑘 ,>,= 

Notice the above equality relation may not hold true if we 
only have a convergent sequence of allocations approaching 
x. The three filters added a further rigidity to the original 
sequence of allocations such that in the end with the 
ultra-filtered sequence, these desired geometric and parity 
comparison properties hold. This completes the proof. 

We now summarize the three different filters from the 
above discussions in their prescribed order into an algorithm. 
The reader is reminded that because of the limit of 
mathematical notations, we still denote the filtered sequence 
by {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  after each of the three filters. Given an infinite set 
of allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ , the first filter is the geometric filter 
where we pass the original sequence through to achieve a 
subsequence monotone in each of the n coordinates. The 
second filter is the unidirectionality filter where for each 
proper subset 𝐶𝐶 ⊂ {1,2,3, … . .𝑛𝑛}, an increasing, decreasing, 
or constant infinite subsequence of real numbers in 
{𝜋𝜋(𝐶𝐶, 𝑥𝑥𝑖𝑖)}𝑖𝑖=1

∞  is selected. The third filter is the parity 
comparison filter where for each pair of disjoint non-empty 
subsets 𝐴𝐴 × 𝐵𝐵, we select an infinite subsequence in which 
only one of the three parity relations <, =, or > holds true all 
allocations in the chosen subsequence. This triple step 
algorithm gives an infinite sequence of allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  
with the desired dominance relation properties.  

Notice in the forward dominance relation, we did not 
assume transitivity. That is, we did not assume 𝑥𝑥𝑛𝑛 ≻
𝑥𝑥𝑘𝑘  ∀𝑛𝑛 > 𝑘𝑘. But we will show that with our filtered sequence 
of allocations satisfying the geometric, the unidirectionality, 
and parity comparison relations, the forward dominance 
structure is in fact transitive.  

Theorem 4. The filtered sequence of allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1
∞  

is transitively dominant: ∀𝑛𝑛 > 𝑘𝑘, 𝑥𝑥𝑛𝑛 ≻ 𝑥𝑥𝑘𝑘 . 
Proof. Since {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  is strictly monotone in each 
coordinate, if 𝑖𝑖  is an index where 𝑥𝑥𝑛𝑛+1

𝑖𝑖 > 𝑥𝑥𝑛𝑛𝑖𝑖 , then 
𝑥𝑥𝑛𝑛+𝑘𝑘
𝑖𝑖 > 𝑥𝑥𝑛𝑛𝑖𝑖  ∀𝑛𝑛 ∈ 𝕫𝕫+. Then by monotonicity, if 𝑊𝑊𝑛𝑛  is the win 

set for 𝑥𝑥𝑛𝑛+1  over 𝑥𝑥𝑛𝑛  and 𝐿𝐿𝑛𝑛  is the lose set for 𝑥𝑥𝑛𝑛+1  over 
𝑥𝑥𝑛𝑛 , then 𝑊𝑊𝑛𝑛  is also the win set for 𝑥𝑥𝑛𝑛+𝑘𝑘   over 𝑥𝑥𝑛𝑛  and 𝐿𝐿𝑛𝑛  
is also the lose set for 𝑥𝑥𝑛𝑛+𝑘𝑘  over 𝑥𝑥𝑛𝑛 . Therefore we have 
𝜋𝜋(𝑊𝑊𝑛𝑛 , 𝑥𝑥𝑛𝑛) > 𝜋𝜋(𝐿𝐿𝑛𝑛 , 𝑥𝑥𝑛𝑛) when 𝑥𝑥𝑛𝑛+𝑘𝑘  is compared to 𝑥𝑥𝑛𝑛 . But 
this is 𝑥𝑥𝑛𝑛+𝑘𝑘 ≻ 𝑥𝑥𝑛𝑛 . This completes the proof.  

5. The Theoretical Model 
In the previous sections, we started with a highly 

redundant infinite sequence of allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1
∞ . Then 

different filters were used to reduce these allocations in order 
to achieve a convergent sequence with desired properties. In 
this section, we put these results together and examine a 
theoretical model that satisfies a set of conditions necessary 
for the existence of an infinite set of stable set. 

