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Abstract  In this research, geometrically nonlinear dynamic analysis of arch concrete dam is attempted. At first, suit-
able models for large deformation analysis of massive plain concrete structures are investigated and by considering arch 
dam special features and properties, proper model for large displacement analysis is developed. A nonlinear analysis of the 
Dez arch dam using the engineering stress – strain model for large displacements is carried out under MCE ground motion. 
Fluid-Structure interaction is modeled including water compressibility and reservoir bottom absorption and the rock foun-
dation is modeled as a mass-less flexible medium. Joint nonlinearity is also taken into consideration in the analysis. The 
penetration of water in opening joint during the earthquake is also considered and the significance of nonlinear geometry 
effects when accompanied by hydrodynamic pressure in joints is investigated. It is indicated that considering large defor-
mation effects could be magnified when water penetration into opening joints is permitted. The obtained results showed 
that because the structural behavior of an arch dam does not allow large strains in a general manner, one can rule out the 
appearance of large displacements in the models including linear material. 
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1. Introduction 
The safety assessment of dams as costly infrastructures, 

the failure of which can jeopardize the lives of thousands 
and play havoc of the downstream land and facilities, is of 
grave importance. As a result, with many of the already 
built dams aging and on the other hand the need for new 
ones to be built, the number of studies conducted on con-
crete dams has increased significantly. One of the aspects 
that has always been important in analyzing high concrete 
structures, and recently has gained well-deserved attention 
in seismic evaluation of arch dams, is the issue of geomet-
rically nonlinear behavior of these structures considering 
large displacements when subject to strong ground motions 
such as MCL earthquakes. This is of great importance not 
only in theory but also in practical applications. Consider-
ing the fact that dams are already built in almost all ideal 
locations, the engineers are left with no choice but to turn to 
other sites some of which have high seismicity or are even 
located on faults. Steno dam (Greece), Shirvan dam (Iran) 
and Klyde dam (New Zealand) are examples of such cases 
all of which need geometrically nonlinear analysis for real-
istic modeling of their behavior[1,2]. Earlier nonlinearstud-
ies carried out on concrete arch dams’ structures can be 
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classified into three groups: 
 Nonlinear model of joints, including the contraction 

joints, construction joints and peripheral joints. 
 Nonlinear model of mass concrete, including tensile 

cracking models, plastic models and damage mechanics 
models. 
 Modeling geometric nonlinearity in the realm of large 

deformations. 
From the first category, studies conducted by Ahmadi et. 

al [3], Mays et. al[4], Lau et al[5], Hall[6], Ahmadi et. al[7] 
and Chuhan et. al[8] can be mentioned. 

Ahmadi et. al[3] presented a finite elements discrete 
crack modeling of the dams peripheral and vertical joints. In 
this study, only the tensile cracks resulting from persistent 
static loads were taken into consideration. They also devel-
oped a method for calculating the failure load which en-
ables the safety analysis of the structures. Lau et al[4] stud-
ied the effect of linear and nonlinear behaviors on the mag-
nitude of horizontal tensile stresses in arch dams. The 
nonlinear model featured three vertical contraction joints. 

It was observed that as the result of considering the con-
tractions joints in nonlinear analysis, the tensile stress ap-
pearing near the joints in linear analysis is decreased. In this 
study only three contraction joints of the dam’s ten contrac-
tion joints were modeled. This is justified by the results 
obtained from the study conducted by Fenves et. al[9] indi-
cating that modeling the three joint out of the several joints 
is enough for reaching the maximum tensile stress and as 
the number of modeled joints increase, the tensile stress 
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changes from arch to cantilever form. 
In another study, Hall et. al[6] developed ADAP-88 

software for smeared crack analysis of arch dam. ADAP-88 
utilizes a multi-element discretization through the thickness 
of the dam to model the relative contact in the joints and 
cracks. Although using inter-element springs models the 
joints and cracks more realistically, smeared crack model 
was utilized in this study in favor of less computational cost 
and better convergence. The software assumes the reservoir 
water as incompressible. The foundation is mass-less which 
means there is no energy propagation toward the far end of 
the model. 

Ahmadi et. al[7] presented a discrete crack model of 
joints, for nonlinear dynamic analysis of concrete arch dam. 
A joint element model with a tensile-shear behavior was 
developed in order to analyze the dam-reservoir system 
more realistically. Chuhan et. al[8] investigated the non- 
seismic response of Xiaowan and Tujunga arch dams when 
featuring the contraction joints and reinforcements in joints. 
The model presented by Fenves et. al[9] (ADAP-88) was 
utilized for modeling the contraction joints. Factors such as 
the critical size of the elements, the number of contraction 
joints and the need for using reinforcement in joints were 
studied in this research. The reservoir was assumed to be 
incompressible, the joints behavior was linear-elastic and 
the foundation was mass less. It was shown that by opening 
the joint, the nature of the stresses transform from arch to 
cantilever, as a result the appearance of horizontal cracks in 
the dam becomes inevitable. In order to reduce the joint 
opening resulting in this kind of cracks, some steel rein-
forcement was provided in the model.  

From the second category we can refer to researches 
conducted by Olivier et. al[10], Faria et. al.[11], Lee et. Al 
[12], Feng et. al[13], Lotfi[14], Watanabe et. al[15] and 
Mirzabozorg et. al[16,17]. 

