
Journal of Civil Engineering Research 2015, 5(5): 106-113 
DOI: 10.5923/j.jce.20150505.02 

On Neural Network Constitutive Models for Geomaterials 

Drakos Stefanos*, Pande Gyan 

International Centre for Computational Engineering, Rhodes, Greece 

 

Abstract  An appropriate constitutive model embedded in a finite element engine is the key to the successful prediction 
of the observed behaviour of geotechnical structures. However, to capture the behaviour of geomaterials accurately, the 
constitutive models have to be complex involving a large number of material parameters and constants. This paper presents 
a methodology for converting or recasting complex constitutive models for geomaterials developed based on any 
constitutive theory into a fully trained Artificial Neural Network (ANN), which is then embedded in an appropriate finite 
element solution code. The length of strain trajectory traced by a material point, also called ‘intrinsic time’ is used as an 
additional input parameter in training. For the purpose of illustration, two constitutive models viz. Hardening Soil Model 
available in the commercial software, PLAXIS and a two-surface deviatoric hardening model in the multilaminate 
framework have been cast in the form of an ANN. Computational efficiency is perceived to be the main advantage of this 
methodology. 
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1. Introduction 
Appropriate constitutive models of soils are the key to a 

successful prediction of the behaviour of geotechnical 
structures. A large number of models based on various 
constitutive theories have been proposed in the last three 
decades. All of them assume a-priori, a mathematical 
framework of the model and the material parameters 
corresponding to the assumed framework have to be 
identified by physical material tests. Many material 
parameters in complex constitutive theories have no physical 
meaning, are difficult to determine and have to be identified 
by trial and error from numerical simulations. In spite of this, 
many features of soil behaviour such as stiffness at small 
strains, higher stiffness on reversal of stress path, influence 
of rotation of principal stress axes etc. have not been 
captured in a single model.  

Thus, it is likely that models of greater complexity will 
have to be developed in the future. In recent years a number 
of applications of Artificial Neural Networks (ANNs) 
leading to Neural Network based Constitutive Models 
(NNCMs) have been proposed by a number of researchers as 
in [1], [2], [3]. There are three different ways in which 
NNCMs can possibly be used by engineers with considerable 
advantage. These are: 

1.  Firstly, NNCMs can be developed for any material 
from the raw test data without invoking any  
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constitutive theory as in [3]. This approach has 
many advantages, the most important being that one 
does not necessarily have to identify material 
parameters of the model. However, if one does need 
to identify them to get a feel of the conventional 
engineering prameters, they can be identified by 
carrying out what is known as ‘virtual tests’. 

2.  Secondly, NNCMs can be trained from incremental 
load and displacement data of ‘structures’. Here, by 
the term ‘structures’, it is meant that solids of 
arbitrary shape subjected to monotonically 
increasing loads having a non-uniform states of 
strain and stress. Thus, a cylindrical specimen of a 
geo-material having glued rigid platens, subjected 
to uniaxial load is a structure. This application of 
NNCMs leads to ‘intelligent finite elements’ as in 
[4] and is available for condition monitoring of real 
structures. It can also be used to identify material 
parameters for complex materials such as masonry 
from structural tests, as in [5].  

3.  Thirdly, since many constitutive models are very 
complex, incorporating them in a finite element 
code and using them for solving real life problems 
may not be a trivial task. Here, using ‘synthetic data’ 
generated from systematic exploration of strain 
space and corresponding stress response, a NNCM 
can be trained and plugged in a Finite Element (FE) 
code. This will certainly leads to computational 
efficiency since the computation of stress increment 
for a strain increment from a trained NNCM is 
almost instantaneous. Whilst the first two categories 
of applications have been reported by a number of 
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researchers, there appear to have been no 
applications in this category. 

