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Abstract  An un-orthdoxial and entirely different method of derivation of electromagnetic laws from each other based on 

universal spacetime exchanger matrices (USEM) are developed by the application of single transformation law (STL) for 

4-vectors and tensors. Results are obtained in a single step operation as compared to contemporary approaches. The important 

property of these matrices is that they behave in such a way that space and time components are exchanged but the spacetime 

as a whole remains same that satisfies Einstein’s principle of relativity (EPR) as well as symmetry principle. As a result of 

transformation of electromagnetic field (EMF), Maxwell’s equations (ME) and conservation law written in matrix form gave 

rise to new symmetry along the diagonal of the matrix. Fortunately, these new symmetry terms or zero-point physical terms 

not only obey EPR, conservation law but also symmetry principle. This model is an entirely new framework, not only valid to 

derive electromagnetic laws in tensor form but also exchange of time and space components of 4-vectors such that 4-vector as 

a whole remains same. Four models are developed consisting of two physical USEM and two numerical. The existing models 

in this context, do not have such simplicity and clarification in a single step operation in the contemporary literature. These 

models are expected to explain the activities of hidden universe through zero-point relations. The outstanding consequence of 

this approach is that all the spacetime laws of physics remain same for all observers. Usual Lorentz transformation matrix in 

this new scheme also shows spacetime exchange but doesn’t validate conservation law to satisfy EPR and symmetry 

principle.  
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1. Introduction 

Even though, electrodynamics is one of the 

well-understood physical theories but still very interesting 

aspects of relativistic electrodynamics have not been 

appreciated in tensor notation. Almost all of the physicists 

are limited to the transformation of electromagnetic field 

only in tensor form whereas transformation of Maxwell’s 

equations and electromagnetic conservation law in components 

of tensor form provide far reaching consequences that have 

been un-noticed by the contemporary physicists. In this 

paper, we derive electromagnetic laws from each other in a 

very simple and straightforward method by using USEM 

such that space and time components are exchanged but the 

spacetime as a whole 
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remains same in its original form. Here, electromagnetic 

laws are exchanged without altering the total result like 

exchange of electric and magnetic field where electromagnetic 

field as a whole remains same. Similarly, Gauss’s law and 

ampere’s law are exchanged but Maxwell’s equations in 

tensor form remain same. Exchange in conservation law also 

holds in the same way. The emergence of zero-point terms 

along the diagonals of EMF, ME and conservation law    

are the consequence of STL for 4-vectors and tensors. These 

terms responsible for the validity of conservation law and 

indicate the existence of hidden world. The presence of 

zero-point terms are predicted by our earlier models [1-2] 

where zero-point origin of 4D electromagnetic wave is 

obtained along the diagonal of the conservation law. Dual 

relations of electrodynamics are also presented where 

exchange of Gauss’s law for magnetism and Faraday’s law is 

of more importance that tells us about the zero-point source 

of magnetism. There is only one important model in the 

existing literature by Field J. H. [3] who has discussed about 

spacetime exchange invariance in the derivation of Ampere’s 
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law and Faraday’s law but doesn’t possess such simplicity 

and generality. His results are compared in the form of table 

in the discussion and comparison section. It was legend 

Einstein who perceived the idea that magnetism is the relativistic 

consequence of motion of electric charge. He introduced  

the concept of 4-vector potential to link electrostatics with 

magnetism based on Lorentz transformation. Later on, many 

physicists started to derive Maxwell’ equations from 

electrostatics [4-13]. Melvin Shwartz work [14] to derive 

Maxwell’s equations from electrostatics by utilizing the 

concept of 4 vector potential and Lorentz transformation   

is no doubt very useful in the contemporary literature on 

relativistic electrodynamics and cited by enormous number 

of authors. His text book on principles of electrodynamics is 

a master piece on standard electrodynamics. There is only 

one model by H. A. Atwater [6] who perused the transformation 

of Maxwell’s equations in tensor form by using Galilean 

transformation but he also left the case of transformation of 

conservation law. Our approach is entirely different from  

the contemporary world. For this purpose, first USEM was 

constructed in terms of numbers. This matrix transformed 

Maxwell’s equations such that Ampere’s law transformed 

Gauss’s law and Gauss’s law to Ampere’s law. Similar 

behavior was observed in the transformation of 4-current 

density. The next challenge was to develop a physical USEM. 

The discovery of ULTM for inertial and noninertial frame in 

2D served the purpose of USEM but in an unusual technique. 

Besides this, two more matrices in terms of numbers 

provided the same results one of which acts as a NOT GATE 

matrix in computer science. Our model is so straightforward 

that the required results are obtained in a single step operation. 

There are seven USEM at the moment. Only four cases   

will be presented with calculations and remaining three   

are applied on transformation of 4-current density as the 

mathematical framework is same for all. 

1.1. Development of Electrodynamic Models Based on 

USEM 

Notations in this model are adopted according to modern 

approach of relativity. Greek alphabets μ, , α, β, …runs 

from 0 to 3 and Latin letters i, j, k, .. from 1 to 3. Comma (,) 

denote partial differentiation e. g. 𝐄,0  = 
∂𝐄

∂t
 Partial 

derivative of electric field w. r. t. time, 𝐄,1 = 
∂𝐄

∂𝐱
 Partial 

derivative of electric field w. r. t. x-axis, 𝐄,2 = 
∂𝐄

∂𝐲
 Partial 

derivative of electric field w. r. t. y-axis, 𝐄,3 = 
∂𝐄

∂𝐱
 Partial 

derivative of electric field w. r. t. z-axis,  

F
µ

, means 4-dimensional or spacetime partial derivative 

of EMF tensor. 

4-dimensional Coordinates x = (x0, x1, x2, x3) = (ct, x, y, z) 

= (ct, x
i) with x0 = ct and xi = (x, y, z). Time component    

ct is scalar while space components xi is vector such that x  

is the unification of time and space. The dimensions of all 

components are that of length. 

1.2. Universal Lorentz Transformation Matrix (ULTM) 

in 2D 

  L
μ =   

γ2 −γ2𝛃2 0 0

−γ2𝛃2 γ2 0 0
0 0 1 0
0 0 0 1

  (1) 

det L = γ2( 1 + 𝛃2) 

γ2 = 
1

(1 − 𝛃2)
 and 𝛃2 =

𝐯2

c2  

The inverse of matrix (1) is calculated as 

  L
μ−1

  = 

 
 
 
 
 
 

1

( 1+𝛃2)

𝛃2

( 1+𝛃2)
0 0

𝛃2

( 1+𝛃2)

1

( 1+𝛃2)
0 0

0 0 1 0
0 0 0 1 

 
 
 
 
 

 (2) 

detL
μ−1

 = 
(1− 𝛃2)

(1+ 𝛃2)
 

1.3. Adjusting ULTM in 2D as USEM 

By adjusting a matrix along the secondary or anti-diagonal 

diagonal of a matrix becomes USEM. Such matrices exist in 

Pauli’s matrices as well as in Dirac matrices. 

  𝐋
μ  =   

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

  (3) 

𝐋2
0  = 𝐋3

1  = −γ2𝛃2, 𝐋3
0  = 𝐋2

1  = γ2, 𝐋1
2  = 𝐋0

3  = 1 

Model-1: Application of STL and USEM  

in Electrodynamics  

1.4. Spacetime Exchange symmetry of 4-Current Density 

The universal nature of 4-current density 𝐉 = (J0, 𝐉i). 

EPR demands universal nature of laws of physics 

independent of inertial and noninertial frame. Our approach 

is within the domain of EPR, symmetry principle and 

conservation law. 

Transformation of 4-Current Density 

𝐋2
0  = 𝐋3

1  = −γ2𝛃2, 𝐋3
0  = 𝐋2

1  = γ2, 𝐋1
2  = 𝐋0

3  = 1 

 𝐉 = 𝐋

𝐉                                  (4) 

 
 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 
 

 =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

 

 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 

 

 
 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 
 

 = 

 
 
 
 
 
−γ2𝛃2𝐉2 + γ2𝐉3

γ2𝐉2 − γ2𝛃2𝐉3

𝐉1

J0  
 
 
 
 

 

Adding the terms of space components on both sides 

 
J0

𝐉i
  =  

𝐉1 + γ2 1 − 𝛃2 𝐉2 + γ2 1 − 𝛃2 𝐉3

J0   
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J0

𝐉i
  =  

𝐉1 + 𝐉2 + 𝐉3

J0   

 
J0

𝐉i
  =  

𝐉i

J0  

 J0 = 𝐉i  (5) 

Charge density is transformed into current density 

 𝐉i = J0  (6) 

Current density is transformed into charge density 

 𝐉 =  𝐉  (7) 

4-current density as a whole remains same. Covariant 

4-current density remains same for all observers. 

1.5. Spacetime Exchange Symmetry of Electromagnetic 

Field 

 [𝐅] =  

0 𝐄1 𝐄2 𝐄3

−𝐄1 0 𝐁3 −𝐁2

−𝐄2 −𝐁3 0 𝐁1

−𝐄3 𝐁2 −𝐁1 0

  (8) 

EMF tensor 𝐅  is related to its components electric 

field E and magnetic field B as follows 

𝐅0i = Ei and 𝐅ij  = 𝛆ijk 𝐁k  

EMF tensor in component form is needed to get new 

terms along the diagonal of EMF. It is represented as 4 by 4 

antisymmetric matrix 

 

𝐅 = 𝐋

𝐅           (9) 

 

F00 𝐅01 𝐅02 𝐅03

𝐅10 F11 𝐅12 𝐅13

𝐅20 𝐅21 𝐅22 𝐅23

𝐅30 𝐅31 𝐅32 F33

 =   

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

  

0 𝐄1 𝐄2 𝐄3

−𝐄1 0 𝐁3 −𝐁2

−𝐄2 −𝐁3 0 𝐁1

−𝐄3 𝐁2 −𝐁1 0

  

 

𝐅0

𝐅1

𝐅2

𝐅3

 =   

γ2𝛃2𝐄2 − γ2𝐄3  γ2𝛃2𝐁3 + γ2𝐁2 −γ2𝐁1 −γ2𝛃2𝐁1

−γ2𝐄2+ γ2𝛃2𝐄3 −γ2𝐁3 − γ2𝛃2𝐁2 γ2𝛃2𝐁1 γ2𝐁1

−𝐄1 0 𝐁3 −𝐁2

0 𝐄1 𝐄2 𝐄3

  

We can see the shifting of last three rows of EMF after multiplication to first three and first row goes to fourth row. In 

other words, magnetic field part goes to electric field and electric goes to magnetic field part with two zeroes appearing 

along the secondary diagonal. Two zeros are observed as the transformation matrix is two dimensional. 

