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Abstract  Game Theory is of interest because it is utilized extensively in many applications such as insurance, business, 
military and biology. One of the famous examples that has been investigated and analysed widely by game theory is the 
Iterated Prisoner Dilemma (IPD). Many researchers tend to change the IPD memory, due to the lack of information or the 
delay that may occur in cases that need a quick firm decision. Up till now there is no detailed investigation of using the 
outcome of the second-previous round (memory two) instead of the immediately-previous one. In this study, the critical role 
played by only a finite two state automata is presented due to the exponentially increase of number of strategies with number 
of rounds. One of the greatest challenges is the noise occurred during implementation. Therefore, this paper traces the 
development of strategies payoffs under noise using second-previous state. It will be argued that the payoff matrix will be 
analysed to illustrate strategies behaviour. The objective of this study is to investigate mixed strategies between all 
heteroclinic three-cycles. The results showed that neither strategy abide in front of all other strategies, however there are four 
strong strategies. A case study is adopted to examine the strategies behaviour in business cooperation conflict.  
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1. Introduction 
Complexity of computations and calculations of many 

mathematical models forces mathematicians to find a new 
technique. Game Theory is one of these new techniques that 
were implemented to beat these difficulties in conflict 
situations. The first serious discussions and analyses of 
cooperative games emerged during the 1950s by Von 
Neumann [1]. Also, Noncooperative games was reported in 
the first studies of Nash [2]. Then several studies follow the 
steps of Von Neumann and Nash.  

Insurance, business, military, and biology are some of the 
fields in which rational decision making is needed [3-10]. 
Game is a competition between players seeking objectives. 
Games can fall into main two types, game of chance such as 
roulettes or game of strategies such as poker. Game of 
strategies is the game of interest in this study. The main task 
is to get the strongest strategy that maximize the payoff and 
minimize the loss of each player.  

Prisoner Dilemma (PD) is a simple form of a two 
player-game and it could be considered one of the most 
frequently used example that arises in many applications [11, 
12]. PD is a competition between two players (prisoners)  
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each of them facing an indictment of a crime. Each player 
has one of two decisions to cooperate (deny) (C) or defect 
(confess) (D) with the other player. Both players are 
rewarded (R) if both of them cooperate. In turn they are 
punished (P) if both of them defect [5, 13]. In case of 
opposite decisions the co-operator is suckered (S) and the 
defector is tempted (T).  

PD has two main conditions T>R>P>S, and 2R>T+S. 
These conditions mean that the player who chooses mutual 
cooperation receives a payoff higher than switching between 
cooperation and defection [14]. The following payoff matrix 
is a good illustration of the PD game. 

  C D 
C
D�

R S
T P�                 (1) 

To date, several studies used the immediate-previous state 
(memory one) to generates the new state. Many researchers 
tend to change the IPD memory, due to the lack of 
information or the delay that may occur in cases that need a 
quick firm decision. So a quite modification is used in this 
work, where the second-previous round (before the last one) 
was used to get the new state. Consequently sixteen 
sequences arise due to the imposition of the first two rounds. 
In this paper the third state is generated using the outcome of 
the first one and the fourth state using the outcome of the 
second one. This algorithm will be repeated infinitely then 
the average payoff is calculated using the payoff of each 
round.  
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A notable example of two length memory is the conflict 
between two companies. If these companies have mutual 
three projects. The first project decision and payoff is known. 
Then however, the decision of the second project was taken 
it isn’t known for the other company. Finally there is new 
decision must be taken in the third project. So the new 
decision depends on the second-previous project outcome. 

The number of strategies that can be used is very large  
[10, 15-18]. A two-state automata is adopted to represent the 
strategies that were only used in this work. The total number 
of two state automata strategies is sixteen strategy [19]. 
Conflicts of every strategy with the other strategies are 
studied and payoffs are recorded in 16 × 16 matrix. 

Payoff matrix of 256 entries is constructed under the effect 
of noise (error in perception or implementation) [13, 19]. 
Optimum strategy which will invade all the other strategies 
is hoped to be determined. But unfortunately neither strategy 
abides in front of all other strategies. Further analysis shows 
that two or more strategies can be mixed with different 
probabilities to get better results. 