Since any stable set must have finite cardinality, the 

challenge in finding a model that makes an infinite set of 
stable sets possible is closing the dominance loop for any 
non-core allocations in a given allocation set 𝑆𝑆𝑖𝑖  against the 
non-core allocations in another set 𝑆𝑆𝑗𝑗  for a countably 
infinite family of such sets. This implies when comparing 
two distinct allocation sets 𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑗𝑗 , any chain of 
dominance starting with a non-core allocation in 𝑆𝑆𝑖𝑖  must 
end after finitely many allocations with a non-core allocation 
in the same set 𝑆𝑆𝑖𝑖  in order for 𝑆𝑆𝑖𝑖  to satisfy external stability 
against 𝑆𝑆𝑗𝑗 : 

 𝑧𝑧𝑖𝑖 ≻ 𝑧𝑧𝑗𝑗 ≻∙∙∙∙∙≻ 𝑥𝑥𝑗𝑗 ≻ 𝑥𝑥𝑖𝑖  

with 𝑎𝑎𝑖𝑖  and 𝑧𝑧𝑖𝑖  in 𝑆𝑆𝑖𝑖  and 𝑎𝑎𝑗𝑗  and 𝑧𝑧𝑗𝑗  in 𝑆𝑆𝑗𝑗 . Since this 
relation must also hold true for 𝑆𝑆𝑗𝑗  against 𝑆𝑆𝑖𝑖 , a necessary 
condition is the existence of two distinct sets of allocations. 
Since this second set of allocations consists of non-core 
elements, dominance structures also exist within these 
allocations.  

Let (𝑛𝑛,𝜋𝜋,𝑋𝑋)  be a continuous pillage game with a 
non-empty core 𝐾𝐾. Suppose we have an infinite sequence  
of forward dominant allocations {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  satisfying the 
monotonicity, unidirectionality, and parity comparison 
conditions in section 4. This implies that two distinct 
allocations 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗  can belong to two distinct sets 𝑆𝑆𝑖𝑖  and 
𝑆𝑆𝑗𝑗  to satisfy internal stability.  

Let 𝐾𝐾  and 𝑥𝑥𝑖𝑖  be in 𝑆𝑆𝑖𝑖 . By theorem 4, {𝑥𝑥𝑖𝑖}𝑖𝑖=1
∞  is 

transitively dominant. External stability necessitates 
allocations {𝑎𝑎1,𝑖𝑖}𝑖𝑖=1

∞  that dominate 𝑥𝑥𝑗𝑗 ’s down the chain by 
theorem 2. In the notation 𝑎𝑎1,𝑖𝑖 , the first right index 1 
indicates that this sequence of allocations {𝑎𝑎1,𝑖𝑖}𝑖𝑖=1

∞  is the 
first sequence needed after the original sequence {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ . 
The second right index i indicates the position of the element 
𝑎𝑎1,𝑖𝑖  in the set of allocations. Namely, 𝑎𝑎1,𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 . Thus we 
have for 𝑖𝑖,𝑘𝑘 ∈ 𝕫𝕫+ 

𝑎𝑎1,𝑖𝑖 ≻ 𝑥𝑥𝑖𝑖+𝑘𝑘 ≻ 𝑥𝑥𝑖𝑖  
Lemma 3. {𝑎𝑎1,𝑖𝑖}𝑖𝑖=1

∞  is a sequence of pairwise distinct 
allocations. That is, 𝑎𝑎1,𝑖𝑖 ≠ 𝑎𝑎1,𝑗𝑗  for 𝑖𝑖 ≠ 𝑗𝑗.  