Zero-point terms of Electric Field 

𝐅00 = γ2𝛃2𝐄2 − γ2𝐄3     (10) 

Zero-point terms of Magnetic Field 

𝐅ii = −γ2𝐁3 − γ2𝛃2𝐁2      (11) 

Zero-point terms of Electromagnetic Field 

𝐅 = γ2𝛃2 𝐄2 − 𝐁2 + (1 − γ2)[𝐄3 + 𝐁3]     (12) 

The set of singularities of EMF doesn’t constitute any definite physical law but they contribute in the structure of electric 

and magnetic field 

 

𝐅0

𝐅1

𝐅2

𝐅3

 =

 
 
 
 
γ2  𝐁2 − 𝐁1 − 𝐄3  − γ2𝛃2[(𝐁1 − 𝐁3) − 𝐄2] 

−γ2𝛃2  𝐁2 − 𝐁1 − 𝐄3 + γ2[(𝐁1 − 𝐁3) − 𝐄2]

[(𝐁3 − 𝐁2) − 𝐄1]
𝐄  

 
 
 
 

 𝐅
0

𝐅i
 =  γ

2 𝟏 − 𝛃2   𝐁2 − 𝐁1 − 𝐄3 + γ2 𝟏 − 𝛃2   𝐁1 − 𝐁3 − 𝐄2 + [(𝐁3 − 𝐁2) − 𝐄1]
𝐄

  

 𝐅
0

𝐅i
 =  

  𝐁2 − 𝐁1 − 𝐄3 +   𝐁1 − 𝐁3 − 𝐄2 + [(𝐁3 − 𝐁2) − 𝐄1]
𝐄

  

Electric field is transformed into mixture of electric and magnetic field while magnetic field is transformed into pure 

electric field. 

By simplification, we get the following 

𝐅0 =   𝐁2 − 𝐁1 − 𝐄3 +   𝐁1 − 𝐁3 − 𝐄2 + [(𝐁3 − 𝐁2) − 𝐄1]     (13) 

Electric field is transformed in to magnetic field in tensor form 

𝐅i = 𝐄     (14) 

Magnetic field is transformed in to electric field 

In other words, Electric field and magnetic field are exchanged 
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𝐅0 = 𝐅i     (15) 

𝐅i = 𝐅0     (16) 

Electromagnetic field becomes zero due to anti-symmetry 

𝐅 =  𝐄1 + 𝐄2 + 𝐄3 +   𝐁2 − 𝐁1 − 𝐄3 +   𝐁1 − 𝐁3 − 𝐄2 + [(𝐁3 − 𝐁2) − 𝐄1] = 0   (17) 

Right side of equation (17) can be written in tensor form in its original form as 

 𝐅 =   

0 𝐄1 𝐄2 𝐄3

−𝐄1 0 𝐁3 −𝐁2

−𝐄2 −𝐁3 0 𝐁1

−𝐄3 𝐁2 −𝐁1 0

        (18) 

 𝐅  =  𝐅  = 0        (19) 

Antisymmetric EMF remains same after transformation in its original form. 

1.6. Spacetime Exchange Symmetry of Maxwell’s Equations 

 𝐅 ,


 = 𝐋

𝐅 ,
                                                                     (20) 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

 

 
 
 
 
 

0 𝐄,1
1 𝐄,2

2 𝐄,3
3

−𝐄,0
1 0 𝐁,2

3 −𝐁,3
2

−𝐄,0
2 −𝐁,1

3 0 𝐁,3
1

−𝐄,0
3 𝐁,1

2 −𝐁,2
1 0  

 
 
 
 

 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
γ2𝛃2𝐄,0

2 − γ2𝐄,0
3  γ2𝛃2𝐁,1

3 + γ2𝐁,1
2 −γ2𝐁,2

1 −γ2𝛃2𝐁,3
1

−γ2𝐄,0
2 + γ2𝛃2𝐄,0

3 −γ2𝐁,1
3 − γ2𝛃2𝐁,1

2 γ2𝛃2𝐁,2
1 γ2𝐁,3

1

−𝐄,0
1 0 𝐁,2

3 −𝐁,3
2

0 𝐄,1
1 𝐄,2

2 𝐄,3
3  

 
 
 
 

 

Zero-point terms of Gauss’s Law 

𝐅 ,0
00 = γ2𝛃2𝐄,0

2 − γ2𝐄,0
3        (21) 

Zero-point terms of Ampere’s Law 

𝐅 ,i
ii = −γ2𝐁,1

3 − γ2𝛃2𝐁,1
2        (22) 

Zero-point terms of Maxwell’s equations 

𝐅 ,


 = γ2𝛃2 𝐄,0
2 − 𝐁,1

2  + (1 − γ2)[𝐄,0
3  + 𝐁,1

3 ] + [𝐁,2
3  + 𝐄,3

3 ]    (23) 

The zero-point terms do not constitute any definite physical law but they contribute for the validity of form invariance of 

maxwell’s equations 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
γ2  𝐁,1

2 − 𝐁,2
1  − 𝐄,0

3   − γ2𝛃2[  𝐁,3
1 − 𝐁,1

3  − 𝐄,0
2   

−γ2𝛃2  𝐁,1
2 − 𝐁,2

1  − 𝐄,0
3  + γ2  𝐁,1

2 − 𝐁,2
1  − 𝐄,0

3  

[(𝐁,2
3 − 𝐁,3

2 ) − 𝐄,0
1 ]

𝛁. 𝐄  
 
 
 
 

 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
γ2[(𝛁 × 𝐁)3 − 𝐄,0

3 ]  − γ2𝛃2[(𝛁 × 𝐁)2 − 𝐄,0
2 ] 

−γ2𝛃2[(𝛁 × 𝐁)3 − 𝐄,0
3 ] + γ2[(𝛁 × 𝐁)2 − 𝐄,0

2 ]

[(𝛁 × 𝐁)1 − 𝐄,0
1 ]

𝛁. 𝐄  
 
 
 
 

 

Adding space components on both sides 

 
𝐅 ,

0

𝐅 ,
i

  =  γ
2 𝟏 − 𝛃2   𝛁 × 𝐁 3 − 𝐄,0

3  + γ2 𝟏 − 𝛃2   𝛁 × 𝐁 2 − 𝐄,0
2  + [(𝛁 × 𝐁)1 − 𝐄,0

1 ]

𝛁. 𝐄
  

 
𝐅 ,

0

𝐅 ,
i

  =   
 𝛁 × 𝐁 1 − 𝐄,0

1  +   𝛁 × 𝐁 2 − 𝐄,0
2  +   𝛁 × 𝐁 3 − 𝐄,0

3  

𝛁. 𝐄
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𝐅 ,

0

𝐅 ,
i

  =  
[(𝛁 × 𝐁)−𝐄,0]

𝛁. 𝐄
  

Gauss’s law is transformed into Ampere’s law 

𝐅 ,
0 = [(𝛁 × 𝐁)−𝐄,0]      (24) 

(𝛁. 𝐄) = [ 𝛁 × 𝐁  𝐄,0]      (25) 

Ampere’s law is transformed into Gauss’s law 

𝐅 ,
i = 𝛁. 𝐄      (26) 

[ 𝛁 × 𝐁  𝐄,0] = 𝛁. 𝐄      (26a) 

Sum of Gauss’s law and Ampere’s law remains same for all observers as per required by EPR  

𝐅 ,


=  𝛁. 𝐄 + [ 𝛁 × 𝐁 −𝐄,0]     (27) 

1.7. Spacetime Exchange Symmetry of Conservation Law 

 𝐅 ,


 = 𝐋

𝐅 ,
              (28) 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

 

 
 
 
 
 

0 𝐄,10
1 𝐄,20

2 𝐄,30
3

−𝐄,01
1 0 𝐁,21

3 −𝐁,31
2

−𝐄,02
2 −𝐁,12

3 0 𝐁,32
1

−𝐄,03
3 𝐁,13

2 −𝐁,23
1 0  

 
 
 
 

 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 = 

 
 
 
 
 
γ2𝛃2𝐄,02

2 − γ2𝐄,03
3  γ2𝛃2𝐁,12

3 + γ2𝐁,13
2 −γ2𝐁,23

1 −γ2𝛃2𝐁,32
1

−γ2𝐄,02
2 + γ2𝛃2𝐄,03

3 −γ2𝐁,12
3 − γ2𝛃2𝐁,13

2 γ2𝛃2𝐁,23
1 γ2𝐁,32

1

−𝐄,01
1 0 𝐁,21

3 −𝐁,31
2

0 𝐄,10
1 𝐄,20

2 𝐄,30
3  

 
 
 
 

 

Zero-point terms of Conservation of Gauss’s Law 

𝐅 ,00
00  = γ2𝛃2𝐄,02

2 − γ2𝐄,03
3      (29) 

Zero-point terms of Conservation of Ampere’s Law 

𝐅 ,ii
ii  = −γ2𝐁,12

3 − γ2𝛃2𝐁,13
2  +𝐁,21

3  +𝐄,30
3      (30) 

Zero-point terms of Total Conservation Law 

𝐅,,


 = γ2𝛃2 𝐄,02
2 − 𝐁,13

2  +  1 − γ2 [𝐄,03
3  + 𝐁,12

3  ]           (31) 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 = 

 
 
 
 
 
γ2𝛃2𝐄,02

2 − γ2𝐄,03
3  γ2𝛃2𝐁,12

3 + γ2𝐁,13
2 −γ2𝐁,23

1 −γ2𝛃2𝐁,32
1

−γ2𝐄,02
2 + γ2𝛃2𝐄,03

3 −γ2𝐁,12
3 − γ2𝛃2𝐁,13

2 γ2𝛃2𝐁,23
1 γ2𝐁,32

1

−𝐄,01
1 0 𝐁,21

3 −𝐁,31
2

0 𝐄,10
1 𝐄,20

2 𝐄,30
3  

 
 
 
 

 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 = 

 
 
 
 
 
γ2  𝐁,13

2 − 𝐁,23
1  − 𝐄,03

3   − γ2𝛃2  𝐁,32
1 − 𝐁,12

3  − 𝐄,02
2   

−γ2𝛃2  𝐁,13
2 − 𝐁,23

1  − 𝐄,03
3  + γ2  𝐁,32

1 − 𝐁,12
3  − 𝐄,02

2  

[(𝐁,21
3 − 𝐁,31

2 ) − 𝐄,01
1 ]

𝛁. 𝐄,0  
 
 
 
 

 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 = 

 
 
 
 
 
γ2[(𝛁 × 𝐁),3

3 − 𝐄,03
3 ]  − γ2𝛃2[ 𝛁 × 𝐁 ,2

2 − 𝐄,02
2 ] 

−γ2𝛃2[(𝛁 × 𝐁),3
3 − 𝐄,03

3 ] + γ2[ 𝛁 × 𝐁 ,2
2 − 𝐄,02

2 ]