The equilibrium between a number of strategies more than 
three is time consuming and very complex. Only mixed 
strategies between heteroclinic three-cycles are calculated. If 
there are three strategies A, B and C where A invades B and 
B invades C and C return to invade A this is called 
heteroclinic three-cycles. Every equilibrium point between 
all heteroclinic three-cycles is calculated for Axelrod's 
values (T=5, R=3, P=1, S=0) [3, 20]. This will be carried out 
using game dynamics. Interestingly, some weak strategies in 
memory one do better in case of memory two. 

2. Average Payoff 
Iterated Prisoner Dilemma of memory two is represented 

as a first step to increase the memory of Prisoner Dilemma 
which arises in many applications. The approach of this 
paper depends on using the second-previous state outcome. 
Thus the third state is generated using the outcome of the 
first one and the fourth state using the second one. The 
unknown immediately-previous state outcome due to lack of 
knowledge or delay is the main reason to use the 
second-previous one. This algorithm will be repeated 
infinitely then the average payoff is calculated using the 
payoff of each round. 

There are an infinite number of strategies that can be used 
by each player. Studying these strategies will be very 
complex and time consuming. Only strategies generated by a 
two state automata will be studied to minimize calculations. 
Two state automata Figure 1 is a simple graph used to 
generate the new state from the known state. There are two 
nodes in each two state automata C and D exiting from each 
node two edges marked by CandD. There is an additional 
arrow to illustrate the imposition of the first state [13]. Two 
state automata generates only sixteen strategies that will be 
studied.  

 
Figure 1.  Automata of TFT(1,0,1,0) strategy (S10 player imitating the 
adversary’s previous move) 

The couples (C, C), (C, D), (D, C)  and (D, D)  are the 
alternatives outcomes of each round. These couples consist 
of the decisions of the two players corresponding to the 
specified payoffs R, S, T and P respectively. Binary system 
will be used to represent the sixteen strategies as quadruples 
of zeros and ones. Every digitrepresents the reaction of the 
player when one of the 4 possible outcomes of the known 
round arises (R, S, T, P). Zeros and ones indicate the player 
next move will be D  for 0 and C  for 1. The quadruple 
(1, 0, 0, 0) is called the Grim strategy and is the binary 
representation of S8  and (1, 0, 1, 1) is called Tweedledee 
and represents S11 . The conflict between S8 against S11 is 
shown in Illustration 1. 

The Illustration 1 gives the alternative sequences by which 
the game may be started (exactly sixteen sequences).Every 
one of the sixteen sequences has one of three average payoffs 
for S8 player, R (Regime A) for sequence number 1 only, 
(2R + P + T)/4 (Regime B) for the sequences 2, 3, 4, 5, 9, 
and 13, and (P + T)/2 (regime C) for the others. 

Regime A B C 

Payoff R 
2R + P + T

4
 

P + T
2

 

Sequence(s) 1 2, 3, 4, 5, 9, 13 6, 7, 8, 10, 11, 
12, 14, 15, 16 

For Axelrod's values (T = 5, R = 3, P = 1, S = 0). 

Regime A B C 
Payoff 3 3 3 

The three payoffs are equal, then starting with defection 
for S8 player (may be a company) is better than cooperation. 
So starting with defection for company using strategy S8 
against S11 is the best choice to avoid cooperation risk. The 
recent important question is what the effect of noise in player 
(company) that plays with S8strategy? 

3. Perturbed Payoff (Noise Effect) 
Existing of errors (noise) due to implementation may 

affect the average payoff. To calculate the perturbed payoff, 
let there is a player playing by strategy P =  (p1, p2, p3, p4) 
against another which playing by strategy Q =
 (q1, q2, q3, q4) where Pi and Qi represents the probability to 
play C after every outcome (R, S, T, P)  respectively. 
Transition matrix can be constructed using the transitions 
between the available states T, R, P, S. 
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  R            S               T                        P   
R
S
T
P⎝

⎛

p1q1 p1(1 − q1) (1 − p1)q1 (1 − p1)(1 − q1)
p2q3 p2(1 − q3) (1 − p2)q3 (1 − p2)(1 − q3)
p3q2 p3(1 − q2) (1 − p3)q2 (1 − p3)(1 − q2)
p4q4 p4(1 − q4) (1 − p4)q4 (1 − p4)(1 − q4)⎠

⎞  (2) 

Consider the left eigenvector of matrix (2) for eigenvalue 1 
is Π =  (π1, π2, π3, π4). For infinitely repeated games this 
vector is the unique stationary distribution. Therefore the 
payoff for player Pagainst Q is given by the following 
equation. 