This paper belongs to the third category of applications. 
The objective is to demonstrate how synthetic data from any 
constitutive model can be used to successfully train a NNCM. 
We choose two constitutive models for illustration. The first 
is a well-known model viz. the Hardening Soil Model (HSM) 
available in the commercial code PLAXIS. This model uses 
parameters obtained from established engineering practice 
and is suitable for situations of monotonic loading. The 
second model is a complex Two-surface Deviatoric 
Hardening Model (TDHM) in the multilaminate framework 
for cyclic loading developed as in [6] for the purpose of 
illustration. Section 2 presents briefly details of the 
architecture of NNCMs adopted here. Section 3 provides 
details of HSM and generation of ‘synthetic data’ along 
triaxial compression and extension paths under loading and 
unloading conditions. Comparison of the response of a 
trained NNCM with the synthetic data used for training is 
also given here. Section 5 gives details of TDHM and 
generation of ‘synthetic data’ for one-way cyclic triaxial 
compression loading under various specified volumetric 
strains including zero volumetric strain. The latter condition 
represents undrained conditions encountered in the 
liquefaction problems of loose sands under seismic loading. 
In this section the response of a trained NNCM with the 
synthetic data for a number of cycles of loading and 
unloading is also compared. Section 6 gives conclusions and 
indicates the implications for computational efficiency in 
three-dimensional practical problems. 

2. Artificial Neural Network Based 
Constitutive Models 

Artificial Neural Networks (ANNs) are pattern 
recognition algorithms using which relationship between a 
set of ‘causes’ and ‘effects’ can be captured. Any set of 
numeric data can be used to discover the pattern in it, if it 
exists. In the past two decades, a large number of 
applications of this methodology in almost all disciples of 
physical and biological sciences have been reported. Here 
we concentrate on developing nonlinear stress- strain 
relations for geo-materials. 

2.1. Methodology and Architecture 

ANNs can be used to simulate stress-strain response of 
any material by using appropriate data. In this case, the 
components of strain rates become the causes whilst the 
resulting stress rates are the effects. Description of 
stress-strain behaviour by a NNCM does not require 
checking for plastic flow, computation of flow vector, 
updating and reconstitution tangential stress integration 
matrix. Full details are contained in [2], [3], [4], [5]. Here a 
brief description for completeness and continuity is given.  

Incremental (as distinct from total) stress vector can be 

computed from the corresponding incremental strain vector 
as follow: 

dσ = NNCM(dε)               (1) 
Where: 

dε = {dεx, dεy, dεz, dγxy, dγyz, dγxz}       (2) 
dσ = {dσx,dσy,dσz,dτxy, dτyz, dτxz}       (3) 

Here, in the terminology of ANNs, NNCM stands for a 
neural network based constitutive model trained from 
appropriate incremental stress-strain data at various 
strain/stress levels. Thus, the input parameters must include 
current components of stress (σ) and increments of strain 
(dε) whilst the required outputs are increment of stress (dσ). 
In many geotechnical problems, soils are subjected to cyclic 
and transient loads. Even in quasi-static problems many 
elements are subjected to unloading and reloading. For 
constitutive models to be valid, in such situations, it is 
proposed to adopt ‘intrinsic time’ as in [7], [8] or the 
current length of strain trajectory, ξ, as an independent input 
parameter. Mathematically, intrinsic time, ξ, is defined as 
follows: 

∫= ξξ d                    (4) 

Where, dξ is an increment of deviatoric strain defined as: 

𝑑𝑑𝜉𝜉 = 𝑑𝑑𝜀𝜀𝑖𝑖𝑖𝑖 −
1
3
𝛿𝛿𝑖𝑖𝑖𝑖 𝜀𝜀𝑘𝑘𝑘𝑘               (5) 

ξ, is a monotonically increasing positive parameter. The 
above definition can be changed to include volumetric strain 
as well as real time as is the case in ‘endrochronic’ theories 
of constitutive behaviour. 

Taking into consideration the above points in mind, the 
NNCM adopted in this paper has strain increments, stresses 
and ‘intrinsic time’ are the input variables whilst increments 
of stress are the output variables. For two-dimensional 
analyses, the optimal architecture of the NN has been 
obtained by trial and error and is presented in Figure 1. It is 
constituted by 9 input nodes two hidden layer of 18 and 8 
nodes respectively and 4 output nodes. In order to train the 
neural network the resilient back-propagation (RPROP) 
algorithm is used. RPROP was first proposed by Reidmiller 
as in [9] and implemented by Shin as in [10]. It is a local 
adaptive learning scheme based on the standard 
back-propagation framework. 