Feng et al. [13] presented a method for stability analysis 
and crack propagation, based on linear-elastic crack me-
chanics and 3-D boundary element modeling. In another 
research by Lotfi et al.[14], a three-dimensional finite ele-
ments software was developed for studying the seismic re-
sponse of arch dams. Non-orthogonal smeared crack ap-
proach and elasto-plastic material were implemented in the 
software modeling. Shahid Rajai dam in Iran was chosen as 
the case study. It was observed that in the smeared crack 
model and the elasto-plastic model, the dominant displace-
ment is in the upstream and upward direction. Also it was 
shown that both smeared crack model and elasto-plastic 
model overcome defect the large value outputs of stress in 
linear analysis and give a more realistic prediction of stress 
distribution in the dam body. Watanabe et al.[15] used a 
three-dimensional curved surface isoparametric interface 
element for modeling vertical and peripheral joints. In this 
study both geometric nonlinearity and material nonlinearity 
are taken into consideration. For modeling the nonlinear 
behavior of concrete during loading and failure, a compre-
hensive elasto-plastic fracture stress-strain relationship, 
based on elasticity and plasticity theory was used. It was 

shown that during the earthquake, joint opening results in 
repeated redistribution of internal forces from arch to canti-
lever form and vice versa. This phenomenon eventually 
results in a stable state that is compatible with the real-life 
behavior of the dam. 

In another study by Mirzabozorg[17], a damage mechan-
ics based approach was presented in which cracking oc-
curred non-homogeneously in the elements; meaning that 
the crack in the elements propagated through Gaussian 
points. Marrow Point dam was chosen as the case study, for 
carrying out nonlinear analysis and the dam-reservoir inter-
action was also taken into account. Foundation was as-
sumed to be rigid, while the reservoir was considered to be 
compressible and the reservoir bottom to have relative ab-
sorption. The proposed approach proved to have acceptable 
accuracy in predicting the crack propagation rout. 

From the third category researches conducted by Chang 
et al.[18], Youakim et al.[19], Khanloo et al.[20], Swaddi-
wudhipong et al.[21], Chin et al.[22], Polak et al.[23], Es-
mond[24], Sathurappan[25], Roca et al.[26], Bathe et al.  
[27] and Moradloo et al.[28] can be mentioned. Some of 
these nonlinear geometry studies were carried out on con-
crete dams and some on other concrete structures. Chang et 
al.[18] presented the nonlinear geometric seismic analysis 
of shell structures. Large displacements and large deforma-
tions were taken into account and Total Lagrangian ap-
proach was used with second Piola-Kirchhoff stress and 
Green- Lagrange strain. Material was taken as linear elastic 
and isotropic. Newton-Raphson iterative method accompa-
nied by Newmark method was used for solving the equa-
tions. It was observed that in low natural frequencies, the 
behavior is dramatically affected by the seismic loading, 
whereas in high natural frequencies this sensitivity becomes 
less significant. 

Nonlinear analysis of tunnels with concrete lining bored 
into sandy soils was carried out by Youakim et al.[19]. The 
nonlinear behavior of the problem at hand originated from 
three sources; nonlinear material behavior of the concrete 
lining and the soil enclosing it, the effects of large deforma-
tions and the nonlinear nature of the sliding between con-
crete lining and the soil it is in contact with. It was assumed 
that stress-strain behavior of material is independent from 
temperature and time. Detail on the utilized formulation can 
be found in reference[29]. In another study, Khanloo et 
al.[20] modeled the nonlinear behavior of Tehran’s concrete 
communication tower. Cracking, crushing and large defor-
mation effects were taken into consideration. Swaddi-
wudhipong et al.[21] presented a nine-node element for 
modeling the elasto-plastic large strain response of shell and 
plate structures using the Updated Lagrangian approach. 
Chin et al.[22] developed a thin plate element for geometri-
cally nonlinear elastic analysis of thin wall structures. In 
this study the strains were assumed to be infinitesimal, and 
Updated Lagrangian approach was implemented. 

A methodology for analysis of nonlinear behavior of re-
inforced concrete shell structures was presented by Polak et 
al.[23]. Both geometrically nonlinear behavior and material 
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nonlinearity were taken into consideration. Smeared rotat-
ing crack method was used for modeling crack propagation. 
Total Lagrangian approach along with Saint - Venant 
Kirchhof model was used for accounting for geometrically 
nonlinear behavior. In order to avoid shear-locking and 
zero-energy problems, selective integration was used. 

Esmond[24] conducted nonlinear geometric, material and 
time dependent analysis of reinforced concrete shell with 
edge beams. Geometric nonlinearity of the structure was 
assumed to stem from infinitesimal displacements and rota-
tions. Concrete model was based on nonlinear elasticity 
with assumption of orthotropic material. Material nonlin-
earities include tensile cracking, tension stiffening between 
cracks, the nonlinear response of concrete in compression, 
and the yielding of the reinforcement are considered. Total 
Lagrangian approach along with Saint-Venant Kirchhof 
model was used for accounting for geometrically nonlinear 
behavior. 

Sathurappan et al.[25] performed the nonlinear analysis 
of reinforced and pre-stressed reinforced concrete slabs. 
Geometric nonlinearities and material nonlinearities were 
both considered in the study. Material nonlinearity of con-
crete was modeled by assuming plasticity in compression 
and cracking in tension. Total Lagrangian approach along 
with Saint-Venant Kirchhof model was used for accounting 
for geometrically nonlinear behavior. 