[ 𝛁 × 𝐁 ,1
1 − 𝐄,01

1 ]

𝛁. 𝐄,0  
 
 
 
 

 

Adding space components on both sides 
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𝐅 ,0

0

𝐅 ,1
1   =  

γ2 𝟏 − 𝛃2   𝛁 × 𝐁 ,3
3 − 𝐄,03

3  + γ2 𝟏 − 𝛃2    𝛁 × 𝐁 ,2
2 − 𝐄,02

2  + [ 𝛁 × 𝐁 ,1
1 − 𝐄,01

1 ]

𝛁. 𝐄,0
  

 
𝐅 ,0

0

𝐅 ,1
1   =  

  𝛁 × 𝐁 ,3
3 − 𝐄,03

3  +    𝛁 × 𝐁 ,2
2 − 𝐄,02

2  + [ 𝛁 × 𝐁 ,1
1 − 𝐄,01

1 ]

𝛁. 𝐄,0
  

 
𝐅 ,0

0

𝐅 ,1
1   =  

 𝛁.  𝛁 × 𝐁 − 𝛁. 𝐄,0 

𝛁. 𝐄,0
  

Conservation of Gauss’s law is transformed into conservation of Ampere’s law 

𝐅 ,0
0  =  𝛁.  𝛁 × 𝐁 − 𝛁. 𝐄,0      (32) 

Conservation of Ampere’s law is transformed into conservation of Gauss’s law 

𝐅 ,i
i  = 𝛁. 𝐄,0      (33) 

𝐅,,


 =  𝛁. 𝐄,0 + [𝛁.  𝛁 × 𝐁 − 𝛁. 𝐄,0  = 0     (34) 

Conservation law remains same after transformation in its original form required by symmetry principle and EPR. 

1.8. Dual of Electrodynamic Laws Under Physical USEM 

There are two parts of electrodynamics consisting of source equations and field equations. Source equations consist of 

gauss’s law and Ampere’s law whereas field equations contain Gauss’s law for magnetism and Faraday’s law. There is a 

simple relation between source equations and field equations. Replacing electric field E by magnetic field B and magnetic 

field by negative of electric field – E. The dual of electromagnetic field tensor ∗ 𝐅 is denoted by putting star on it as 

∗ 𝐅. 

Dual of Electromagnetic Field 

[∗ 𝐅] =  

0 𝐁1 𝐁2 𝐁3

−𝐁1 0 −𝐄3 𝐄2

−𝐁2 𝐄3 0 −𝐄1

−𝐁3 −𝐄2 𝐄1 0

      (35) 

Dual EMF tensor ∗ 𝐅 is related to its components electric field E and magnetic field B as follows 

∗ 𝐅0i = Bi and ∗ 𝐅ij  = −𝛆ijk 𝐄k  

1.9. Spacetime Exchange Symmetry of Electromagnetic Field 

∗ 𝐅 = 𝐋


∗ 𝐅                 (36) 

 

∗ 𝐅00 ∗ 𝐅01 ∗ 𝐅02 ∗ 𝐅03

∗ 𝐅10 ∗ F11 ∗ 𝐅12 ∗ 𝐅13

∗ 𝐅20 ∗ 𝐅21 ∗ 𝐅22 ∗ 𝐅23

∗ 𝐅30 ∗ 𝐅31 ∗ 𝐅32 ∗ F33

 =   

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

  

0 𝐁1 𝐁2 𝐁3

−𝐁1 0 −𝐄3 𝐄2

−𝐁2 𝐄3 0 −𝐄1

−𝐁3 −𝐄2 𝐄1 0

  

Since the mathematical framework for dual is same as above so we write the results directly 

Zero-point terms of dual Electric Field 

∗ F00 = γ2𝛃2𝐁2 − γ2𝐁3     (37) 

Zero-point terms of dual Magnetic Field 

∗ 𝐅ii = γ2𝐄3 + γ2𝛃2𝐄2     (38) 

Zero-point terms of Dual Electromagnetic Field 

∗ 𝐅 = γ2𝛃2 𝐄2 + 𝐁2 + (1 − γ2)[𝐁3 − 𝐄3]     (39) 

∗ 𝐅0 =   𝐄1 − 𝐄2 − 𝐁3 +   𝐄3 − 𝐄1 − 𝐁2 + [(𝐄2 − 𝐄3) − 𝐁1]    (40) 

Dual Electric field is transformed in to dual of magnetic field 

*𝐅i = 𝐁     (41) 

Dual of Magnetic field is transformed in to dual electric field 

In other words, dual Electric field and dual magnetic field are exchanged 

∗ 𝐅0 = ∗ 𝐅i     (42) 

∗ 𝐅i = ∗ 𝐅0     (43) 
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But the dual of electromagnetic field becomes zero due to anti-symmetry 

∗ 𝐅 =  𝐁1 + 𝐁2 + 𝐁3 +   𝐄1 − 𝐄2 − 𝐁3 +   𝐄3 − 𝐄1 − 𝐁2 + [(𝐄2 − 𝐄3) − 𝐁1] = 0   (44) 

Right side of equation (17) can be written in tensor form in its original form as 

∗ 𝐅 = ∗ 𝐅 = 0     (45) 

Antisymmetric EMF remains same after transformation in its original form. 

1.10. Spacetime Exchange Symmetry of Dual of Maxwell’s Equations 

∗  𝐅 ,


 = 𝐋


∗ 𝐅 ,
                                                               (46) 

 
 
 
 
 
∗ 𝐅 ,

0

∗ 𝐅 ,
1

∗ 𝐅 ,
2

∗ 𝐅 ,
3

 
 
 
 
 

 =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

 

 
 
 
 
 

0 𝐁,1
1 𝐁,2

2 𝐁,3
3

−𝐁,0
1 0 −𝐄,2

3 𝐄,3
2

−𝐁,0
2 𝐄,1

3 0 −𝐄,3
1

−𝐁,0
3 −𝐄,1

2 𝐄,2
1 0  

 
 
 
 

 

Zero-point terms of Gauss’s Law for magnetism 

∗ 𝐅 ,0
00 = γ2𝛃2𝐁,0

2 − γ2𝐁,0
3      (47) 

Zero-point terms of Faraday’s Law 

∗ 𝐅 ,i
ii = γ2𝐄,1

3 + γ2𝛃2𝐄,1
2       (48) 

Zero-point terms of Dual of Maxwell’s equations 

*𝐅 ,


 = γ2𝛃2 𝐁,0
2 + 𝐄,1

2  + (1 − γ2)[𝐁,0
3  + 𝐄,1

3 ] − [𝐄,2
3  −  𝐁,3

3 ]      (49) 

Gauss’s law for magnetism is transformed into Faraday’s law 

∗ 𝐅 ,
0 = − [(𝛁 × 𝐄)+𝐁,0]      (50) 

(𝛁. 𝐁) = − [(𝛁 × 𝐄)+𝐁,0]     (51) 

Faraday’s law is transformed into Gauss’s law for magnetism 

∗ 𝐅 ,
i = 𝛁. 𝐁      (52) 

[(𝛁 × 𝐄)+𝐁,0] = 𝛁. 𝐁 

Sum of Gauss’s law for magnetism and Faraday’s law remains same for all observers.  

∗ 𝐅 ,


=  𝛁. 𝐁 − [(𝛁 × 𝐄)+𝐁,0]     (53) 

1.11. Spacetime Exchange Symmetry of dual Conservation Law 

∗ 𝐅 ,


 = 𝐋


∗ 𝐅 ,
                                   (54) 

 
 
 
 
 
∗ 𝐅 ,0

0

∗ 𝐅 ,1
1

∗ 𝐅 ,2
2

∗ 𝐅 ,3
3

 
 
 
 
 

 =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

 

 
 
 
 
 

0 𝐁,10
1 𝐁,20

2 𝐁,30
3

−𝐁,01
1 0 −𝐄,21

3 𝐄,31
2

−𝐁,02
2 𝐄,12

3 0 −𝐄,32
1

−𝐁,03
3 −𝐄,13

2 𝐄,23
1 0  

 
 
 
 

 

Zero-point terms of Conservation of Gauss’s Law for magnetism 

*𝐅 ,00
00  = γ2𝛃2𝐁,02

2 − γ2𝐁,03
3       (55) 

Zero-point terms of Conservation of Faraday’s Law 

*𝐅 ,ii
ii  = γ2𝐄,12

3 + γ2𝛃2𝐄,13
2  − 𝐄,21

3  +𝐁,30
3       (56) 

Zero-point terms of dual Conservation Law 

∗ 𝐅,,


 = γ2𝛃2𝐁,02
2 − γ2𝐁,03

3  + γ2𝐄,12
3 + γ2𝛃2𝐄,13

2  − 𝐁,21
3  +𝐁,30

3    (57) 

Conservation of Gauss’s law for magnetism is transformed into conservation of Faraday’s law 

∗ 𝐅 ,0
0  = − 𝛁.  𝛁 × 𝐄 + 𝛁. 𝐁,0       (58) 

Conservation of Faraday’s law is transformed into conservation of Gauss’s law for magnetism 
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*𝐅 ,i
i  = 𝛁. 𝐁,0       (59) 

∗ 𝐅,,


 =  𝛁. 𝐁,0 − [𝛁.  𝛁 × 𝐄 + 𝛁. 𝐁,0  = 0     (60) 

Dual conservation law remains same after transformation in its original form required by symmetry principle and EPR. 

2. Model-2: Spacetime Exchange Symmetry of Electromagnetic Field (Potential 
Formulation) 

2.1. Derivation of Electromagnetic Laws in Terms of 4-Vetor Potential  

In the contemporary world, there is only one model by J.H. Field [2] that discusses spacetime exchange invariance and 

applies in the derivation of electromagnetic laws. We highly appreciate the work of JH Field who initiated this framework. 

There is always room for improvement. His adventure of re-derivation of Lorentz transformation matrix is actually looking 

for USEM that can fulfill the requirement of principle of relativity. Furthermore, his assertion on the use of 4-vector potential 

seems to be a necessary for the derivation of electromagnetic laws. We have found USEM without any assumption. In our 

model 4-velocity is same for all observers where speed of light c is the time component of 4-velocity. We have developed the 

framework for both cases viz. in terms of electric and magnetic field and in terms of 4-vector potential. STL for 4-vectors and 

tensors predicts zero-point results like 𝐅00  ≠ 0, 𝐅ii  ≠ 0 having no counter in the contemporary literature. 