 

Figure 1.  Architecture of NNCM [9-18-8-4] for two-dimensional analysis 
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2.2. Data Enrichment 

The strain-stress pairs from the triaxial tests are actually 
principal stresses and strains since no shear stresses/strains 
are involved. If such data were used for training, NNCM will 
have to extrapolate wherever shear stress/strain components 
are involved. This will lead to large inaccuracies in 
stress-strain response of the NNCM.  

To overcome this limitation, in [3] proposed a data 
enrichment strategy. They created additional data by 
transformation of stresses and strains in a co-ordinate other 
than the principal axes of soil sample being tested. This 
naturally leads to non-zero shear components of stresses and 
strains.  

This method produces a large amount of training data 
depending on the number of co-ordinate transformations 
chosen to generate data. Among the expanded data there are 
many duplicated strain-stress pairs so an additional process 
of ‘data pruning’ is adopted. In this paper, the procedure 
described above has been adopted for data enrichment with 
an incremental angle, Δθ equal to 5º in order to rotate the 
strain-stress axes from -45o to + 45o. 

3. Hardening Soil Model (HSM) 
The Hardening Soil Model described in PLAXISTM 

Manual is a nonlinear elastic-plastic model with Mohr 
Coulomb failure criterion. It is an enhanced version of the 
nonlinear elastic hyperbolic model of Duncan & Chang as in 
[11] with deviatoric hardening operating on Mohr Coulomb 
yield surface. A non-associated flow rule defined by a 
dilatancy angle smaller than the peak friction angle is 
adopted. It is generally applicable to loose to medium dense 
sands and normally consolidated to lightly overconsolidated 
soils. The model captures apparently strong nonlinearity 
prior to failure, which is a drawback of conventional linear 
elastic-plastic models. A cap in deviatoric stress – mean 
effective stress space is also included.  

3.1. Synthetic Data Generation 

For heuristic purpose, we have chosen typical parameters 
for medium dense as given in Table 1. Though many 
parameters will be familiar to engineers, one should refer to 
the PLAXISTM software manuals for full details.  

The data in Table 1 are used to generate stress-strain 
response of the sand under various experimental 
configurations, viz. Triaxial Loading in Compression (LC), 
Triaxial Loading in Extension (LE), Unloading in 
Compression (UC) and Unloading in Extension (UE). Data 
have been generated under stress controlled drained 
conditions. A single finite element subjected to uniform 
stress conditions was used in analysis with PLAXISTM 
software with HSM model with parameters given in Table 1. 
The stress paths, in deviatoric stress, q, and effective mean 
stress, p’, space are shown in Fig. 2. Three different 
confining pressures of 50 kPa, 100 kPa and 150 kPa were 

used for each of the above stress paths. In engineering 
practice, if such test data were available for a soil, one would 
perhaps term them as ‘extensive’. These stress-strain data 
obtained from these simulations were then used for training 
the NNCM.  

Table 1.  Chosen parameters for sand for HSM 

E50
ref (for pref = 100kPa), kPa 20000 

Eur
ref (for pref = 100 kPa), kPa 60000 

Eoed
ref (for pref = 100 kPa), kPa 20000 

Cohesion c΄, kPa 0.0 

Friction angle φ΄, degrees 30 

Dilatancy angle ψ, degrees 0 

Poisson ratio v 0.2 

Power m 0.5 

Konc 0.5 

Tensile strength, kPa 0 

Failure ratio 0.9 

 

Figure 2.  Stress paths in q – p’ space used for generating synthetic data 

 

Figure 3.  Graph of q versus εyy under LC and LE conditions for a 
confining pressure of 100 kPa 

Plots of q versus axial strain, εyy, as predicted by the 
trained NNCM and the original HSM data used for training, 
for various stress paths are shown in Figures 3 and 4. An 
excellent match is observed confirming that NNCM has been 
adequately trained. This, however, is not surprising since 
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prediction of response is made for the confining pressure, 
which was also used in training data. We need to check if the 
response at confining pressures within the training range as 
well as outside that used in training is also reasonable. This 
issue is discussed in the next section of the paper.  