Numerical treatment of pre-stressing tendons in the 
analysis of reinforced concrete structures nonlinear behav-
ior was investigated by Roca et al.[26]. Updated Lagrangian 
approach along with hypo-elastic model ofDarwinand-
Pecknold was used for accounting for geometrically 
nonlinear behavior. Concrete material behavior in tension is 
assumed to be elasto-brittle. 

By presenting the characteristics of concrete used in 
ADINA software and some of its usages, Bathe et al.[27], 
suggested utilization of second Piola-Kirchhoff stress and 
Green-Lagrange strain (Saint-Venant Kirchhof model) for 
modeling large displacements in concrete structures. 

Moradloo et al.[28] used the Saint-Venant Kirchhof be-
havior model for large deformations to analyze the behavior 
of concrete arch dams during seismic excitation. The foun-
dation was assumed to be rigid and the water-structure in-
teraction was modeled by using the concept of added mass. 
For demonstrating the importance of large deformation ef-
fects, Marrow Point dam was analyzed using a nonlinear 
hyper-elastic model. Other sources nonlinearity such as 
joint opening and concrete material nonlinearity were ig-
nored. Considering the characteristics of concrete such as 
not admitting large strains, Lagrangian approach along with 
Saint-Venant Kirchhof model was chosen for accounting 
for geometrically nonlinear behavior of non-reinforced 
concrete. It was shown that considering the effects of large 
deformations, can increase the displacement response of the 
dam crest by 11 percent in strong ground motions. Consid-
ering the characteristics of concrete arch dams it is expected 
that this increase in response become even more significant 
if the following features are also taken into account in the 

analysis: 
 Water penetration effect in joints and cracks 
 Vertical and peripheral joints opening and sliding ef-

fects 
As it can be seen, in spite of the fact that several studies 

involving geometric nonlinear analysis of shells and plates 
structures have been carried out earlier[2], geometric 
nonlinear behavior of concrete dam has been given little 
attention in all the earlier researches.  

In the present study, co-rotational formulation for geo-
metrically nonlinear analysis of concrete arch dams is pre-
sented. Using the presented formulation, nonlinear dynamic 
analysis of Dez arch dam under Manjil MCL earthquake is 
conducted to show large deformation effects. Foundation is 
assumed to be a mass-less flexible medium and Fluid- 
structure interaction is modeled including water compressi-
bility and reservoir bottom absorption. Other source of 
nonlinearity in the analysis is joint opening. Concrete mate-
rial nonlinearity is ignored. The penetration of water in 
opening joint during the earthquake is also considered and 
the significance of nonlinear geometry effects when ac-
companied by hydrodynamic pressure in joints is investi-
gated. 

2. Basic Concepts of Geometric 
Nonlinearity and Methodology 
Layout 

Structural nonlinearities may be caused by three main 
reasons, (a) material nonlinearities, (b) changing status, and 
(c) geometric nonlinearities. The key difference between the 
problems with geometric nonlinearity and other kinds of 
nonlinearity lies in the kinematics. The problems of geo-
metric nonlinearity are usually dealt with, by tracing the 
geometrical changes in the structure and its elements with 
reference to a reference state, in an incremental manner. The 
increasing changes in the geometry of the structure due to 
proportionally growing applied forces may ultimately lead to 
elastic instability of the structure and its consequent failure. 
In this paper the effects of geometric nonlinearities on the 
seismic response of concrete arch dams is investigated.  

Generally there are two main distinct types of instability 
scenarios possible in geometrically nonlinear problems. 
These two kinds of instability behaviors depend closely on 
the concepts of limit point and bifurcation point on the 
load-displacement or equilibrium path of the structure. De-
scription on these two mentioned types of structural insta-
bility behavior can be found in a number of papers published 
so far [e.g. 30,31] and hence is not elaborated on further, 
here. 

2.1. Large Deformation Model 

A large deformation model consists of three main parts: A) 
Mesh Description and Governing equation, B) Constitutive 
Relation and C) Equation Linearization and solution algo-
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rithm. 
In a nonlinear analysis, the equilibrium of the body con-

sidered must be established in the current (deformed) con-
figuration. Also it is necessary to employ an incremental 
formulation to confidentially describe the loading and the 
motion of the body. Also a suitable constitutive model is 
needed. 

In recent years, theoretical formulations and computa-
tional methods for dealing with geometric nonlinearities in 
the structures have been the focus of much attention[32-33]. 
In general, four approaches exist in kinematic modeling of 
geometrically nonlinear problems: Spatial or Eulerian De-
scription, Material or Lagrangian, Arbitrary Eulerian- La-
grangian Description (AEL) and Co-rotational Description 
[28]. Each of these formulations can be useful for certain 
constitutive equation or loading conditions by decreasing the 
number of required transformations.  

In Eulerian approach the fact that the material and mesh 
movements are independent, poses difficulties in dealing 
with solid media when implementing the boundary condi-
tions [28]. As a result, it is commonly used in fluid dynamics. 
In the Eulerian description large distortions in the motion of 
continuum can be dealt with more easily than Lagrangian 
approach, but generally at the expense of precise interface 
definition and resolution of flow details[34]. 