The relation between electromagnetic field tensor 𝐅 and 4-vector potential is given by 

𝐅 = 𝐀
, − 𝐀

,              (2.1) 

𝐅01 = (𝐀1
,0 − A0

,1) = 𝐀1
,0 − φ,1= −   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

1
 

𝐅02 = (𝐀2
,0 − A0

,2) = −(
𝜕𝐀2

𝜕𝑡
− φ,2)   𝐅03 = (𝐀3

,0
− A0

,3) = −( 
𝜕𝐀3

𝜕𝑡
− φ,3) 

𝐅0i = (𝐀i
,0 − A0

,i = −(
𝜕𝐀

𝜕𝑡
+ 𝛁φ)  𝐅i0 = ( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ) 

𝐅23 = (𝐀3
,2 − A2

,3) = 𝐁1 =  (𝛁 × 𝐀)1 

𝐅31 = (𝐀1
,3
− A3

,1) = 𝐁2 = (𝛁 × 𝐀)2 

𝐅12 = (𝐀2
,1
− A1

,2) = 𝐁3 =  (𝛁 × 𝐀)3 

 

𝐅0

𝐅1

𝐅2

𝐅3

 =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

 

 
 
 
 
 
 
 
 0 −   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

1

−  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

−  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

1

0 (𝛁 × 𝐀)3 −(𝛁 × 𝐀)2

  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

−(𝛁 × 𝐀)3 0 (𝛁 × 𝐀)1

  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

(𝛁 × 𝐀)2 −(𝛁 × 𝐀)1 0  
 
 
 
 
 
 
 

  (2.2) 

 

𝐅0

𝐅1

𝐅2

𝐅3

 =

 
 
 
 
 
 
 
 
 −γ2𝛃2   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

+ γ2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

γ2𝛃2(𝛁 × 𝐀)3 + γ2(𝛁 × 𝐀)2 −γ2(𝛁 × 𝐀)1 −γ2𝛃2(𝛁 × 𝐀)1

γ2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

− γ2𝛃2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

−γ2(𝛁 × 𝐀)3 − γ2𝛃2(𝛁 × 𝐀)2 γ2𝛃2(𝛁 × 𝐀)1 γ2(𝛁 × 𝐀)1

  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

1

0 (𝛁 × 𝐀)3 −(𝛁 × 𝐀)2

0 −  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

1

−  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

−  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

 
 
 
 
 
 
 
 
 

 

Zero-point new symmetry terms of Electric Field 

𝐅00 = −γ2𝛃2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

+ γ2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3
      (2.3) 

Zero-point new symmetry terms of Magnetic Field 

𝐅ii = −γ2(𝛁 × 𝐀)3 − γ2𝛃2(𝛁 × 𝐀)2+(𝛁 × 𝐀)3 −   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3
    (2.4) 

These terms are the consequence of STL for 4-vectors and tensors and contribute as an integral part of the theory. 
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𝐅0

𝐅1

𝐅2

𝐅3

 =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

 

 
 
 
 
 
 
 
 
 −   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

𝑖

[(𝛁 × 𝐀)3 −  𝛁 × 𝐀 2] +   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

1

[(𝛁 × 𝐀)1 −  𝛁 × 𝐀 3] +   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

[(𝛁 × 𝐀)2 −  𝛁 × 𝐀 1] +   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

 
 
 
 
 
 
 
 
 

 

 

𝐅0

𝐅1

𝐅2

𝐅3

 =

 
 
 
 
 
 
 
 
 −γ2𝛃2[(𝛁 × 𝐀)1 −  𝛁 × 𝐀 3] − γ2𝛃2   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

+ γ2[(𝛁 × 𝐀)2 −  𝛁 × 𝐀 1] + γ2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

γ2[(𝛁 × 𝐀)1 −  𝛁 × 𝐀 3] + γ2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

− γ2𝛃2[(𝛁 × 𝐀)2 −  𝛁 × 𝐀 1] − γ2𝛃2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

[(𝛁 × 𝐀)3 −  𝛁 × 𝐀 2] +   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

1

−  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

𝑖

 
 
 
 
 
 
 
 
 

 

 𝐅
0

𝐅i
 =  

 𝛁 × 𝐀 1 −  𝛁 × 𝐀 3 +  𝛁 × 𝐀 2 −  𝛁 × 𝐀 1 + (𝛁 × 𝐀)3 −  𝛁 × 𝐀 2 +   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

1
+   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2
+   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

−  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

𝑖   

 𝐅
0

𝐅i
 =  

 𝛁 × 𝐀 −  𝛁 × 𝐀 +   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

𝑖

−  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

𝑖
  

Electric field is transformed into magnetic field 

𝐅0 =  𝛁 × 𝐀 −  𝛁 × 𝐀 +   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

𝑖
    (2.5) 

Magnetic field is transformed in to electric field 

𝐅i = −  
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

𝑖
     (2.6) 

Electromagnetic field remains same for all observers in its original anti-symmetric form 

𝐅 =   𝛁 × 𝐀 −  𝛁 × 𝐀 +   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

𝑖

−   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

𝑖
= 0   (2.7) 

2.2. Spacetime Exchange Symmetry of Maxwell’s Equations 

 𝐅 ,


 = 𝐋

𝐅 ,
              (2.8) 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

  

 
 
 
 
 
 
 0 −( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)1

,1
−( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)2

,2
−( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,3

( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)1

,0
0 (𝛁 × 𝐀)3

,2
−(𝛁 × 𝐀)2

,3

( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)2

,0
−(𝛁 × 𝐀)3

,1
0 (𝛁 × 𝐀)1

,3

( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,0
(𝛁 × 𝐀)2

,1
−(𝛁 × 𝐀)1

,2
0

 
 
 
 
 
 
 

  

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 =  
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 −γ2𝛃2   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

,0
+ γ2( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,0
γ2𝛃2(𝛁 × 𝐀)3

,1
+ γ2(𝛁 × 𝐀)2

,1
−γ2(𝛁 × 𝐀)1

,2
−γ2𝛃2(𝛁 × 𝐀)1

,3

γ2( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)2

,0
− γ2𝛃2( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,0
−γ2(𝛁 × 𝐀)3

,1
− γ2𝛃2(𝛁 × 𝐀)2

,1
γ2𝛃2(𝛁 × 𝐀)1

,2
γ2(𝛁 × 𝐀)1

,3

( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)1

,0
0 (𝛁 × 𝐀)3

,2
−(𝛁 × 𝐀)2

,3

0 −( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)1

,1
−( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)2

,2
−( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,3  
 
 
 
 
 
 
 

  

Zero-point new symmetry terms of Gauss’s Law 

𝐅 ,0
00 = −γ2𝛃2   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

,0
+ γ2( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,0
       (2.9) 

Zero-point new symmetry terms of Ampere’s Law 

𝐅 ,i
ii = −γ2(𝛁 × 𝐀)3

,1
− γ2𝛃2(𝛁 × 𝐀)2

,1
 + (𝛁 × 𝐀)3

,2
 −( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,3
      (2.10) 

Zero-point new symmetry terms of Maxwell’s equations 

𝐅 ,


 = −γ2𝛃2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

,0
+ γ2( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,0
 − γ2(𝛁 × 𝐀)3

,1
− γ2𝛃2(𝛁 × 𝐀)2

,1
 + (𝛁 × 𝐀)3

,2
 −( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,3
   (2.11) 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
 
 
 −γ2𝛃2   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

,0
+ γ2   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

,0
+ γ2𝛃2 𝛁 × 𝐀 3

,1 + γ2 𝛁 × 𝐀 2
,1 − γ2 𝛁 × 𝐀 1

,2 − γ2𝛃2(𝛁 × 𝐀)1
,3

γ2( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)2

,0
− γ2𝛃2   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

,0
− γ2 𝛁 × 𝐀 3

,1 − γ2𝛃2 𝛁 × 𝐀 2
,1 + γ2𝛃2 𝛁 × 𝐀 1

,2 + γ2(𝛁 × 𝐀)1
,3

( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)1

,0
+ (𝛁 × 𝐀)3

,2
− (𝛁 × 𝐀)2

,3

−( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)1

,1
−( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)2

,2
−( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,3  
 
 
 
 
 
 
 

 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
 
 
 −γ2𝛃2  𝛁 × 𝐀 3

,1 −  𝛁 × 𝐀 1
,3 +   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

,0
− γ2[ 𝛁 × 𝐀 1

,2 −  𝛁 × 𝐀 2
,1] +   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

,0

+γ2  𝛁 × 𝐀 3
,1 −  𝛁 × 𝐀 1

,3 +   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

,0
+ γ2𝛃2  𝛁 × 𝐀 1

,2 −  𝛁 × 𝐀 2
,1 +   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

,0

[(𝛁 × 𝐀)3
,2
−  𝛁 × 𝐀 2

,3] + ( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)1

,0

−( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)1

,1
−( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)2

,2
−( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,3  
 
 
 
 
 
 
 

 

 
𝐅 ,

0

𝐅 ,
i

  

=

 
 
 
 
 ( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)1

,0
+ ( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)2

,0

+ ( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,0
+ (𝛁 × 𝐀)1

,3
−  𝛁 × 𝐀 3

,1 +  𝛁 × 𝐀 2
,1 + (𝛁 × 𝐀)3

,2
− (𝛁 × 𝐀)2

,3
−  𝛁 × 𝐀 1

,2

−( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,𝑖  
 
 
 
 

 

 
𝐅 ,

0

𝐅 ,
i

 =

 
 
 
 
  𝛁 × 𝛁 × 𝐀 + ( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,0

−( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,𝑖  
 
 
 
 

 

Gauss’s Law is transformed into Ampere’s law 

𝐅 ,
0 =  𝛁 × 𝛁 × 𝐀 + ( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,0
    (2.12) 

Ampere’s Law is transformed into Gauss’s law 

𝐅 ,
i = −( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,𝑖
     (2.13) 

Maxwell’s equations in tensor form as the combination of Gauss’s law and Ampere’s law remain same for all observers  

𝐅 ,


 =  𝛁 × 𝛁 × 𝐀 + ( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,0
−( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,𝑖
    (2.14) 
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2.3. Spacetime Exchange Symmetry of Conservation Law 

Zero-point terms of conservation of Gauss’s law 

𝐅 ,00
00  = −γ2𝛃2   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

,00
+ γ2( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,00
      (2.15) 

Zero-point terms of conservation of Ampere’s law 

𝐅 ,ii
ii  = −γ2(𝛁 × 𝐀)3

,11
− γ2𝛃2(𝛁 × 𝐀)2

,11
 + (𝛁 × 𝐀)3

,22
 −( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,33
    (2.16) 

Zero-point of total conservation law 

𝐅 ,


 = −γ2𝛃2   
𝜕𝐀

𝜕𝑡
+ 𝛁φ 

2

,00
+ γ2   

𝜕𝐀

𝜕𝑡
+ 𝛁φ 

3

,00
 

−γ2(𝛁 × 𝐀)3
,11

− γ2𝛃2(𝛁 × 𝐀)2
,11

 + (𝛁 × 𝐀)3
,22

 −( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)3

,33
   (2.17) 

These new symmetry terms are necessary to validate the conservation law.  