 

Figure 4.  Graph of q versus εyy under UC and UE conditions for a 
confining pressure of 100 kPa 

3.2. Model Validation  

 

Figure 5.  Graph of q versus εyy under LC conditions for a confining 
pressure of 10 kPa 

 

Figure 6.  Graph of q versus εyy under LC conditions for a confining 
pressure of 200 kPa 

In this part of the paper, we present the prediction of the 
trained NNCM for two additional triaxial tests with 
confining pressures of 10 kPa & 200 kPa which are out of the 
range of the training data. For these tests the predictions of 

the NNCM were poor. NNCM was then re-trained using 
additional data generated for the four stress paths described 
earlier and for confining pressures of 1 kPa and 200 kPa. The 
graphs of q versus εyy are presented in the figures 5 and 6 
for the HSM, trained and re-trained NNCMs. This confirms 
that extrapolation by NNCM is always of poorer quality 
than interpolation.  

4. Two-Surface Model in Multilaminate 
Framework (TDHM) 

4.1. Background 

A multilaminate framework for modelling the behaviour 
of soils was presented by Pande and Sharma as in [12] almost 
two decades ago. Yield and failure criterion for most 
elasto-plasticity based models are written terms of stress 
invariants. This type of formulation inhibits the development 
of plastic strains purely due to rotation of principal stresses. 
Such formulations also exclude plastic flow induced 
anisotropy. Multilaminate formulation of plasticity based 
models overcomes both the above mentioned short comings. 
Here, the yield and failure criteria as well as plastic potential 
and hardening softening functions are written in shear stress/ 
normal stress space for randomly oriented micro-planes. A 
framework similar to multilaminate framework was 
presented by Bazant as in [13] under the name ‘micro-plane 
model’. Extensive has been carried out on practical 
applications of the multilaminate framework by Scharinger 
& Schweiger, H. as in [14]. In the following a brief 
description of the formulation of a new two-surface model in 
multilaminate framework which is formulated for cyclic and 
transient loading, is presented as in [6]. Some details of 
multilaminate formulation are given for completeness and 
continuity. It is noted that the objective here is to develop an 
NNCM equivalent of this complex model. 

4.2. Mathematical Formulation 

Let us adopt a set of local co-ordinate axes (n, s, t) for each 
sampling plane. The n-axis is normal to the sampling plane 
whilst axes s and t are arbitrarily chosen on the sampling 
plane as shown in Figure 7 below. 

 

Figure 7.  Definition of a local system of axes on a typical sampling plane 

In the local system of co-ordinates, the normal and shear 
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stress components can be defined as follows: 
𝜎𝜎𝑛𝑛 = 𝜎𝜎𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗                  (6) 

𝜏𝜏𝑠𝑠 = 𝜎𝜎𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖𝑠𝑠𝑗𝑗                   (7) 

𝜏𝜏𝑡𝑡 = 𝜎𝜎𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖𝑡𝑡𝑗𝑗                   (8) 

𝜏𝜏 = �𝜏𝜏𝑠𝑠2 + 𝜏𝜏𝑡𝑡2                 (9) 
Where  

  (10) 

If the yield and bounding surfaces for frictional materials 
are plotted in resultant τ – σn’ (all stresses are effective and 
prime on the symbols will be omitted henceforth) space, they 
are represented by a pair of straight lines. The angle between 
the pair of lines representing the elastic domain is assumed as 
arbitrarily small while the angle between the lines 
representing bounding surface is related to the friction peak 
angle φ’. However, when two orthogonal components of 
shear stress on a sampling plane are considered, the yield and 
bounding surfaces are represented by two cones in τs – τt – σn 
space, the smaller one gyrating inside the larger one, as it is 
seen Fig 8.  