ALE approach overcomes the shortcomings of purely 
Lagrangian and purely Eulerian descriptions. In the ALE 
description, nodes on boundary of initial mesh are fixed 
during deformation and nodes in the middle move such that 
element distortion will be minimized. In fact, the nodes of 
the computational mesh can be dragged along with the ma-
terial particles as in Lagrangian approach, be held fixed 
similar to Eulerian manner, or be moved in some arbitrarily 
specified way to provide a continuous rezoning capability. 
Indeed by offering this freedom in moving the computational 
mesh, the ALE description retains the advantages of above- 
mentioned approaches while avoiding their disadvantages. 
Meaning that greater distortions of the continuum can be 
handled than that permitted in a purely Lagrangian method 
and with more resolution that what is allowed by a purely 
Eulerian approach.[28,34] 

The Lagrangian description is one of the most popular 
descriptions developed so far. In the Lagrangian approach a 
Cartesian coordinate system is employed to trace the struc-
tural deformation during loading history[28] that is, each 
material particle is followed by an individual node of the 
computational mesh associated with it, allowing easy 
tracking of free surfaces and boundaries between different 
materials. Also materials with history dependent constitutive 
relations are treated easily with Lagrangian approach [34] 
(arbitrary Lag-Eul methods). Depending on the way the 
deformations are described, the Lagrangian approach yields 
three main subgroups which are applicable in geometrically 
nonlinear analysis. 
 Total Lagrangian Description (TLD) is the first type, in 

which the element’s original frame of reference is used to 
assess the deformations of the element and all the following 

element deformations are attributed to the same frame of 
reference and therefore the displacement variables involved 
in the derivation of element stiffness matrices in the former 
framework are the total instead of the incremental quantities 
[35]. In the total Lagrangian formulation the integrals in the 
weak form are carried out over the initial (reverence) con-
figuration and derivatives are taken with respect to the ma-
terial coordinates[28]. The ease of implementation is an 
advantage to this method. However, considering the fact that 
this method is unable to tell apart the rigid body motion of 
the element from its local deformation, this defect results in 
incorrect description of the equilibrium path, unless the 
rotations and deflections in the problem are small[32]. 
 Updated Lagrangian Description (ULD) is the second 

type. In this method the current configuration is taken as the 
reference frame for the following step and by doing so the 
inability of TLD in distinguishing the rigid body motions 
from local deformation is overcome. In the update Lagran-
gian formulation, the derivatives are obtained with respect to 
the spatial coordinates; the weak form involves integrals 
over the deformed (or current) configuration. This method 
yields a more precise description of the displacement field of 
elements and the structure. In UL formulation there is no 
need to calculate initial stiffness in each iteration. Also in 
using UL formulation the artificial straining does not occur 
[35]. However, the calculation of the local element defor-
mation during each stage of loading proves to be laborious. 
In addition, when it comes to developing a consistent set of 
equilibrium equations for incremental analysis, the trans-
formation of the tangent stiffness matrix from local to global 
axes calls for a great deal of matrix operations [36]. As a 
result this type of description of displacement has not be-
come much appealing in practical structural applications 
unless, the problem is of elastic nature and involves very 
large defections. 
 Partially Updated Lagrangian Description (PULD), as 

the third derivation of the Lagrangian approach, utilizes the 
idea of the rigid-convected coordinates’ method as in ULD 
formulation. In this approach the coordinates of each ele-
ment is are updated only once at the start of each loadstep 
then the numerical operations within each loadstep are then 
carried out as in TLD approach. This type of formulation has 
both of the advantages of the simplicity in TLD formulation 
and the accuracy in ULD formulation at the same time. In-
terested reader is referred to[37-39] for more detail on this 
type of formulation. 

In concrete dam analyses, since small strain, element large 
distortion is not occurs and if initial finite element mesh well 
designed there is no anxiety about distortion and following 
precise reduction in results. Geometric nonlinear of arch 
concrete dam is a nonlinear problem with large displacement 
and small strain. With respect to stage construction of arch 
concrete dam and concrete purities itself it expected that 
under severe earthquake loading, dam monoliths experi-
enced large slip and large deformation caused by joint 
opening and failure with amount of crushing and plastic 
deformations. 
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The description utilized in the current study is the 
co-rotational (CR) approach. This approach is identical to 
PULD except for the fact that in the former, the element 
coordinate systems are rotating during the time steps. In 
Co-rotational approach initial configuration consists of two 
parts, stresses and strain calculated from rotated configura-
tion and rigid body motion deduced from initial configura-
tion. In this method the FEM equations of each element are 
attributed to two systems (as shown in figure 1): 
 A fixed or base configuration CB as in TLD. 
 A co-rotated configuration that is dragged along with 

the element an in fact is a rigid body motion of CB. This is 
fairly similar to ULD. 

 
Figure 1.  The CR kinematic description; “Current configuration” means 
any one assumed by the body or element during the analysis process. It is not 
necessarily an equilibrium configuration[35] 

The main idea behind CR description is the separation of 
the reference configuration into two other configurations. 
One of them is the base configuration that remains fixed 
during the analysis and acts as a fixed reference configura-
tion CB. The coordinate system corresponding to this ref-
erence configuration is the same for the whole structure; the 
reference configuration in a Co-rotational formulation con-
tinuously translates and rotates with the element, but does 
not deform with it. The other one is the co-rotated configu-
ration CR which changes from one element to the other. For 
each element its CR configuration is obtained in the form the 
rigid body motion of the base element. The coordinate sys-
tem that is connected to this configuration is Cartesian and 
moves simultaneously with the element like a “shadow”. 
Element deformations are calculated with respect to this 
configuration. The equilibrium equation in the Co-rotational 
approach is formulated from the principle of stationary po-
tential energy, which yields the element secant stiffness 
matrix[35,40]. 