Conservation of Gauss’s Law is transformed into conservation of Ampere’s law 

𝐅 ,0
0  = 𝛁.  𝛁 × 𝛁 × 𝐀 + ( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,0𝑖
      (2.18) 

Conservation of Ampere’s Law is transformed into conservation of Gauss’s law 

𝐅 ,i
i  = − ( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,𝑖0
       (2.19) 

Conservation law in tensor form as the combination of conservation of Gauss’s law and Ampere’s law remains same for all 

observers 

𝐅 ,


 = 𝛁.  𝛁 × 𝛁 × 𝐀 + ( 
𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,0𝑖
− ( 

𝜕𝐀

𝜕𝑡
+ 𝛁φ)𝑖

,𝑖0
= 0     (2.20) 

2.4. Spacetime Exchange symmetry of Spacetime Operator 

∂ = 𝐋

∂        (2.21) 

 

∂0

𝛛1

𝛛2

𝛛3

  =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

  

∂0

𝛛1

𝛛2

𝛛3

  

 

∂0

𝛛1

𝛛2

𝛛3

  =  

−γ2𝛃2𝛛2 + γ2𝛛3

γ2𝛛2 − γ2𝛃2𝛛3

𝛛1

∂0

  

Adding the terms of space components on both sides 

 ∂
0

𝛛i
  =  

𝛛1 + γ2 1 − 𝛃2 𝛛2 + γ2 1 − 𝛃2 𝛛3

∂0
  

 ∂
0

𝛛i
  =  𝛛

1 + 𝛛2 + 𝛛3

∂0   

 𝛛
0

𝛛i
  =  𝛛

i

∂0
  

Time derivative operator is transformed into space operator 

∂0 = 𝛛i         (2.22) 

Space derivative operator is transformed into time derivative operator 

𝛛i = ∂0         (2.23) 

Spacetime derivative operator as a whole remains same for all observers 

∂0 + 𝛛i = 𝛛i + ∂0 

Contravariant spacetime derivative operator remains contravariant as a universal operator 

𝛛 =  𝛛     (2.24) 

Similarly, covariant spacetime derivative operator 𝛛μ remains covariant as a universal operator  
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∂0 − 𝛛i = ∂0 − 𝛛i     (2.25) 

𝛛μ = 𝛛μ     (2.26) 

4-vector contravariant potential 𝐀 and covariant potential 𝐀μ show the same spacetime exchange invariance. 

2.5. Spacetime Exchange Symmetry of Inner Product of 𝛛𝛍 𝛛 or 4D Wave Operator  
2
 = 

𝛛𝟐

𝛛𝐭𝟐
− 𝛁𝟐 

 
 
 
 
 
 
 

∂2

∂t2

−
∂2

∂x2

−
∂2

∂y2

−
∂2

∂z2 
 
 
 
 
 
 

 =  

0 0 −γ2𝛃2 γ2

0 0 γ2 −γ2𝛃2

0 1 0 0
1 0 0 0

 

 
 
 
 
 
 
 

∂2

∂t2

−
∂2

∂x2

−
∂2

∂y2

−
∂2

∂z2 
 
 
 
 
 
 

    (2.27) 

Rearranging all terms on left- and right-hand side, we get 

∂2

∂t2
= −𝛁2     (2.28) 

−𝛁2= 
∂2

∂t2
      (2.29) 

∂2

∂t2  − 𝛁2 = 
∂2

∂t2 − 𝛁2     (2.30) 


2= 

2      (2.31) 

4-D wave operator or de Alembertian operator remains same for all observers. 

3. Model-3: Spacetime Exchange Symmetry of Electromagnetic Field (Circular 
Geometry) 

The following matrix is a universal transformation that acts as a physical spacetime exchanger matrix under which all the 

spacetime laws of physics remain same for all observers in their original form after transformation. 

𝐋


 =  

0 0 sin2θ cos2θ
0 0 cos2θ sin2θ
0 1 0 0
1 0 0 0

     (3.1) 

3.1. Spacetime Exchange Symmetry of Electromagnetic Field 

𝐅 = 𝐋

𝐅                              (3.2) 

 

F00 𝐅01 𝐅02 𝐅03

𝐅10 F11 𝐅12 𝐅13

𝐅20 𝐅21 𝐅22 𝐅23

𝐅30 𝐅31 𝐅32 F33

 =   

0 0 sin2θ cos2θ
0 0 cos2θ sin2θ
0 1 0 0
1 0 0 0

  

0 𝐄1 𝐄2 𝐄3

−𝐄1 0 𝐁3 −𝐁2

−𝐄2 −𝐁3 0 𝐁1

−𝐄3 𝐁2 −𝐁1 0

  

 

𝐅0

𝐅1

𝐅2

𝐅3

 =   

−sin2θ𝐄2 − cos2θ𝐄3  −sin2θ𝐁3 + cos2θ𝐁2 −cos2θ𝐁1 sin2θ𝐁1

−cos2θ𝐄2 − sin2θ𝐄3 −cos2θ𝐁3 + sin2θ𝐁2 −sin2θ𝐁1 cos2θ𝐁1

−𝐄1 0 𝐁3 −𝐁2

0 𝐄1 𝐄2 𝐄3

  

We can see the shifting of last three rows of EMF after multiplication to first three and first row goes to fourth row. In other 

words, magnetic field part goes to electric field and electric goes to magnetic field part with two zeroes appearing along the 

secondary diagonal. Two zeros are observed as the transformation matrix is two dimensional. 

Zero-point terms of Electric Field 

F00 = −sin2θ𝐄2 − cos2θ𝐄3     (3.3) 

Zero-point terms of Magnetic Field 

𝐅ii = −cos2θ𝐁3 + sin2θ𝐁2 +𝐁3 +𝐄3     (3.4) 

Zero-point terms of Electromagnetic Field 

𝐅 = sin2θ 𝐁2 − 𝐄2 + (1 − cos2θ)[𝐄3 + 𝐁3]     (3.5) 
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The set of singularities of EMF doesn’t constitute any definite physical law but they contribute in the structure of electric 

and magnetic field 

 

𝐅0

𝐅1

𝐅2

𝐅3

 =

 
 
 
 
cos2θ  𝐁2 − 𝐁1 − 𝐄3 + sin2θ[(𝐁1 − 𝐁3) − 𝐄2] 

sin2θ  𝐁2 − 𝐁1 − 𝐄3 + cos2θ[(𝐁1 − 𝐁3) − 𝐄2]

[(𝐁3 − 𝐁2) − 𝐄1]
𝐄  

 
 
 
 

 𝐅
0

𝐅i
 =  (cos2θ + sin2θ)  𝐁2 − 𝐁1 − 𝐄3 + (cos2θ + sin2θ)  𝐁1 − 𝐁3 − 𝐄2 + [(𝐁3 − 𝐁2) − 𝐄1]

𝐄
  

 𝐅
0

𝐅i
 =  

  𝐁2 − 𝐁1 − 𝐄3 +   𝐁1 − 𝐁3 − 𝐄2 + [(𝐁3 − 𝐁2) − 𝐄1]
𝐄

  

Electric field is transformed into mixture of electric and magnetic field while magnetic field is transformed into pure 

electric field. 

By simplification, we get the following 

𝐅0 =   𝐁2 − 𝐁1 − 𝐄3 +   𝐁1 − 𝐁3 − 𝐄2 + [(𝐁3 − 𝐁2) − 𝐄1]     (3.6) 

Electric field is transformed in to magnetic field 

𝐅i = 𝐄    (3.7) 

Magnetic field is transformed in to electric field 

In other words, Electric field and magnetic field are exchanged 

𝐅0 = 𝐅i    (3.8) 

𝐅i = 𝐅0    (3.9) 

But electromagnetic field becomes zero due to anti-symmetry 

𝐅 =  𝐄1 + 𝐄2 + 𝐄3 +   𝐁2 − 𝐁1 − 𝐄3 +   𝐁1 − 𝐁3 − 𝐄2 + [(𝐁3 − 𝐁2) − 𝐄1] = 0  (3.10) 

 𝐅  =  𝐅  = 0     (3.11) 

Antisymmetric EMF remains same after transformation in its original form. 

3.2. Spacetime Exchange Symmetry of Maxwell’s Equations 

 𝐅 ,


 = 𝐋

𝐅 ,
             (3.12) 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 =  

0 0 sin2θ cos2θ
0 0 cos2θ sin2θ
0 1 0 0
1 0 0 0

 

 
 
 
 
 

0 𝐄,1
1 𝐄,2

2 𝐄,3
3

−𝐄,0
1 0 𝐁,2

3 −𝐁,3
2

−𝐄,0
2 −𝐁,1

3 0 𝐁,3
1

−𝐄,0
3 𝐁,1

2 −𝐁,2
1 0  

 
 
 
 

 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
−sin2θ𝐄,0

2 − Cos2θ𝐄,0
3  −sin2θ𝐁,1

3 + Cos2θ𝐁,1
2 −Cos2θ𝐁,2

1 sin2θ𝐁,3
1

−cos2θ𝐄,0
2 − sin2θ𝐄,0

3 −cos2θ𝐁,1
3 + sin2θ𝐁,1

2 −sin2θ𝐁,2
1 Cos2θ𝐁,3

1

−𝐄,0
1 0 𝐁,2

3 −𝐁,3
2

0 𝐄,1
1 𝐄,2

2 𝐄,3
3  

 
 
 
 

 

Zero-point terms of Gauss’s Law 

𝐅 ,0
00 = −sin2θ𝐄,0

2 − Cos2θ𝐄,0
3      (3.13) 

Zero-point terms of Ampere’s Law 

𝐅 ,i
ii = −cos2θ𝐁,1

3 + sin2θ𝐁,1
2  +𝐁,2

3  +𝐄,3
3      (3.14) 

Zero-point terms of Maxwell’s equations 

𝐅 ,


 = sin2θ 𝐁,1
2 − 𝐄,0

2  + (1 − Cos2θ)[𝐄,0
3  + 𝐁,1

3 ] + [𝐁,2
3  + 𝐄,3

3 ]        (3.15) 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
−sin2θ𝐄,0

2 − Cos2θ𝐄,0
3  −sin2θ𝐁,1

3 + Cos2θ𝐁,1
2 −Cos2θ𝐁,2

1 sin2θ𝐁,3
1

−cos2θ𝐄,0
2 − sin2θ𝐄,0

3 −cos2θ𝐁,1
3 + sin2θ𝐁,1

2 −sin2θ𝐁,2
1 Cos2θ𝐁,3

1

−𝐄,0
1 0 𝐁,2

3 −𝐁,3
2

0 𝐄,1
1 𝐄,2

2 𝐄,3
3  
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𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
Cos2θ  𝐁,1