Proof. Suppose for 𝑖𝑖 ≠ 𝑗𝑗 , 𝑎𝑎1,𝑖𝑖 = 𝑎𝑎1,𝑗𝑗 . Assume without 
the loss of generality that 𝑖𝑖 < 𝑗𝑗. Since 𝑥𝑥𝑖𝑖  and 𝑎𝑎1,𝑖𝑖  are in 𝑆𝑆𝑖𝑖  
and 𝑥𝑥𝑗𝑗  and 𝑎𝑎1,𝑗𝑗  are in 𝑆𝑆𝑗𝑗 , forward dominance of {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞  
implies that we have  

𝑥𝑥𝑗𝑗 ≻ 𝑥𝑥𝑖𝑖  
By external stability of 𝑆𝑆𝑖𝑖 , we also have 

𝑎𝑎1,𝑖𝑖 ≻ 𝑥𝑥𝑗𝑗 ≻ 𝑥𝑥𝑖𝑖  
Since 𝑎𝑎1,𝑗𝑗 ∈ 𝑆𝑆𝑗𝑗 , if 𝑎𝑎1,𝑗𝑗 = 𝑎𝑎1,𝑖𝑖 , the dominance sequence 

above implies that  
𝑎𝑎1,𝑗𝑗 ≻ 𝑥𝑥𝑗𝑗 ≻ 𝑥𝑥𝑖𝑖  

But this contradicts the internal stability of 𝑆𝑆𝑗𝑗 . Thus we 
must have 𝑎𝑎1,𝑖𝑖 ≠ 𝑎𝑎1,𝑗𝑗  for 𝑖𝑖 ≠ 𝑗𝑗. This completes the proof.  

The above lemma implies that an infinite sequence of 
allocations {𝑎𝑎1,𝑖𝑖}𝑖𝑖=1

∞  where 𝑎𝑎1,𝑖𝑖  dominates an infinite 
subset of {𝑥𝑥𝑗𝑗 }𝑗𝑗=𝑖𝑖+1

∞  is needed to ensure external stability. 
Thus we have that 𝐾𝐾, 𝑥𝑥𝑖𝑖  and 𝑎𝑎1,𝑖𝑖  now belong to 𝑆𝑆𝑖𝑖 . Since 
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we have 𝑎𝑎1,𝑖𝑖 ≻ 𝑥𝑥𝑗𝑗 ≻ 𝑥𝑥𝑖𝑖  and 𝑎𝑎1,𝑖𝑖’s are non-core allocations, 
there is an allocation in 𝑆𝑆𝑗𝑗  that dominates 𝑎𝑎1,𝑖𝑖 . This 
necessitates the existence of a second sequence of allocations 
{𝑎𝑎2,𝑖𝑖}𝑖𝑖=1

∞  with 𝑎𝑎2,𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 . We now consider a set of conditions 
sufficient for the existence of an ℵ0-order set of stable sets in 
a continuous pillage game:  
1.  (𝑛𝑛,𝜋𝜋,𝑋𝑋)  contains pairwise distinct forward dominant 

sequences {𝑥𝑥𝑖𝑖}𝑖𝑖=1
∞ , {𝑎𝑎1,𝑖𝑖}𝑖𝑖=1

∞ , and {𝑎𝑎2,𝑖𝑖}𝑖𝑖=1
∞  in the 

interior of 𝑋𝑋  such that each sequence satisfies the 
conditions of monotonicity, unidirectionality, and parity 
comparison.  

2.  There exists a finite set of non-core allocations 𝐶𝐶 =
{𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3,∙∙∙∙∙, 𝑐𝑐𝑛𝑛 , }  with 𝑐𝑐𝑖𝑖 ∉ {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ ∪ {𝑎𝑎1,𝑖𝑖}𝑖𝑖=1
∞ ∪

 {𝑎𝑎2,𝑖𝑖}𝑖𝑖=1
∞ ; 𝑥𝑥𝑖𝑖 ,𝑎𝑎1,𝑖𝑖  ,𝑎𝑎2,𝑖𝑖 , 𝑐𝑐𝑖𝑖 , and elements in 𝐾𝐾  do not 

dominate each other; and 𝑐𝑐𝑖𝑖  does not dominate 𝑐𝑐𝑗𝑗  for 
𝑖𝑖 ≠ 𝑗𝑗. 