One of the advantages of co-rotational formulation to total 
and updated Lagrangian approaches is that because of the 
fact that the rigid body motion of the element is separated 
from its deformation, the degrees of freedom that enter the 
elements formulation are decreased by the number of rigid 
body modes. As the result, the effects of rigid body motion 
do not appear in the tangent stiffness matrix (natural tangent 
stiffness matrix). To account for the rigid body rotations of 
the element, the element’s tangent stiffness matrix is com-
plemented by a stability matrix[35]. 

Another advantage of co-rotational approach is that the 

integrations on the volume of the element are preformed over 
the reference configuration which is unreformed during the 
analysis, whereas in Updated Lagrangian approach, the 
formulation dictates that the integration be performed over 
the complicated deformed shape of the element at the last 
configuration computed so far[41]. In many studies em-
ploying the Updated Lagrangian approach[40,42-46] it is 
assumed that the elements remain straight during loading, 
but Lip H. et al.[47] showed that this assumption in UL 
approach can result in significant inaccuracies in framed 
structures the members of which undergo considerable 
bowing deformations and co-rotational framework yields 
better results. Moreover, the issue regarding the ‘assumption’ 
of a straight configuration is irrelevant in the Co-rotational 
formulation, since the reference configuration is the unde-
formed configuration of the (straight) beam element. 

In the corotational approach, the nonlinear stress and 
strain fields are calculated as viewed by a corotational local 
observer moving with the element, then the obtained de-
scription of stress and strain are transferred to a fixed global 
coordinate system directly by employing the change-in-the- 
observer algebra. A very important advantage this procedure 
provides is that the recovered nonlinear structural models 
implicitly meet objectivity criteria (meaning that they are 
geometrically exact)[48]. As a result engineering stress and 
strain measures can be used in the Co-rotational method. 

2.2. Implementation of Corotational Approach 

The strain-displacement nonlinearity in the CR approach 
is described as[49], 

             (1) 
where: 
[Bv]= usual small strain-displacement relationship in the 

original element coordinate system 
[Tn]= orthogonal transformation that relates the original 

element coordinates to the convected (or rotated) element 
coordinates 

The difference between the rotated element coordinate 
system and the original element coordinate system is the 
result of rigid body rotation. Therefore in order to calculate 
[Tn], we need to separate the rigid body rotation from the 
total deformation {un}. Utilizing the polar decomposition 
theorem: 

                 (2) 

where:  
[R] = rotation matrix ([R]T[R] = [I]) 
[U] = right stretch (shape change) matrix  
The element tangent stiffness matrix is obtained from (1) 

as, 

     (3) 

The element restoring force vector is, 

    (4) 

In the above equation, the elastic strain is obtained from, 
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                (5) 

The vector { }n
du  describes the element deformation, 

which causes the strain to appear. For each element the large 
rotation approach can be described in three steps: 

1. The element updated transformation matrix [Tn] is 
calculated 

2. The deformational displacement { }n
du  is obtained from 

the total displacement{ }nu  in order to calculate the restoring 
force { }nr

eF  and the stresses. 
3. Node rotations are updated according to the computed 

rotational increments in{ }u∆ . 
Effective implementation of the three steps above requires 

the concept of a rotational pseudo-vector[3]. 

2.2.1. Element Transformation 

As mentioned earlier, the updated transformation matrix 
[Tn] transforms the current element coordinate frame to the 
global Cartesian coordinate system (see Figure 2). 

 
Figure 2.  Element Transformation Definitions[49] 

The updated transformation matrix [Tn] can be related to 
the rotation of the element coordinate system [Rn] and the 
original transformation matrix [Tv] by, 

               (6) 

2.2.2. Deformational Displacement 

The displacement an element undergoes can be decom-
posed into a rigid body translation, a rigid body motion, and 
a components that causes the strain, 

             (7) 
where:  
{ur} = rigid body motion 
{ud} = deformational displacements which cause strains 

which includes both translational and rotational DOF.  
The translational component of the deformational dis-

placement can be obtained from the displacement field by 
     (8) 

where:  
{ }d

tu = translational component of the deformational dis-
placement 

[Rn] = current element rotation matrix 
{xv} = Original element coordinates in the global coor-

dinate system 
{u} = Element displacement vector in global coordinates 
{ud} is in the global coordinate system.  
The rotational components of DOFs are calculated by 

subtracting the nodal rotations {u} from the element rotation 
{ur}. This operation is performed as follows for each node 
(utilizing the pseudo-vectors):  

1. A transformation matrix from the nodal pseudo-vector 
{θn} is calculated, yielding [Tn].  

2. The relative rotation [Td] between [Rn] and [Tn] is 
computed: 

                 (9) 

This relative rotation consists of the rotational deforma-
tions of that node as shown in Figure 3. 