E(P, Q) =  Rπ1  +  Sπ2  +  Tπ3  +  Pπ4       (3) 
Since pi, qi are zeros or ones, then in some cases the 

stochastic matrix (2) will contain many zeros, and it is no 
longer irreducible. Therefore, the vector π is no longer 
uniquely defined. 

Now, we are going to use another direct technique to 
compute the stochastic vectorΠ. Let us exemplify it for S8 
against S11 as following. Every regime will be studied 
separately. 

a) Regime A: Mutation 
 If S8 plays D instead of C A→B 
 If S11  plays D instead of C A→ B 

b) Regime B:  
 If S8 plays D instead of C B → C 

 If S8 plays C instead of D when S11 C A→ B 
 If S8 plays C instead of D when S11 D B → B 
 If S11 plays D instead of C when S8 C B → C 

 If S11 plays D instead of C when S8 D B → B 
 If S11 plays C instead of D regime B B → B 

c) Regime C:  

 If S8 plays C instead of D when S11 D C → C 
 If S8 plays C instead of D when S11 C C → B 
 If S11 plays C instead of D regime C C → C 

 If S11 plays D instead of C regime C C → C 

Thus the corresponding transition matrix from one regime 
to another will be as follows. 

 A   B   C
A
B
C
�

0 1 0
1/6 3/6 2/6

0 1/4 3/4
�       (4) 

The triples ( 1
12

, 6
12

, 5
12

) is the corresponding stationary 
distribution for perturbed S8 against S11. The perturbed 
payoff will be calculated by equation (5). 

E(S8, S11) =  1
12

 × A + 6
12

 × B + 5
12

 × C = 1
3

(R + T) (5) 

The payoff of every entry of the 256 entries matrix will be 
calculated by the same method and recorded in Table 1. 

4. Game Dynamics 
Domination is the main invasive method to determine the 

strongest stable strategy. DoesSidominateSj? To answers this 
question firstly four payoff values of Si × Sj, Si × Si, Sj ×

Sj, and Sj × Si must be extracted from Table 1. Then these 
payoffs are used to form a new 2×2 matrix. 

Si Sj 
Si
Sj
�

aii aij
aji ajj

�                   (6) 

Then if aii  ≥  aji  and aij  ≥  ajj , with at least one 
inequality being strict this means that Si dominates Sj [13]. 
This algorithm will be repeated for each strategy in two 
cases: 
1. For the following conditions (suitable conditions): 

a) T > R > P > S. 
b) 2R > T + S. 
c) 2P < T + S. 
d) 2P > R + S. 
e) T + S < R + P. 
f) R + 3P > 2T + 2S. 
g) R – S > 2T – 2P. 
h) 4T – 4R > 3P – 3S. 

2. For Axelrod’s values (T = 5, R = 3, P = 1,S = 0). 
Table 3 illustrates that no pure strategy can abide in front 

of all the other strategies which means that there is no 
evolutionary stable strategy. Soequilibrium between all three 
heteroclinic three-cycles will be calculated for Axelrod’s 
values. 

If there are three strategies Si, Sj and Sk where Si invades Sj 
and Sj invades Sk and Sk return to invade Si this is called 
heteroclinic three-cycles 

Results of substituting by Axelrod's value in Table 1 will 
give a new table (Table 2). Equilibrium points will be 
computed using Table 2. Equilibrium points between any 
three-cycles such that (S0, S1, S2)  can be computed as 
follows. 

The payoff matrix corresponding to the interaction 
between strategies S0, S1 and S2 is constructedas follows. 

    S0 S1  S2  
S0
S1
S2

�
1 3 1

0.5 2 2
1 2 13/8

�              (7) 

This matrix must be transformed into a system of linear 
equations. 

x1 + 3x2 + x3 = 0            (8) 
0.5x1 + 2x2 + 2x3 = 0           (9) 

x1 + 2x2 + (13/8)x3 = 0         (10) 
The previous system will be solved together with the 

following equation to get the equilibrium point. 
x1 + x2 + x3 = 1           (11) 

The equilibrium point of the previous system is ( 6
19

, 8
19

, 5
19

). 
To get the type of the heteroclinic three-cycles (attractors, 

repellors, centre), the diagonal values of the previous matrix 
must be transformed to be zeros. This can be achieved by 
subtracting a constant number from each entry of every 
column to make the diagonal entry of this column be zero. 
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This algorithm transforms the previous matrix to the 
following matrix. 