 

Figure 8.  Yield and bounding surfaces for a sampling plane in σ′n - τs - τt 

space 

4.3. Equations of the Bounding, the Yield and the Plastic 
Potential Surfaces 

The equation of the Bounding Surface is postulated below: 

 𝑭𝑭 = (𝜎𝜎′𝑛𝑛 , 𝜏𝜏, 𝛾𝛾𝑝𝑝) = 𝜏𝜏 + 𝜂𝜂𝜎𝜎′𝑛𝑛 = 0 ⇒ 

𝑭𝑭 = (𝜎𝜎′𝑛𝑛 , 𝜏𝜏, 𝛾𝛾𝑝𝑝) = �𝜏𝜏𝑠𝑠2 + 𝜏𝜏𝑡𝑡2 + 𝜂𝜂𝜎𝜎′𝑛𝑛 = 0   (11) 
Where: 

𝜂𝜂(𝛾𝛾𝑝𝑝) = 𝜂𝜂𝑓𝑓
𝛾𝛾𝑝𝑝

𝐴𝐴+𝛾𝛾𝑝𝑝
             (12) 

The equation of the Yield Surface: 

𝑓𝑓(𝜎𝜎�,𝛼𝛼) = 𝜏𝜏(𝑙𝑙) − 𝜂𝜂𝑙𝑙𝜎𝜎𝑛𝑛
′(𝑙𝑙) = 0        (13) 

Where: 

𝜏𝜏(𝑙𝑙) = �𝜏𝜏𝑠𝑠
(𝑙𝑙)2 + 𝜏𝜏𝑡𝑡

(𝑙𝑙)2            (14) 

The Plastic potential function is given by: 

𝜓𝜓(𝜎𝜎′𝑛𝑛 , 𝜏𝜏) = 𝜏𝜏 − 𝜂𝜂𝑐𝑐𝜎𝜎′ 𝑛𝑛 ln � 𝜎𝜎
′
𝑛𝑛

𝜎𝜎′ 𝑛𝑛0
� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐    (15) 

Where:  
ηf, ηl, ηc are the sizes of the Bounding, the Yield surface 

and the Plastic Potential function respectively 

5. Training an Equivalent NNCM of 
TDHM 

TDHM is used in the situations of transient and dynamic 
loading. In this case, the computation of stress increment 
from stain increment is generally computationally intensive, 
especially for a complex model such as TDHM. In order to 
train the NNCM, strain-controlled triaxial test data 
conforming to seven different specified constant volumetric 
strains were generated using TDHM. The results of (TDHM) 
have been used to check the adequacy of the training of the 
equivalent NNCM. Additionally four new analyses which 
were not included in the training data have been used to 
compare and validate the NNCM equivalent to TDHM. The 
parameters of the model are given: Rf=0.52, R1=0.02, 
Rc=0.43, Coh=0, ge=40, β=70, γ =3.15, Acon=0.012. These 
parameters are described by Lee as in [15]. 

5.1. Synthetic Data Generation 

Synthetic data of strain and stress increments in 7 
hypothetical two-way strain-controlled cyclic triaxial 
configuration (dεxx=dεzz), have been generated using a point 
integration program of TDHM (DRIVER), described in the 
previous section. Various ratios of axial to radial strains have 
been chosen using the following strain paths trajectories: 

Table 2.  Strain paths trajectories 

Strain 
Path 

Vertical 
strain 

increment 
(dεyy) 

Ratio of vertical 
strain increment   
to radial strain 

increment (dεyy/dεxx) 

Incremental 
volumetric 

strain 
imposed (%) 