 
Figure 3.  Definition of Deformational Rotations[49] 

2.2.3. Updating Rotations 

After obtaining the transformation [T] and deformational 
displacements {ud}, the element matrices and restoring force 
can be calculated from equations (3) and (4), respectively. A 
displacement increment {Δu} results from the solution of the 
system of equations. The rotational components of {Δu} are 
used to update the nodal rotations at the element level. The 
global rotations are updated simply by adding to the previous 
rotation in {un-1} and by the pseudo-vector approach.  

2.2.4. Consistent Tangent Stiffness Matrix and Finite 
Rotation 

The use of consistent tangent stiffness in a nonlinear 
analysis can speed up the convergence trend to a quadratic 
rate of convergence. A consistent tangent stiffness matrix is 
derived from the discretized finite element equilibrium 
equations without the introduction of various approxima-
tions.  

The process of deriving of the consistent tangent stiffness 
matrix used for the corotational approach is outlined below 
[49,50]. 

For each element, the nonlinear static finite element equ-
ations solved are defined as: 

       (10) 

where:  
N = number of all elements 

{ }int
eF = element internal force vector in the element coor-
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dinate system, 
        (11) 

[Tn]T = transform matrix, transferring the local internal 
force vector into the global coordinate system 

{ }a
eF  = Applied load vector at the element level in the 

global coordinate system 
Now we derive the consistent tangent matrix at the ele-

ment level without introducing an approximation. The con-
sistent tangent matrix is obtained by differentiating equation 
(10) with respect to displacement variables {ue}: 
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It can be seen that Part I is the main tangent matrix 
(equation (3)) and Part II is the stress stiffening matrix. Part 
III is another part of the stress stiffening matrix[49,51] which 
is usually negligible. Numerical solution of nonlinear equa-
tions has been subject to ample research and various methods 
have been proposed to tackle this kind of problems, one of 
the oldest and most reliable of which is the Newton-Raphson 
method[49]. In this method the load is divided into a number 
of load increments. The load increments are then applied 
through a number of loadsteps. In the present study full 
Newton-Raphson study procedure was employed which 
updates the stiffness matrix at each equilibrium iteration. 

 
(a)                                (b) 

Figure 4.  (a) Dam-Reservoir-Foundation finite element model and (b) 
Dam body and the concrete saddle 

3. Numerical Model of a Typical High 
Arch Dam 

Dez double curvature arch dam in Iran is selected as the 
case study. Crest length is 240m and thickness at the crest 
level is 4.5m (Figure 4). Finite element idealization prepared 
for the dam, foundation rock and reservoir is shown in Figure 
4a, which consists of 792 solid elements for modeling the 

dam body and its concrete saddle, 3770 solid elements for 
simulation of the foundation rock and 3660 fluid elements in 
the reservoir domain. In addition, 956 node-to-node contact 
elements are used to model vertical and peripheral joints of 
the dam. Figure 5 shows the surfaces on which the contact 
elements are located.  

 
Figure 5.  Vertical and peripheral joints in DEZ dam 

3.1. Basic Mechanical and Strength Parameters 

Water is assumed to be compressible with density of 
1000kg/m3. The speed of sound in water is 1440m/s and the 
wave reflection coefficient at the boundaries of the reservoir 
with the abutments and at its bottom is taken to be 0.8, 
conservatively. A viscous boundary at the far end of the 
reservoir dissipates the waves reaching this boundary and 
prevents them from being reflected back into the reservoir. 
Having neglected the sloshing effects, we have imposed 
zero pressure boundary condition for reservoir free surface. 
This assumption is acceptable for high dams[52,53]. Table 
1 shows the material properties for the mass concrete and 
the foundation of the model[54,55] 

Table 1.  The material properties for the mass concrete and the foundation 
of the model 

  Static prop-
erties 

Dynamic 
properties 

M
as

s C
on

cr
et

e 

Isotropic Elasticity 40GPa 46GPa 
Poisson’s Ratio 0.2 0.14 

Density 2400kg/m3 2400kg/m
3 

Thermal Expansion Coefficient 6×10-6/℃ 6×10-6/℃ 
Compressive Strength 35MPa 36.6MPa 

Uniaxial Tensile Strength 3.4MPa 5.1MPa 
Isotropic Elasticity- Saturated 13GPa 13GPa 

Fo
un

da
tio

n Isotropic Elasticity- Unsaturated 15GPa 15GPa 
Poisson’s Ratio 0.25 0.25 

3.2. Loading 

The loads applied to the model in chronological order are, 
self-weight of the dam body (during 10 stages of construc-
tion and sequential joint grouting), hydrostatic pressure 
(considering gradual impoundment), thermal loading 
(summer condition, obtained from transient thermal analysis 
of the dam including solar radiation phenomenon [55]) and 
finally the seismic excitation. The coupled nonlinear 
dam-reservoir-foundation system problem is solved em-
ploying the β-Newmark time-integration method. For dy-
namic analysis, the system is excited in maximum credible 
level using Manjil earthquake scaled based on response 
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spectrum of the dam site. Table 2 presents the characteristics 
of Manjil ground motion. 