 𝐀𝐀 = �
𝟎𝟎 𝟏𝟏 − 𝟓𝟓

𝟖𝟖
𝟎𝟎 𝟎𝟎 𝟎𝟎
− 𝟏𝟏

𝟐𝟐
𝟎𝟎 𝟑𝟑

𝟖𝟖

�           (12) 

 
Det A Det A = 0 Det A > 0 Det A < 0 

Type Centre Repellor Attractor 

The determinant of the previous example is equal to zero. 
This means that the type of this heteroclinic three-cycle is 
centre Figure 2. 

 

Figure 3.  (S0, S1, S2) centre heteroclinic three-cycle 

This algorithm will be repeated for every three 
heteroclinic three-cycles to get all equilibrium points. These 
equilibrium points will be recorded in Table 4. 

5. Conclusions 
Every row in Table 3 represents strategies which beat Si. 

The first column represents strategies which beat Si using 
general conditions. The second column uses Axelrod's 
values to determine the best strategies. Every column will be 
studied separately in the following paragraphs. 

Firstly, it is apparent from Table 3 that at least every 
strategy is invaded by two strategies for general conditions. 
It is also noted that S0, S1, S8 and S9 are strong strategies 
which invade 12 strategies and are invaded by only two 
strategies for (S1, S8) where (S0, S9) are invaded by three 
strategies. S14 is invaded by all strategies except S10, S11 and 
S14 which indicates that it is a very weak strategy. 

Secondly, what is interesting in this data in column 2 
Table 3is that S13 abide in front all the other strategies for 
Axelrod’s values which means that it is a very strong 
strategy. S0, S1, S8 and S9 are also strong strategies which 
invade at least ten strategies. Further analysis showed that 
there is an inactive strategy S6 which can't invade any 
strategy. Similarly S14is outcompeted by the major number 
of strategies (exactly 12). 

Thirdly, another important finding is the behavior of S2 
and S5 which invade S0 and S8 respectively in both cases. 
Also these strategies invadea considerable large number of 
strategies. This in turn means that these strategies act as 
strong strategies in memory two. S5 (0, 1, 0, 1) which oppose 
the other player decision in the new state. S2 (0, 0, 1, 0) 
cooperates only when suckered. 

Table 3.  Dominating Strategies for General Conditions and Axelrods Values 

Strategy 
Dominating strategy 

General conditions Axelrod's payoff 

S0 2,8,10 2,8,10 

S1 0,8 0,3,8,10 

S2 1,3,9,10,11 1,9,10,11 

S3 0,1,4,7,8,9 0,4,8,11 

S4 0,1,8,9 0,1,8,9 

S5 0,1,2,4,9,10 0,1,2,4,9 

S6 0,1,2,3,4,5,8,9,10,11,12,13 0,1,2,3,9,13 

S7 0,1,2,4,5,6,8,9 0,1,2,3,4,5,8,9,11,12,13 

S8 5,10 5,10 

S9 0,1,8 0,1,8 

S10  7,9,11,14,15 5,9,11,13,14,15 

S11  0,1, 4, 5,8,9,15 0,1,4,5,8,9,12,13,15 

S12  0,1,2,4,5,8,9 0,1,2,4,8,9,13 

S13  0,1,2,3,4,5,8,9,12 - 

S14  0,1,2,3,4,5,6,7,8,9,12,13,15 0,1,2,3,4,5,7,8,9,12,13,15 

S15  0,1,2,3,4,5,6,7,8,9,12,13 0,1,2,3,4,5,7,8,9,12,13 
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Table 4.  Equilibrium Point and Type of Every Heteroclinic Three-Cycles 

Heteroclinic three-cycle Equilibrium point Type 

S0, S2, S9 (16
29

, 8
29

, 5
29

) 

Attractor 

S0, S2, S11 (119
227

, 48
227

, 60
227

) 

S0, S8, S5 ( 895
1159

, 240
1159

, 24
1159

) 

S0, S10, S5 (1, 0, 0) 

S0, S10, S9 (165
341

, 60
341

, 116
341

) 

S0, S10, S11 ( 71
287

, 42
287

, 174
287

) 

S1, S3, S9 ( 9
41

, 24
41

, 8
41

) 