2 − 𝐁,2
1  − 𝐄,0

3  + sin2θ[  𝐁,3
1 − 𝐁,1

3  − 𝐄,0
2   

sin2θ  𝐁,1
2 − 𝐁,2

1  − 𝐄,0
3  + cos2θ  𝐁,3

1 − 𝐁,1
3  − 𝐄,0

2  

[(𝐁,2
3 − 𝐁,3

2 ) − 𝐄,0
1 ]

𝛁. 𝐄  
 
 
 
 

 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
Cos2θ[(𝛁 × 𝐁)3 − 𝐄,0

3 ]  + sin2θ[(𝛁 × 𝐁)2 − 𝐄,0
2 ] 

sin2θ[(𝛁 × 𝐁)3 − 𝐄,0
3 ] + Cos2θ[(𝛁 × 𝐁)2 − 𝐄,0

2 ]

[(𝛁 × 𝐁)1 − 𝐄,0
1 ]

𝛁. 𝐄  
 
 
 
 

 

Adding space components on both sides 

 
𝐅 ,

0

𝐅 ,
i

  =  
 Cos2θ + sin2θ   𝛁 × 𝐁 3 − 𝐄,0

3  +  Cos2θ + sin2θ   𝛁 × 𝐁 2 − 𝐄,0
2  + [(𝛁 × 𝐁)1 − 𝐄,0

1 ]

𝛁. 𝐄
  

 
𝐅 ,

0

𝐅 ,
i

  =   
 𝛁 × 𝐁 1 − 𝐄,0

1  +   𝛁 × 𝐁 2 − 𝐄,0
2  +   𝛁 × 𝐁 3 − 𝐄,0

3  

𝛁. 𝐄
  

 
𝐅 ,

0

𝐅 ,
i

  =  
[(𝛁 × 𝐁)−𝐄,0]

𝛁. 𝐄
  

Gauss’s law is transformed into Ampere’s law 

𝐅 ,
0 = [(𝛁 × 𝐁)−𝐄,0]      (3.16) 

(𝛁. 𝐄) = [ 𝛁 × 𝐁  𝐄,0]      (3.17) 

Ampere’s law is transformed into Gauss’s law 

𝐅 ,
i = 𝛁. 𝐄     (3.18) 

[ 𝛁 × 𝐁  𝐄,0] = 𝛁. 𝐄 

Sum of Gauss’s law and Ampere’s law remains same for all observers as per required by EPR  

 𝐅 ,


 =   𝛁. 𝐄 +   𝛁 × 𝐁 −𝐄,0 ]      (3.19) 

3.3. Spacetime Exchange Symmetry of Conservation Law 

 𝐅 ,


 = 𝐋

𝐅 ,
            (3.20) 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 =  

0 0 sin2θ cos2θ
0 0 cos2θ sin2θ
0 1 0 0
1 0 0 0

 

 
 
 
 
 

0 𝐄,10
1 𝐄,20

2 𝐄,30
3

−𝐄,01
1 0 𝐁,21

3 −𝐁,31
2

−𝐄,02
2 −𝐁,12

3 0 𝐁,32
1

−𝐄,03
3 𝐁,13

2 −𝐁,23
1 0  

 
 
 
 

 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 = 

 
 
 
 
 
−sin2θ𝐄,02

2 − cos2θ𝐄,03
3  −sin2𝐁,12

3 +  cos2θ𝐁,13
2 cos2θ𝐁,23

1 sin2𝐁,32
1

−cos2θ𝐄,02
2 − sin2θ𝐄,03

3 −cos2θ𝐁,12
3 + sin2θ𝐁,13

2 −sin2θ𝐁,23
1 cos2θ𝐁,32

1

−𝐄,01
1 0 𝐁,21

3 −𝐁,31
2

0 𝐄,10
1 𝐄,20

2 𝐄,30
3  

 
 
 
 

 

Zero-point terms of Conservation of Gauss’s Law 

𝐅 ,00
00  = −sin2θ𝐄,02

2 − cos2θ𝐄,03
3       (3.21) 

Zero-point terms of Conservation of Ampere’s Law 

𝐅 ,ii
ii  = −cos2θ𝐁,12

3 + sin2θ𝐁,13
2  +𝐁,21

3  +𝐄,30
3       (3.22) 

Zero-point terms of Total Conservation Law 

𝐅,,


 = −sin2θ𝐄,02
2 − cos2θ𝐄,03

3  − cos2θ𝐁,12
3 + sin2θ𝐁,13

2 +𝐁,21
3  +𝐄,30

3       (3.23) 
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𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 = 

 
 
 
 
 
−sin2θ𝐄,02

2 − cos2θ𝐄,03
3  −sin2𝐁,12

3 +  cos2θ𝐁,13
2 cos2θ𝐁,23

1 sin2θ𝐁,32
1

−cos2θ𝐄,02
2 − sin2θ𝐄,03

3 −cos2θ𝐁,12
3 + sin2θ𝐁,13

2 −sin2θ𝐁,23
1 cos2θ𝐁,32

1

−𝐄,01
1 0 𝐁,21

3 −𝐁,31
2

0 𝐄,10
1 𝐄,20

2 𝐄,30
3  

 
 
 
 

 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 = 

 
 
 
 
 
cos2θ  𝐁,13

2 − 𝐁,23
1  − 𝐄,03

3  + sin2θ  𝐁,32
1 − 𝐁,12

3  − 𝐄,02
2   

sin2θ  𝐁,13
2 − 𝐁,23

1  − 𝐄,03
3  + cos2θ  𝐁,32

1 − 𝐁,12
3  − 𝐄,02

2  

[(𝐁,21
3 − 𝐁,31

2 ) − 𝐄,01
1 ]

𝛁. 𝐄,0  
 
 
 
 

 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 = 

 
 
 
 
 
cos2θ  𝛁 × 𝐁 ,3

3 − 𝐄,03
3  + sin2θ[ 𝛁 × 𝐁 ,2

2 − 𝐄,02
2 ] 

sin2θ[(𝛁 × 𝐁),3
3 − 𝐄,03

3 ] + cos2θ[ 𝛁 × 𝐁 ,2
2 − 𝐄,02

2 ]

[ 𝛁 × 𝐁 ,1
1 − 𝐄,01

1 ]

𝛁. 𝐄,0  
 
 
 
 

 

Adding space components on both sides 

 
𝐅 ,0

0

𝐅 ,1
1   =  

 Cos2θ + sin2θ   𝛁 × 𝐁 ,3
3 − 𝐄,03

3  +  Cos2θ + sin2θ    𝛁 × 𝐁 ,2
2 − 𝐄,02

2  + [ 𝛁 × 𝐁 ,1
1 − 𝐄,01

1 ]

𝛁. 𝐄,0
  

 
𝐅 ,0

0

𝐅 ,1
1   =  

  𝛁 × 𝐁 ,3
3 − 𝐄,03

3  +   𝛁 × 𝐁 ,2
2 − 𝐄,02

2  + [ 𝛁 × 𝐁 ,1
1 − 𝐄,01

1 ]

𝛁. 𝐄,0
  

 
𝐅 ,0

0

𝐅 ,1
1   =  

 𝛁.  𝛁 × 𝐁 − 𝛁. 𝐄,0 

𝛁. 𝐄,0
  

Conservation of Gauss’s law is transformed into conservation of Ampere’s law 

𝐅 ,0
0  =  𝛁.  𝛁 × 𝐁 − 𝛁. 𝐄,0      (3.24) 

Conservation of Ampere’s law is transformed into conservation of Gauss’s law 

𝐅 ,i
i  = 𝛁. 𝐄,0      (3.25) 

𝐅,,


 =  𝛁. 𝐄,0 + [𝛁.  𝛁 × 𝐁 − 𝛁. 𝐄,0  = 0     (3.26) 

4. Model-4: Universal Spacetime Exchanger Matrix in 4D 

This is one of the strange numerical matrices that acts as USEM such that its inverse also behaves as USEM 

𝐊

 = 

 
 
 
 
 
 
0 1 1 1
1

3
0 1 −1

1

3
−1 0 1

1

3
1 −1 0  

 
 
 
 
 

     (4.1) 

4.1. Transformation of EMF 

𝐅 = 𝐊

𝐅            (4.2) 

 

F00 𝐅01 𝐅02 𝐅03

𝐅10 F11 𝐅12 𝐅13

𝐅20 𝐅21 𝐅22 𝐅23

𝐅30 𝐅31 𝐅32 F33

 =  

 
 
 
 
 
 
 
0 1 1 1
1

3
0 1 −1

1

3
−1 0 1

1

3
1 −1 0  

 
 
 
 
 
 

 

0 𝐄1 𝐄2 𝐄3

−𝐄1 0 𝐁3 −𝐁2

−𝐄2 −𝐁3 0 𝐁1

−𝐄3 𝐁2 −𝐁1 0
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𝐅0

𝐅1

𝐅2

𝐅3

 =  

 
 
 
 
 
 
 
 
−𝐄1 − 𝐄2 − 𝐄3 𝐁2 − 𝐁3 𝐁3 − 𝐁1 𝐁1 − 𝐁2

𝐄3 − 𝐄2
𝐄1

3
− 𝐁2 − 𝐁3

𝐄2

3
+ 𝐁1

𝐄3

3
+ 𝐁1

𝐄1 − 𝐄3
𝐄1

3
+ 𝐁2

𝐄2

3
− 𝐁3 − 𝐁1

𝐄3

3
+ 𝐁2

𝐄2 − 𝐄1
𝐄1

3
+ 𝐁3

𝐄2

3
+ 𝐁3

𝐄3

3
− 𝐁2 − 𝐁1

 
 
 
 
 
 
 
 

 

Origin of electric Field is the temporal singularity 

𝐅00 = −𝐄           (4.3) 

𝐅ii = 
𝐄

3
− 2𝐁           (4.4) 

 

𝐅0

𝐅1

𝐅2

𝐅3

  = 

 
 
 
 
 
 

−𝐄 𝐁2 − 𝐁3 𝐁3 − 𝐁1 𝐁1 − 𝐁2

𝐄3 − 𝐄2 𝐄1

3
− 𝐁2 − 𝐁3 𝐄2

3
+ 𝐁1 𝐄3

3
+ 𝐁1

𝐄1 − 𝐄3 𝐄1

3
+ 𝐁2 𝐄2

3
− 𝐁3 − 𝐁1 𝐄3

3
+ 𝐁2

𝐄2 − 𝐄1 𝐄1

3
+ 𝐁3 𝐄2

3
+ 𝐁3 𝐄3

3
− 𝐁2 − 𝐁1

 
 
 
 
 
 

 

 

𝐅0

𝐅1

𝐅2

𝐅3

  = 

 
 
 
 
 
 