Table 2.  The characteristics of MANJIL ground motion 

Ground motion MANJIL-June 21, 1990  
Component (φ°) Transverse Longitudinal Vertical 

PGA (g) 0.310g 0.387g 0.260 g 

For obtaining the strong motion duration of the earthquake, 
Arias intensity on Husid diagram is utilized and then time 
interval between 5% and 95% of Arias intensity based on 
Trifunac and Brady theory is selected[56]. The strong mo-
tion duration is determined to be 30s for the selected earth-
quake. Considering that arch dams response to earthquake is 
most critical when they are excited in upstream-downstream 
direction, the major direction of the ground motion is applied 
to the system in upstream-downstream direction (in the 
provided model, Y axis)[57]. All three components of the 
seismic ground motion are applied to the dam- founda-
tion-reservoir system simultaneously. Structural damping is 
assumed to be 10% of critical damping, and mass and stiff-
ness proportional damping coefficients αM and βK are ob-
tained using Rayleigh damping method. It is noteworthy that 
all the analysis results presented in this paper include the 
dam response up to the 8th second of the seismic excitation. 
The results for the rest of the ground motion duration were 
excluded since the dam did not show any significant change 
in its behavior in the rest of the analyses. 

 
Figure 6.  Upstream-Downstream displacement time-history of crown 
cantilever at crest level (Conventional analysis) 

4. Results and Discussion 
4.1. Crest Displacement  

Figures 6 to 8 compare the crest displacement in the three 
principal directions for the two cases of with and without 
geometric nonlinearity. In addition, Table 3 represents 
briefly the extreme values resulted from the conducted 
analyses. As can be seen, when hydrodynamic pressure is 
applied in the open joints, geometric nonlinearity can lead to 
about 5% increase in upstream-downstream extreme dis-
placement. The corresponding values for transvers and ver-
tical directions are 7.5% and 1.4%, respectively.  

 
Figure 7.  Transverse displacement time-history of crown cantilever at 
crest level (Conventional analysis) 

 
Figure 8.  Vertical displacement time-history of crown cantilever at crest 
level (Conventional analysis) 

Figures 9 to 11 show the time-history of the crest at the 
crown cantilever when there is no water penetration into the 
open joints. Also, the results are presented briefly in Table 3. 
It is found that the geometric nonlinearity has little effect on 
the response so that in upstream-downstream direction, the 
change in extreme values is less than 0.1%, which is negli-
gible. 

 
Figure 9.  Upstream-Downstream displacement time-history of crown 
cantilever at crest level (with Hydrodynamic pore-pressure in joints) 
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Figure 10.  Transverse displacement time-history of crown cantilever at 
crest level (with Hydrodynamic pore-pressure in joints) 

 
Figure 11.  Vertical displacement time-history of crown cantilever at crest 
level (with Hydrodynamic pore-pressure in joints) 

Table 3.  Comparison of displacement results 

 

With hydrodynamic pore pressure in joints Without hydrodynamic pore-pressure in joints 
Conventional With G.N.L.E Conventional With G.N.L.E 

Max min min max max min min max 

Tr
an

sv
er

se
 Value (m) 0.030132 -0.00377 -0.00405 0.031023 0.009739 -0.00595 -0.0056 0.00982 

time (s) 4.34 3.62 3.62 4.34 9.06 8.78 8.78 9.06 
Change in 

percent  
7.427% 

  
-5.882%  2.956% 0.831% 

U
ps

tre
am

 
-D

ow
ns

tre
a

m
 

Value (m) 0.070307 -0.35836 -0.35834 0.073739 0.067721 -0.14765 -0.14768 0.067665 
time (s) 0.42 4.4 4.4 3.64 0.42 0.62 0.62 0.42 

Change in 
percent  

-0.005% 
  

-0.020%  4.881% -0.082% 

V
er

tic
al

 Value (m) 0.088217 -0.02781 -0.02819 0.086866 0.029362 -0.02646 -0.0277 0.028224 
time (s) 4.4 0.44 0.44 4.4 0.62 0.42 0.42 0.62 

Change in 
percent  

1.366% 
  

4.686%  -1.531% -3.875% 
With G.N.L.E= with geometric nonlinearity effects Conventional= without geometric nonlinearity effects 

 
  

Figure 12.  Non-coincident push of 1st principle stress in analysis with hydrodynamic pressure in joints, by loadstep 400 (second 8) 

4.2. Stress Distribution 

Figures 12 and 13 show the non-coincident envelope of 
the first and third principal stresses when water can penetrate 
into open joints and Figure 14 and 15 show the correspond-
ing envelopes when geometric nonlinearity is accounted for. 
Table 4 represents briefly the extreme values of the principal 
stresses for various cases. Based on the shown envelopes and 

the table, the effect of geometric nonlinearity is negligible so 
that there is not any change in maximum tensile stress and 
the maximum compressive stress increases just about 4.7%. 

Figures 16 and 17 show the envelopes pertinent to the 
non-coincident principal stresses when there is no water 
penetration in open joint and Figures 18 and 19 represent the 
corresponding stress envelopes when geometric nonlinearity 
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is taken into consideration in the conducted analysis and 
finally, Table 4 represents the results briefly. As expected, 

when water penetration is not permitted, the effect of geo-
metric nonlinearity is almost imperceptible. 