3.  ∀ 𝑏𝑏 ∈ 𝑋𝑋/{𝐾𝐾,𝐶𝐶, {𝑥𝑥𝑖𝑖}𝑖𝑖=1
∞ , {𝑎𝑎1,𝑖𝑖}𝑖𝑖=1

∞ , {𝑎𝑎2,𝑖𝑖}𝑖𝑖=1
∞ } , b is either 

dominated by a subset of the core, or by allocations  in 
𝐶𝐶, or by an allocation in {𝑥𝑥𝑖𝑖}𝑖𝑖=1

∞ , {𝑎𝑎1,𝑖𝑖}𝑖𝑖=1
∞ , or {𝑎𝑎2,𝑖𝑖}𝑖𝑖=1

∞  
for each i.  

4.  The following inter-sequence dominance structure holds 
∀ 𝑗𝑗, 𝑘𝑘 ∈ 𝕫𝕫+:  
𝑥𝑥𝑗𝑗+𝑘𝑘 ≻ 𝑥𝑥𝑗𝑗 ≻ 𝑎𝑎2,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎2,𝑗𝑗 ≻ 𝑎𝑎1,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎1,𝑗𝑗 ≻ 𝑥𝑥𝑗𝑗+𝑘𝑘  

Theorem 6. A continuous pillage game with a power 
function 𝑓𝑓: 2𝐼𝐼 × 𝑋𝑋 → ℝ satisfying the three order axioms 
and conditions (1) through (4) contains an ℵ0-order of stable 
sets {𝑆𝑆𝑖𝑖}𝑖𝑖=1

∞  with 𝑆𝑆𝑖𝑖 = {𝐾𝐾,𝐶𝐶, 𝑥𝑥𝑖𝑖 ,𝑎𝑎1,𝑖𝑖 ,𝑎𝑎2,𝑖𝑖}. 
Proof. Let 𝑆𝑆𝑖𝑖 = {𝐾𝐾,𝐶𝐶, 𝑥𝑥𝑖𝑖 ,𝑎𝑎1,𝑖𝑖 ,𝑎𝑎2,𝑖𝑖}. Condition (1) gives 

the infinite sequences where valuation comparisons can be 
made by the power function. These sequences satisfy the 
conditions of monotonicity, unidirectionality, and parity 
comparison. Forward dominant means that ∀ 𝑗𝑗, 𝑘𝑘 ∈ 𝕫𝕫+, we 
have the following relations: 

𝑥𝑥𝑗𝑗+𝑘𝑘 ≻ 𝑥𝑥𝑗𝑗 , 𝑎𝑎1,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎1,𝑗𝑗 , and 𝑎𝑎2,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎2,𝑗𝑗        (12) 
Conditions (1) and (4) taken together give the closed loop 

of finite length as follows. ∀ 𝑗𝑗, 𝑘𝑘 ∈ 𝕫𝕫+ , any non-core 
allocation in 𝑆𝑆𝑗𝑗  gives a unique chain of dominance that ends 
also in 𝑆𝑆𝑗𝑗 . For 𝑥𝑥𝑗𝑗 ∈ 𝑆𝑆𝑗𝑗 , conditions (1) and (4) give the 
following finite chain of dominance: 

 𝑥𝑥𝑗𝑗 ≻ 𝑎𝑎2,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎2,𝑗𝑗 ≻ 𝑎𝑎1,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎1,𝑗𝑗 ≻ 𝑥𝑥𝑗𝑗+𝑘𝑘 ≻ 𝑥𝑥𝑗𝑗     (13) 

For 𝑎𝑎1,𝑗𝑗 ∈ 𝑆𝑆𝑗𝑗 , conditions (1) and (4) also give the 
following finite chain of dominance: 

 𝑎𝑎1,𝑗𝑗 ≻ 𝑥𝑥𝑗𝑗+𝑘𝑘 ≻ 𝑥𝑥𝑗𝑗 ≻ 𝑎𝑎2,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎2,𝑗𝑗 ≻ 𝑎𝑎1,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎1,𝑗𝑗    (14) 