[(𝐁3 − 𝐁2) − 𝐄1] + [(𝐁1 − 𝐁3) − 𝐄2] + [(𝐁2 − 𝐁1) − 𝐄3]

𝐄

3
+ [(𝐁1 − 𝐁3) − 𝐄2] − [(𝐁2 − 𝐁1) − 𝐄3]

𝐄

3
+ [(𝐁2 − 𝐁1) − 𝐄3] − [(𝐁3 − 𝐁2) − 𝐄1]

𝐄

3
+ [(𝐁3 − 𝐁2) − 𝐄1] − [(𝐁1 − 𝐁3) − 𝐄2]  

 
 
 
 
 

 

 

𝐅0

𝐅1

𝐅2

𝐅3

  = 

 
 
 
 
 
 
[(𝐁3 − 𝐁2) − 𝐄1] + [(𝐁1 − 𝐁3) − 𝐄2] + [(𝐁2 − 𝐁1) − 𝐄3]

𝐄

3
+ [(𝐁1 − 𝐁3) − 𝐄2] − [(𝐁2 − 𝐁1) − 𝐄3]

𝐄

3
+ [(𝐁2 − 𝐁1) − 𝐄3] − [(𝐁3 − 𝐁2) − 𝐄1]

𝐄

3
+ [(𝐁3 − 𝐁2) − 𝐄1] − [(𝐁1 − 𝐁3) − 𝐄2]  

 
 
 
 
 

 

Adding space components on both sides 

 𝐅
0

𝐅i
 =   

  𝐁3 − 𝐁2 − 𝐄1 +   𝐁1 − 𝐁3 − 𝐄2 +  𝐁2 − 𝐁1 − 𝐄3 

𝐄
  

𝐅0 = 𝐅i            (4.5) 

𝐅i = 𝐅0            (4.6) 

 𝐅 
 = 0            (4.7) 

Electromagnetic field remains same for all observers in its original form after transformation. 

4.2. Transformation of Maxwell’s Equations 

 𝐅 ,


 = 𝐊

𝐅 ,
             (4.8) 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
 
0 1 1 1
1

3
0 1 −1

1

3
−1 0 1

1

3
1 −1 0  

 
 
 
 
 

 
 
 
 
 

0 𝐄,1
1 𝐄,2

2 𝐄,3
3

−𝐄,0
1 0 𝐁,2

3 −𝐁,3
2

−𝐄,0
2 −𝐁,1

3 0 𝐁,3
1

−𝐄,0
3 𝐁,1

2 −𝐁,2
1 0  

 
 
 
 

 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
 
 𝐄,0

1  𝐄,0
2  𝐄,0

3 𝐁,1
2 − 𝐁,1

3 𝐁,2
3 − 𝐁,2

1 𝐁,3
1 − 𝐁,3

2

𝐄,0
3 − 𝐄,0

2 1

3
𝐄,1

1 − 𝐁,1
3 − 𝐁,1

2 1

3
𝐄,2

2 + 𝐁,2
1 1

3
𝐄,3

3 + 𝐁,3
1

𝐄,0
1 − 𝐄,0

3 1

3
𝐄,1

1 + 𝐁,1
2 1

3
𝐄,2

2 − 𝐁,2
3 − 𝐁,2

1 1

3
𝐄,3

3 + 𝐁,3
2

𝐄,0
2 − 𝐄,0

1 1

3
𝐄,1

1 + 𝐁,1
3 1

3
𝐄,2

2 + 𝐁,2
3 1

3
𝐄,3

3 − 𝐁,3
2 − 𝐁,3

1
 
 
 
 
 
 

 

Zero-Point origin of Gauss’s as time varying electric field 

𝐅 ,0
00 =  𝐄,0           (4.9) 
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𝐅 ,i
ii = 

1

3
 𝛁. 𝐄 − 𝐁,1

3 − 𝐁,1
2  − 𝐁,2

3 − 𝐁,2
1 − 𝐁,3

2 − 𝐁,3
1             (4.10) 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

 = 

 
 
 
 
 
 
[(𝐁,2

3 − 𝐁,3
2 )  𝐄,0

1 ] + [(𝐁,3
1 − 𝐁,1

3 )  𝐄,0
2 ] + [(𝐁,1

2 − 𝐁,2
1 )  𝐄,0

3 ]
1

3
𝛁. 𝐄 + [(𝛁 × 𝐁)2  𝐄,0

2 ] −   𝐁,1
2 − 𝐁,2

1   𝐄,0
3  

1

3
𝛁. 𝐄 +   𝛁 × 𝐁 3  𝐄,0

3    [(𝛁 × 𝐁)1  𝐄,0
1 ]

1

3
𝛁. 𝐄 + [(𝛁 × 𝐁)1  𝐄,0

1 ] − [(𝛁 × 𝐁)2  𝐄,0
2 ]  

 
 
 
 
 

 

 
 
 
 
 
𝐅 ,

0

𝐅 ,
1

𝐅 ,
2

𝐅 ,
3

 
 
 
 
 

= 

 
 
 
 
 
 

[ 𝛁 × 𝐁  𝐄,0]
1

3
𝛁. 𝐄 + [(𝛁 × 𝐁)2  𝐄,0

2 ] −   𝛁 × 𝐁 3  𝐄,0
3  

1

3
𝛁. 𝐄 +   𝛁 × 𝐁 3  𝐄,0

3    [(𝛁 × 𝐁)1  𝐄,0
1 ]

1

3
𝛁. 𝐄 + [(𝛁 × 𝐁)1  𝐄,0

1 ] − [(𝛁 × 𝐁)2  𝐄,0
2 ] 

 
 
 
 
 

 

 
𝐅 ,

0

𝐅 ,
i

 =   
[ 𝛁 × 𝐁  𝐄,0]

𝛁. 𝐄
  

Gauss’s law is transformed into Ampere’s law 

𝐅 ,
0 = [ 𝛁 × 𝐁  𝐄,0]         (4.11) 

Ampere’s law is transformed into Gauss’s law 

𝐅 ,
i = 𝛁. 𝐄         (4.12) 

4.3. Transformation of Conservation Law 

 𝐅 ,


 = 𝐊

𝐅 ,
                   (4.13) 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

 = 

 
 
 
 
 
 
0 1 1 1
1

3
0 1 −1

1

3
−1 0 1

1

3
1 −1 0  

 
 
 
 
 

 
 
 
 
 

0 𝐄,10
1 𝐄,20

2 𝐄,30
3

−𝐄,01
1 0 𝐁,21

3 −𝐁,31
2

−𝐄,02
2 −𝐁,12

3 0 𝐁,32
1

−𝐄,03
3 𝐁,13

2 −𝐁,23
1 0  

 
 
 
 

 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

= 

 
 
 
 
 
 

𝛁. 𝐄,0 −𝐁,12
3 + 𝐁,13

2 𝐁,21
3 − 𝐁,23

1 𝐁,32
1 − 𝐁,31

2

𝐄,03
3 − 𝐄,02

2 1

3
𝐄,10

1 − 𝐁,13
2 − 𝐁,12

3 1

3
𝐄,20

2 + 𝐁,23
1 1

3
𝐄,30

3 + 𝐁,32
1

𝐄,01
1 − 𝐄,03

3 1

3
𝐄,10

1 + 𝐁,13
2 1

3
𝐄,20

2 − 𝐁,21
3 − 𝐁,23

1 1

3
𝐄,30

3 + 𝐁,31
2

𝐄,02
2 − 𝐄,01

1 1

3
𝐄,10

1 + 𝐁,12
3 1

3
𝐄,20

2 + 𝐁,21
3 1

3
𝐄,30

3 − 𝐁,31
2 − 𝐁,32

1
 
 
 
 
 
 

 

𝐅 ,00
00  = 𝛁. 𝐄,0                  (4.14) 

𝐅 ,ii
ii  = 

1

3
𝛁. 𝐄,0  − 𝐁,13

2 − 𝐁,12
3 − 𝐁,21

3 − 𝐁,23
1 − 𝐁,31

2 − 𝐁,32
1                 (4.15) 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

= 

 
 
 
 
 
 
[(𝐁,2

3 − 𝐁,3
2 )  𝐄,0

3 ],1 + [(𝐁,3
1 − 𝐁,1

3 )  𝐄,0
2 ],2 + [(𝐁,1

2 − 𝐁,2
1 )  𝐄,0

1 ],3 
1

3
𝛁. 𝐄,0 + [(𝐁,3

1 − 𝐁,1
3 )  𝐄,0

2 ],2 − [(𝐁,1
2 − 𝐁,2

1 )  𝐄,0
1 ],3

1

3
𝛁. 𝐄,0 + [(𝐁,1

2 − 𝐁,2
1 )  𝐄,0

1 ],3 − [(𝐁,2
3 − 𝐁,3

2 )  𝐄,0
3 ],1

1

3
𝛁. 𝐄,0 + [(𝐁,2

3 − 𝐁,3
2 )  𝐄,0

3 ],1−[(𝐁,3
1 − 𝐁,1

3 )  𝐄,0
2 ],2  

 
 
 
 
 

 

 
 
 
 
 
𝐅 ,0

0

𝐅 ,1
1

𝐅 ,2
2

𝐅 ,3
3

 
 
 
 
 

= 

 
 
 
 
 
 

𝛁. [ 𝛁 × 𝐁  𝐄,0]
1

3
𝛁. 𝐄,0 + [(𝐁,3

1 − 𝐁,1
3 )  𝐄,0

2 ],2 − [(𝐁,1
2 − 𝐁,2

1 )  𝐄,0
1 ],3

1

3
𝛁. 𝐄,0 + [(𝐁,1

2 − 𝐁,2
1 )  𝐄,0

1 ],3 − [(𝐁,2
3 − 𝐁,3

2 )  𝐄,0
3 ],1

1

3
𝛁. 𝐄,0 + [(𝐁,2

3 − 𝐁,3
2 )  𝐄,0

3 ],1−[(𝐁,3
1 − 𝐁,1

3 )  𝐄,0
2 ],2  

 
 
 
 
 

 

 
𝐅 ,0

0

𝐅 ,i
i  =  

𝛁. [ 𝛁 × 𝐁  𝐄,0]

𝛁. 𝐄,0
  

𝐅,,


 =  𝛁. 𝐄,0 + 𝛁.  𝛁 × 𝐁  𝛁. 𝐄,0          (4.16) 
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𝐅,,


 = 0           (4.17) 

 𝐅,,


  =  𝐅 ,


  = [0]           (4.18) 

All the results are true for dual of EMF, ME and conservation law for magnetism. 

5. Derivation of Electromagnetic Laws by Other USEM 

In order to avoid repetition of calculations, we only mention the USEM and one can easily obtain the same results by 

following the above method. Electromagnetic laws can be derived by the following USEM.  