S1, S3, S11 (19
67

, 32
67

, 16
67

) 

S1, S10, S9 (27
91

, 48
91

, 16
91

) 

S1, S10, S11 ( 47
143

, 56
143

, 40
143

) 

S2, S11, S12 ( 58
259

, 96
259

, 105
259

) 

S5, S9, S8 ( 108
7543

, 5680
7543

, 1755
7543

) 

S8, S10, S9 (315
443

, 60
443

, 68
443

) 

S8, S10, S11 ( 59
107

, 14
107

, 34
107

) 

S1, S8, S5 (41
68

, 11
68

, 16
68

) 

 
 
 
 

Repellor 
 
 
 
 
 
 

S1, S10, S5 ( 29
609

, 3
609

, 100
609

) 

S2, S10, S5 ( 13
182

, 114
182

, 55
182

) 

S2, S10, S14 ( 42
193

, 78
193

, 73
193

) 

S2, S10, S15 ( 76
143

, 36
143

, 31
143

) 

S2, S11, S15 ( 361
1299

, 637
1299

, 301
1299

) 

S2, S11, S15 ( 40
323

, 192
323

, 91
323

) 

S3, S11, S15 ( 20
149

, 96
149

, 33
149

) 

S4, S8, S5 (2905
4189

, 570
4189

, 714
4189

) 

S7, S11, S15 ( 30
239

, 168
239

, 41
239

) 

S0, S2, S1 ( 6
19

, 8
19

, 5
19

) 

Center 

S0, S10, S14 ( 56
321

, 120
321

, 145
321

) 

S0, S10, S15 ( 38
115

, 48
115

, 29
115

) 

S1, S3, S4 (1, 0, 0) 

S1, S10, S14 ( 7
59

, 48
59

, 4
59

) 

S1, S10, S15 (19
72

, 48
72

, 5
72

) 

S8, S10, S14 (14
55

, 24
55

, 17
55

) 

S0, S2, S1 (190
331

, 90
331

, 51
331

) 
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Illustration 1The confliction between S8 against S11  

 
 

 

(1) 

S8 C C C C C C C C 
Average 
Payoff 

R 
S11 C C C C C C C C 

Payoff R R R R R R R R 

(2) 
S8 C C C D C D C D 

2R + P + T
4

 S11 C D C C C D C C 
 R S R T R P R T 

(3) 
S8 C D C D C D C D 

2R + P + T
4

 S11 C C C D C C C D 
 R T R P R T R P 

(4) 
S8 C D C D C D C D 

2R + P + T
4

 S11 C D C C C D C C 
 R P R T R P R T 

(5) 
S8 C C D C D C D C 

2R + P + T
4

 S11 D C C C D C C C 
 S R T R P R T R 

(6) 
S8 C C D D D D D D 

P + T
2

 S11 D D C C D D C C 
 S S T T P P T T 

(7) 
S8 C D D D D D D D 

P + T
2

 S11 D C C D D C C D 
 S T T P P T T P 

(8) 
S8 C D D D D D D D 

P + T
2

 S11 D D C C D D C C 
 S P T T P P T T 

(9) 
S8 D C D C D C D C 

2R + P + T
4

 S11 C C D C C C D C 
 T R P R T R P R 

(10) 
S8 D C D D D D D D 

P + T
2

 11 C D D C C D D C 
 T S P T T P P T 

 
(11) 

S8 D D D D D D D D 
P + T

2
 S11 C C D D C C D D 

 T T P P T T P P 

(12) 
S8 D D D D D D D D 

P + T
2

 S11 C D D C C D D C 
 T P P T T P P T 

(13) 
S8 D C D C D C D C 

2R + P + T
4

 S11 D C C C D C C C 
 P R T R P R T R 

(14) 
S8 D C D D D D D D 

P + T
2

 S11 D D C C D D C C 
 P S T T P P T T 

(15) 
S8 D D D D D D D D 

P + T
2

 S11 D C C D D C C D 
 P T T P P T T P 

(16) 
S8 D D D D D D D D 

P + T
2

 S11 D D C C D D C C 
 P P T T P P T T 
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Fourthly, using mixed strategies for companies example 
will give better results because there isn't optimum strategy. 

Finally, there isn't any evolutionary stable strategy so the 
Table 4 represents every three heteroclinic three-cycle type 
and equilibrium point.  
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