Similarly for 𝑎𝑎2,𝑗𝑗 ∈ 𝑆𝑆𝑗𝑗 , conditions (1) and (4) give the 
following finite chain of dominance: 

 𝑎𝑎2,𝑗𝑗 ≻ 𝑎𝑎1,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎1,𝑗𝑗 ≻ 𝑥𝑥𝑗𝑗+𝑘𝑘 ≻ 𝑥𝑥𝑗𝑗 ≻ 𝑎𝑎2,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎2,𝑗𝑗   (15) 

Therefore when comparing 𝑆𝑆𝑗𝑗  with 𝑆𝑆𝑗𝑗+𝑘𝑘 , if we start with 
any non-core allocation in 𝑆𝑆𝑗𝑗 , the chain of dominance 
structure is always a cyclic loop of finite length that ends in a 
non-core allocation in 𝑆𝑆𝑗𝑗  to ensure external stability. 
Starting with any non-core allocation in 𝑆𝑆𝑗𝑗+𝑘𝑘 , conditions (1) 
and (4) also give a chain of finite length against non-core 
allocations in 𝑆𝑆𝑗𝑗+𝑘𝑘 . For 𝑥𝑥𝑗𝑗+𝑘𝑘 ∈ 𝑆𝑆𝑗𝑗+𝑘𝑘 , conditions (1) and (4) 

give the following finite chain of dominance: 
 𝑥𝑥𝑗𝑗+𝑘𝑘 ≻ 𝑥𝑥𝑗𝑗 ≻ 𝑎𝑎2,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎2,𝑗𝑗 ≻ 𝑎𝑎1,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎1,𝑗𝑗 ≻ 𝑥𝑥𝑗𝑗+𝑘𝑘    (16) 

For 𝑎𝑎1,𝑗𝑗+𝑘𝑘 ∈ 𝑆𝑆𝑗𝑗+𝑘𝑘 , conditions (1) and (4) also give the 
following finite chain of dominance: 

 𝑎𝑎1,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎1,𝑗𝑗 ≻ 𝑥𝑥𝑗𝑗+𝑘𝑘 ≻ 𝑥𝑥𝑗𝑗 ≻ 𝑎𝑎2,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎2,𝑗𝑗 ≻ 𝑎𝑎1,𝑗𝑗+𝑘𝑘   (17) 

And similarly for 𝑎𝑎2,𝑗𝑗+𝑘𝑘 ∈ 𝑆𝑆𝑗𝑗+𝑘𝑘 , conditions (1) and (4) 
give the following finite chain of dominance: 

 𝑎𝑎2,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎2,𝑗𝑗 ≻ 𝑎𝑎1,𝑗𝑗+𝑘𝑘 ≻ 𝑎𝑎1,𝑗𝑗 ≻ 𝑥𝑥𝑗𝑗+𝑘𝑘 ≻ 𝑥𝑥𝑗𝑗 ≻ 𝑎𝑎2,𝑗𝑗+𝑘𝑘   (18) 
Thus, when comparing the non-core allocations in two 

stable sets 𝑆𝑆𝑚𝑚  and 𝑆𝑆𝑛𝑛 , starting with any non-core allocation 
in the first stable set 𝑆𝑆𝑚𝑚 , a dominance loop of finite length 
ending also with an allocation in 𝑆𝑆𝑚𝑚  exists both for 𝑛𝑛 < 𝑚𝑚 
and 𝑚𝑚 < 𝑛𝑛. Condition (2) gives internal stability in that for 
any pair of allocations 𝑎𝑎 and 𝑏𝑏 in 𝑆𝑆𝑖𝑖 = {𝐾𝐾,𝐶𝐶, 𝑥𝑥𝑖𝑖 ,𝑎𝑎1,𝑖𝑖 ,𝑎𝑎2,𝑖𝑖}, 
if we denote 𝑊𝑊 = {𝑖𝑖|𝑎𝑎𝑖𝑖 > 𝑏𝑏𝑖𝑖} and 𝐿𝐿 = {𝑖𝑖|𝑏𝑏𝑖𝑖 > 𝑎𝑎𝑖𝑖}, then we 
have 𝜋𝜋(𝑊𝑊,𝑎𝑎𝑖𝑖) = 𝜋𝜋(𝐿𝐿,𝑎𝑎𝑖𝑖)  and 𝜋𝜋(𝑊𝑊, 𝑏𝑏𝑖𝑖) = 𝜋𝜋(𝐿𝐿, 𝑏𝑏𝑖𝑖) . 
Condition (3) gives external stability for 𝑆𝑆𝑖𝑖 . The reader is 
cautioned that the theorem only gives a special set of 
sufficient conditions – these conditions may not be necessary. 
Indeed there can be numerous examples of pillage games in 
which conditions other than conditions (1) through (4) are 
satisfied but still have infinitely many stable sets.  