SSTD1 -1.75E-4 -2.5 -0.0035 

SSTD2 -1.6E-4 -2 0 

SSTD3 -1.35E-4 -1.5 0.0045 

SSTD4 -9.0E-5 -1 0.0090 

SSTD5 -7.0E-5 -0.5 0.013 

SSTD6 -1.5E-4 -2.5 -0.003 

SSTD7 -6.0E-5 -0.5 0.018 

 
The NNCM was trained using the above data and the 

architecture shown in Fig. 1 and was used to predict the 
strain-stress response paths. These were very accurate. 
Figs.9-15 show stress paths in q-p’ space together with stress 
paths obtained from the original DRIVER program of 
TDHM.  
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Figure 9.  Stress path in q-p’ space for the test data SSTD1 

 

Figure 10.  Stress path in q-p’ space for the test data SSTD2 

 

Figure 11.  Stress path in q-p’ space for the test data SSTD3 

 

Figure 12.  Stress path in q-p’ space for the test data SSTD4 

 

Figure 13.  Stress path in q-p’ space for the test data SSTD5 

 

Figure 14.  Stress path in q-p’ space for the test data SSTD6 

 

Figure 15.  Stress path in q-p’ space for the test data SSTD7 

5.2. Validation of the Trained NNCM 

The following additional strain-stress data were generated 
using the DRIVER but were not used in training, were 
subsequently used for validation: 

Table 3.  Strain paths trajectories used for validation 

Strain Path 

Vertical 
strain 

increment 
(dεyy) 

Ratio of vertical 
strain increment 
to radial strain 

increment 
(dεyy/dεxx) 

Incremental 
Volumetric 

strain imposed 
(%) 

SSVD1 -1.5E-4 -2.3 -0.002 

SSVD2 -1.4E-4 -1.6 0.0035 

SSVD3 -1.08E-4 -1.2 0.0072 

SSVD4 -0.91E-4 -0.7 0.0169 
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The results of the equivalent NNCM prediction are 
compared with the validation data in Figs. 16 & 17, where 
stress paths are plotted in q-p’ space. A very good agreement 
is observed. 

 

Figure 16.  Stress path in q-p’ space for the test data SSVD3 

 

Figure 17.  Stress path in q-p’ space for the test data SSVD4 

6. Conclusions 
In the authors’ opinion, the potential of applications of 

Artificial Neural Networks in engineering analysis and 
design is immense and is yet to be exploited. Appropriate 
constitutive models of materials are the key to the successful 
prediction of the behaviour of engineering structures. A large 
number of models based on various constitutive theories 
have been proposed in the last three decades for geomaterials, 
which show a large variation in their properties. All the 
models proposed assume a-priori, a mathematical framework 
for the model and the material parameters corresponding to 
the assumed framework have to be identified from physical 
material tests. Many material parameters in complex 
constitutive theories have no physical meaning, are difficult 
to determine and have to be identified by trial and error from 
numerical simulations. In spite of this, many features of soil 
behaviour such as stiffness at small strains, higher stiffness 
on reversal of stress path, influence of rotation of principal 
stress axes etc. have not been captured in a single model. It is 
expected that more complex models will be developed in the 
future.  

In this paper a methodology for converting or recasting 
complex constitutive models for geomaterials developed in 

any mathematical framework into a fully trained neural 
network equivalent is proposed. This Neural Network based 
Constitutive Model can then be embedded in an appropriate 
finite element solution code. The length of strain trajectory 
traced by a material point, also called ‘intrinsic time’ is used 
as an additional input parameter in training. This is essential 
for situations of cyclic and transient loading. For the purpose 
of illustration, two constitutive models viz. Hardening Soil 
Model (HSM) available in the commercial software, 
PLAXIS and a Two-surface Deviatoric Hardening Model in 
the multilaminate framework (TDHM) developed by Lee 
and Pande (2004) have been cast in the form of an ANN. It is 
observed that equivalents for both models can be easily 
trained and can produce accurate results in all situations 
including a large number cycles. 

It is perceived that real life problems in future will have to 
be solved with increasingly more complex constitutive 
models for geomaterials. This will lead to unacceptable 
computational processing times. The authors, therefore, 
provide a solution since response of a trained NNCM 
equivalent is instantaneous. Computational efficiency will be 
achieved even for simpler models. 
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