 
  

Figure 13.Non-coincident push of 3rd principle stress in analysis with hydrodynamic pressure in joints, at loadstep 400 (second 8) 

 
  

Figure 14.  Non-coincident push of 1st principle stress in analysis with hydrodynamic pressure in joints, by loadstep 400 (second 8) with geometric 
nonlinearity effects 

   

Figure 15.  Non-coincident push of 3rd principle stress in analysis with hydrodynamic pressure in joints, at loadstep 400 (second 8) with geometric 
nonlinearity effects 
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Figure 16.  Non-coincident push of 1st principle stress in conventional analysis, by loadstep 400 (second 8) 

 
  

Figure 17.  Non-coincident push of 3rd principle stress in conventional analysis, at loadstep 400 (second 8) 

 
  

Figure 18.  Non-coincident push of 1st principle stress in conventional analysis, by loadstep 400 (second 8) with geometric nonlinearity effects 
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Figure 19.  Non-coincident push of 3rd principle stress in conventional analysis, at loadstep 400 (second 8) with geometric nonlinearity effects 

Table 4.  Comparison of stress results 

 
With hydrodynamic pore pressure in joints Without hydrodynamic pore-pressure in joints 

Conventional With G.N.L.E Conventional With G.N.L.E 
S1 S3 S3 S1 S1 S3 S3 S1 

Exterimum Value up 
to second 8 0.295E+08 -0.429E+08 -0.449E+08 0.295E+08 0.119E+08 -0.311E+08 -0.311E+08 0.120E+08 

Change in percent  
4.662% 

  
0%  

0% 0.840% 
With G.N.L.E= with geometric nonlinearity effects Conventional= without geometric nonlinearity effects 

S1= first principle stress S3= third principle stress 
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Figure 20.  Non-coincident push of joint openings (Gap on the left & Sliding on the right) in analysis with hydrodynamic pressure in joints, by loadstep 400 
(second 8) 
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4.3. Joint Opening/Sliding 

Figure 20 shows the non-coincident envelope of the joints’ 
opening and sliding when water can penetrate into open 
joints and Figure 21 shows the corresponding envelopes 
when geometric nonlinearity is accounted for. Table 5 
briefly represents the extreme values of the joint responses 
for various cases. Based on the shown envelopes and the 
table, it can be seen that when hydrodynamic pressure is 
applied in the open joints, the effect of geometric nonlinear-

ity on joint opening is negligible.  
Figures 22 shows the envelope of the joints’ opening and 

sliding when there is no water penetration in open joints and 
Figure 23 represents the corresponding opening envelopes 
when geometric nonlinearity is taken into consideration in 
the conducted analysis and finally, Table 5 summarizes the 
results briefly. When water penetration is not permitted, the 
joints’ sliding is decreased by 3.6% due to geometric 
nonlinearity and there is no noticeable change in joint 
opening. 
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Figure 21.  Non-coincident push of joint openings (Gap on the left & Sliding on the right) in analysis with hydrodynamic pressure in joints, by loadstep 400 
(second 8) with geometric nonlinearity effects 

Figure 22.  Non-coincident push of joint openings (Gap on the left & Sliding on the right) in conventional analysis, at loadstep 400 (second 8) 
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Table 5.  Comparison of joint opening results 

 
With hydrodynamic pore pressure in joints Without hydrodynamic pore-pressure in joints 

Conventional With G.N.L.E Conventional With G.N.L.E 
Gap Sliding Sliding Gap Gap Sliding Sliding Gap 

Exterimum Value 
up to second 8 

-0.0169 0.1427 0.1416 -0.017 -0.0082 0.0332 0.032 -0.0079 

Change in percent 
 

-0.770% 
  

-3.614%  
0.591% -0.0079% 

With G.N.L.E= with geometric nonlinearity effects Conventional= without geometric nonlinearity effects 
S1= first principle stress S3= third principle stress 

 

4.4. Discussion 

In the previous sections, the results obtained from four 
nonlinear analyses considering construction joints effects 
were presented. The analyses were different from the point 
of considering the effects of geometric nonlinearity includ-
ing/excluding water penetration into open joints. Based on 
the presented results, geometric nonlinearity effect on the 
structural behavior is magnified when water penetration is 
permitted. However, this effect is negligible. The insignifi-
cant effect of geometric nonlinearity on the dam behavior is 
justifiable by the fact that the nonlinear material behavior of 
mass concrete was excluded in the present study. Consider-
ing the fact that one of the main sources of nonlinear be-
havior in MCL condition is material nonlinearity in tensile 
and compressive states in mass concrete and taking it into 
account, increases the displacement response of the dam, it is 
predicted that geometric nonlinearity will have a more no-
ticeable effect on the dam response. This case is the subject 
of the future study by the authors. 

5. Conclusions 
In the present paper the effects of nonlinear geometry on 

the seismic response of a real-life high arch dam model was 
investigated. Co-rotational approach was utilized for for-
mulating the large-deformation phenomenon.  The behavior 
of mass concrete was assumed to be linear while all of the 
construction and peripheral joints were modeled according to 
as-built construction details. The reservoir water was as-
sumed to be compressible and the foundation rock was 
modeled as a mass-less medium. It was observed that when 
water penetration in opening joints of the dam is permitted 
during the excitation, the response of the dam increases, 
nevertheless this increase in the dam response is insignificant. 
According to authors experience and engineering judgment, 
it is predicted that considering the material nonlinearity will 
magnify the effects of geometric nonlinearity. 

 

Figure 23.  Non-coincident push of joint openings (Gap on the left & Sliding on the right) in conventional analysis, at loadstep 400 (second 8) with 
geometric nonlinearity effects 
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