6. Conclusions 
Continuity gives many advantages in analysing pillage 

games. For example, since 𝐶𝐶 × 𝑋𝑋 is a compact set for any 
𝐶𝐶 ⊂ {1,2,3, … . .𝑛𝑛}, its image 𝜋𝜋(𝐶𝐶 × 𝑋𝑋) is also a compact 
set in ℝ. Hence 𝜋𝜋(𝐶𝐶 × 𝑋𝑋) is a bounded set. In addition, 
since a continuous function on a compact set is also 
uniformly continuous, 𝜋𝜋 is uniformly continuous on 𝐶𝐶 × 𝑋𝑋. 
These rich structural properties lead to a simpler path of 
analysis of continuous pillage games. We now propose two 
possible future approaches to the study of pillage games, one 
for the continuous case and the other for the general case 
without the assumption of continuity.  

If a pillage game is continuous, the boundedness property 
and the subsequent uniform continuity property stated above 
allow for a profile of (𝑛𝑛,𝜋𝜋,𝑋𝑋) to be constructed as follows. 
Given any 𝐶𝐶 ⊂ {1,2,3, … . .𝑛𝑛}  and 𝜀𝜀 > 0 , ∃𝛿𝛿𝐶𝐶,𝜀𝜀 > 0 
depending on 𝐶𝐶 and 𝜀𝜀  such that ∀ 𝑥𝑥1, 𝑥𝑥2 ∈ 𝑋𝑋  with 
‖𝑥𝑥1 − 𝑥𝑥2‖ < 𝛿𝛿𝐶𝐶,𝜀𝜀 , we have |𝜋𝜋(𝐶𝐶, 𝑥𝑥1) − 𝜋𝜋(𝐶𝐶, 𝑥𝑥2)| < 𝜀𝜀 . 
Since there are only finitely many subsets of {1,2,3, … . .𝑛𝑛}, 
a lower bound on all of the 𝛿𝛿𝐶𝐶,𝜀𝜀 ’s with 𝐶𝐶  spanning 
{1,2,3, … . .𝑛𝑛}  can be found. As a result, the power 
function’s growth rate can be controlled. Thus starting at any 
allocation x, one can ask: what is the maximum rate a 
coalition C’s collective power can grow by moving to a 
nearby allocation x’.  

In the general case without the assumption of continuity, 
notice that pillage games have certain measure-theoretic 
properties that give insights and characterize classes of 
games beyond pillage games. Given an allocation x, the WC 
condition introduces a property similar to that of a measure 
𝜇𝜇: if 𝐶𝐶1 ⊂ 𝐶𝐶2, then  
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𝜋𝜋(𝐶𝐶1, 𝑥𝑥) ≤ 𝜋𝜋(𝐶𝐶2, 𝑥𝑥)  ⇔  𝜇𝜇(𝐶𝐶1) ≤ 𝜇𝜇(𝐶𝐶2)    (19) 
Thus for suitable subsets of {1,2,3, … . .𝑛𝑛} , a binary 

relation with respect to set inclusion exists. One needs to use 
caution in that if ∅ ≠ 𝐶𝐶1 ∩ 𝐶𝐶2

𝑐𝑐  and ∅ ≠ 𝐶𝐶2 ∩ 𝐶𝐶1
𝑐𝑐 , no 

conclusion can be made on the comparison of 𝜋𝜋(𝐶𝐶1, 𝑥𝑥) and 
𝜋𝜋(𝐶𝐶2, 𝑥𝑥). One can obtain certain quantitative comparisons 
because the following set inclusion holds: 𝐶𝐶1 ∩ 𝐶𝐶2 ⊂ 𝐶𝐶1 , 
𝐶𝐶1 ∩ 𝐶𝐶2 ⊂ 𝐶𝐶2, and 𝐶𝐶𝑖𝑖 ⊂ 𝐶𝐶1 ∪ 𝐶𝐶2 for 𝑖𝑖 = 1, 2. 

From the other end, given 𝐶𝐶 ⊂ {1,2,3, … . .𝑛𝑛}. the WR and 
SR conditions also impose a poset structure “ ⊲ ” on 
allocations in X as follows. If 𝑥𝑥𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖 ,∀ 𝑖𝑖 ∈ 𝐶𝐶, then 

𝑥𝑥 ⊲ 𝑦𝑦 in that 𝜋𝜋(𝐶𝐶, 𝑥𝑥) ≤ 𝜋𝜋(𝐶𝐶,𝑦𝑦)       (20) 
Without additional restrictions on (𝑛𝑛,𝜋𝜋,𝑋𝑋), one cannot 

compare 𝜋𝜋(𝐶𝐶, 𝑥𝑥) to 𝜋𝜋(𝐶𝐶,𝑦𝑦) if 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 ,∀ 𝑖𝑖 ∈ 𝐶𝐶 . But these 
above stated properties indeed make 𝜋𝜋(𝐶𝐶, _ ) a “semi-poset” 

if 𝑥𝑥 ⊲ 𝑦𝑦 ⟹  𝜋𝜋(𝐶𝐶, 𝑥𝑥) ≤ 𝜋𝜋(𝐶𝐶,𝑦𝑦)       (21) 
In a certain sense, (𝑛𝑛,𝜋𝜋,𝑋𝑋) displays properties of a fibre 

bundle. That is, (𝑛𝑛,𝜋𝜋,𝑋𝑋) can be considered as a map on the 
cross product 2𝐼𝐼 × 𝑋𝑋  that fibers over the subsets of 
{1,2,3, … . .𝑛𝑛}. Given a subset 𝐶𝐶 ⊂ 2𝐼𝐼, the fibering respects 
set inclusions. Conversely, when restricted to a particular 
subset, the fibre splitting respects the poset structure stated 
above. Given these observations, the following question can 
be asked: is there a general form of representation theorem 
for pillage games? In other words, can there exist a 
real-valued function 𝑓𝑓: 2𝐼𝐼 × 𝑋𝑋 → ℝ and a semi-measure 𝜇𝜇 
such that given (𝐶𝐶, 𝑥𝑥) ∈ 2𝐼𝐼 × 𝑋𝑋, we have  

   𝜋𝜋(𝐶𝐶, 𝑥𝑥) = �  
𝐶𝐶,𝑥𝑥

 𝑓𝑓 𝑑𝑑𝑑𝑑                        (22) 

It is understood that integrability in this case can be made 
more general than that of Riemann integration or even 
Lebesgue integrability. We should be advised that if a 
semi-measure 𝜇𝜇  exists on 2𝐼𝐼 × 𝑋𝑋  such that the power 
function 𝜋𝜋  can be represented as the integral of this 
𝜇𝜇 -measurable real-valued function 𝑓𝑓 , the integral of 𝑓𝑓 
could be unbounded over the product space 2𝐼𝐼 × 𝑋𝑋: 

              ��  
2𝐼𝐼×𝑋𝑋

 𝑓𝑓 𝑑𝑑𝑑𝑑 � = ∞                       (23) 

If this representation is tenable even in the greatest 
generality, it can, for pillage games and for other cooperative 
games, reduce the study of these games essentially to      
the properties of the representation function 𝑓𝑓  and the 
semi-measure 𝜇𝜇.  
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