5.1. Physical USEM for Noninertial Frame 

 𝐋
μ  =  

 
 
 
 
 
 
 
 0 0 −

𝐚2

c2ω2

(1 − 
𝐚2

c2ω2)

1

(1 − 
𝐚2

c2ω2)

0 0
1

(1 − 
𝐚2

c2ω2)
−

𝐚2

c2ω2

(1 − 
𝐚2

c2ω2)

0 1 0 0
1 0 0 0  

 
 
 
 
 
 
 

         (5.1) 

This matrix is universal Lorentz transformation in noninertial frame of reference that behaves as a physical identity matrix 

as well as USEM. The above model gives the same results as that of ULTM. 

Transformation of 4-current Density 

 
 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 
 

 =

 
 
 
 
 
 
 
 0 0 −

𝐚2

c2ω2

(1 − 
𝐚2

c2ω2)

1

(1 − 
𝐚2

c2ω2)

0 0
1

(1 − 
𝐚2

c2ω2)
−

𝐚2

c2ω2

(1 − 
𝐚2

c2ω2)

0 1 0 0
1 0 0 0  

 
 
 
 
 
 
 

 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 

 

 
 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 
 

 = 

 
 
 
 
 
 
 
 −

𝐚2

c2ω2

(1 − 
𝐚2

c2ω2)
𝐉2 +

1

(1 − 
𝐚2

c2ω2)
𝐉3

1

(1 − 
𝐚2

c2ω2)
𝐉2 −

𝐚2

c2ω2

(1 − 
𝐚2

c2ω2)
𝐉3

𝐉1

J0  
 
 
 
 
 
 
 

 

Adding the terms of space components on both sides 

 
J0

𝐉i
  =  

𝐉1 +
1

(1 − 
𝐚2

c2ω2)
 1 −

𝐚2

c2ω2 𝐉2 +
1

(1 − 
𝐚2

c2ω2)
 1 −

𝐚2

c2ω2 𝐉3

J0

  

 
J0

𝐉i
  =  

𝐉1 + 𝐉2 + 𝐉3

J0   

 
J0

𝐉i
  =  

𝐉i

J0  

Charge density is transformed into current density  

J0 = 𝐉i         (5.2) 

(𝛁. 𝐄) = [ 𝛁 × 𝐁  𝐄,0]         (5,2a) 

Current density is transformed into charge density 

𝐉i = J0         (5.3) 

[ 𝛁 × 𝐁  𝐄,0] = 𝛁. 𝐄        (5.3a) 
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4-current density as a whole remains same for all observers 

𝐉 =  𝐉        (5.4) 

5.2. Numerical USEM in 2D 

 A
μ =   

0 0 −1 2
0 0 2 −1
0 1 0 0
1 0 0 0

         (5.5) 

Transformation of 4-current Density 

𝐉 = 𝐠

𝐉         (5.6) 

 
 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 
 

 =   

0 0 −1 2
0 0 2 −1
0 1 0 0
1 0 0 0

 

 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 

 

 
 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 
 

 = 

 
 
 
 
−𝐉2 + 2𝐉3

2𝐉2 − 𝐉3

𝐉1

J0  
 
 
 

 

Adding the terms on 3 rows on right hand side and last 3 rows on left hand side 

 
J0

𝐉i
  =  

𝐉1 + 𝐉2 + 𝐉3

J0   

 
J0

𝐉i
  =  

𝐉i

J0  

Charge density is transformed into current density  

J0 = 𝐉i         (5.7) 

(𝛁. 𝐄) = [ 𝛁 × 𝐁  𝐄,0]         (5,7a) 

Current density is transformed into charge density 

𝐉i = J0         (5.8) 

[ 𝛁 × 𝐁  𝐄,0] = 𝛁. 𝐄        (5.8a) 

4-current density as a whole remains same 

𝐉 =  𝐉        (5.9) 

5.3. Anti-Identity Matrix as USEM 

𝛅

=  

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

        (5.10) 

The above matrix is one of the Dirac matrices that acts as the simplest USEM. On other hand, it inverts the output of OR 

GATE + AND GATE logic circuit in computer science. It behaves as a NOT GATE matrix. 

Transformation of 4-current Density 

𝐉 = 𝐠

𝐉       (5.11) 

 
 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
 
 
 
 

 =  

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 

 
 
 
 
J0

𝐉1

𝐉2

𝐉3 
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J0

𝐉1

𝐉2

𝐉3 
 
 
 
 

 = 

 
 
 
 
𝐉3

𝐉2

𝐉1

J0 
 
 
 

 

Adding the terms on 3 rows on right hand side and last 3 rows on left hand side 

                            
J0

𝐉i
  =  

𝐉i

J0  

Charge density is transformed into current density  

J0 = 𝐉i       (5.12) 

(𝛁. 𝐄) = [ 𝛁 × 𝐁  𝐄,0]       (5,12a) 

Current density is transformed into charge density 

𝐉i = J0       (5.13) 

[ 𝛁 × 𝐁  𝐄,0] = 𝛁. 𝐄      (5.13a) 

4-current density as a whole remains same 

𝐉 =  𝐉       (5.14) 

5.4. Application of Anti-Identity Matrix to OR Gate plus AND-GATE Output 

The formula of OR Gate logic circuit is defined by 

A + B = X       (5.15) 

Where A and B are the inputs and X is called its output so its output from truth table is given by 

X =  

1
1
1
0

        (5.16) 

Now, we transform this output matrix by anti-identity matrix 

 

1

1

1

0

 =  

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

1
1
1
0

        (5.17) 

 

1

1

1

0

 =  

0
0
0
1

        (5.18) 

The result of this transformation matrix is NOR gate output matrix. It means that anti-identity matrix is playing the role of 

NOT gate matrix in logic gate mathematics. 

6. Discussion and Comparison 

Spacetime exchange symmetry of 4-vectors and tensors is an outstanding approach in the derivation of electromagnetic 

laws. The importance of this approach can be imagined that there is only model on this topic in the whole literature on 

spacetime electrodynamics concerning derivation of electromagnetic laws from electrostatics and magnetostatics. Our model 

represents simple and more general results in a single step having universal form of laws of physics 

The single transformation law for 4-vectors and tensors when applied on spacetime exchanger matrices, gave rise to the 

direct derivation of electromagnetic laws from each other in a single step operation. It is an entirely new method without any 

extra assumption. The new symmetry terms appeared along the diagonals of EMF, ME and conservation law. These terms 

help to sustain the symmetry and conservation law such that EMF, ME and conservation law remain same in their original 

form after transformation. It completely obeys EPR that makes this model valid and consistent with the standard theory of 

relativity. The first form of STL was observed in the derivation of Maxwell’s equations in noninertial frame based on 

connection coefficients [15]. References [4-13] are based on usual Lorentz transformation which do not discuss the exchange 

of spacetime and universality of laws of physics. 
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There is only one viable model by J. F. Field [3] that can be compared with our model. It will be suitable to compare the 

results in the form of table to avoid confusion. First of all, we highly appreciate the work of J.H. Field in this context.  

Table 1.  Comparison of Results of derivation of Electromagnetic Laws Based on Spacetime Exchange Symmetry 

J. H. Field Model Universal Model 

1. Based on Re-derivation of Lorentz transformation but no 

explicit form of spacetime exchanger matrix 

 

 

 

2. No STL for 4-vectors and tensors 

 

 

3. Transformation of electromagnetic field and Maxwell’s 

equations in terms of 4-vector potential is considered while 

transformation in terms of electric and magnetic field are 

considered to be auxiliary phenomena 

 

 

4. Individual contravariant and covariant 4-vectors are not 

universal. Only inner product of these 4-vectors is thought to be 

invariant 

 

5. In the transformation of EMF and ME in terms of potential, 

there are no new symmetry terms 

 

No New symmetry terms of EMF 

𝐅𝟎𝟎 = 𝟎 

𝐅𝐢𝐢 = 𝟎 

No New symmetry terms of Maxwell’s Equations 

 

𝐅 ,𝟎
𝟎𝟎 = 𝟎 

𝐅 ,𝐢
𝐢𝐢 = 𝟎 

 

No New symmetry terms of Conservation law 

𝐅 ,𝟎𝟎
𝟎𝟎  = 𝟎 

𝐅 ,𝐢𝐢
𝐢𝐢  = 𝟎 

 

 

 

6. Conservation law is not presented 

 

7. No spacetime exchange symmetry in the context of  

noninertial frame of reference 

 

 

 

 

 

 

 

 

 

 

8. No numerical USEM 

 

 

 

 

 

1. Universal Spacetime Exchanger Matrix 

 𝐋
𝛍 =   

𝟎 𝟎 −𝛄𝟐𝛃𝟐 𝛄𝟐

𝟎 𝟎 𝛄𝟐 −𝛄𝟐𝛃𝟐

𝟎 𝟏 𝟎 𝟎
𝟏 𝟎 𝟎 𝟎

  

 

2. STL for 4-vectors and tensors 

 

𝐅 ,


 = Lµ 
α𝐅 ,

𝛂
 J

µ = Lµ 
α J

α 

 

3. Both methods are worked out in terms of potentials as well as in terms 

of electric field and magnetic field 

 

 

4. Under STL and USEM, Individual contravariant, covariant 4-vectors 

and inner product of these 4-vectors are universal 

 

5. In our model, new symmetry terms appear along the diagonals of EMF, 

ME and conservation law 

New symmetry terms of EMF 

𝐅𝟎𝟎 = −𝛄𝟐𝛃𝟐   
𝝏𝐀

𝝏𝒕
+ 𝛁𝛗 

𝟐

+ 𝛄𝟐   
𝝏𝐀

𝝏𝒕
+ 𝛁𝛗 

𝟑

 

𝐅𝐢𝐢 = −𝛄𝟐(𝛁 × 𝐀)𝟑 − 𝛄𝟐𝛃𝟐(𝛁 × 𝐀)𝟐+(𝛁 × 𝐀)𝟑 −   
𝝏𝐀

𝝏𝒕
+ 𝛁𝛗 

𝟑

 

New symmetry terms of Maxwell’s Equations 

𝐅 ,𝟎
𝟎𝟎 = −𝛄𝟐𝛃𝟐   

𝝏𝐀

𝝏𝒕
+ 𝛁𝛗 

𝟐

,𝟎
+ 𝛄𝟐( 

𝝏𝐀

𝝏𝒕
+ 𝛁𝛗)𝟑

,𝟎
 

𝐅 ,𝐢
𝐢𝐢=−𝛄𝟐(𝛁 × 𝐀)𝟑

,𝟏
− 𝛄𝟐𝛃𝟐(𝛁 × 𝐀)𝟐

,𝟏
+ (𝛁 × 𝐀)𝟑

,𝟐
−( 

𝛛𝐀

𝛛𝐭
+ 𝛗)𝟑

,𝟑
 

 

New symmetry terms of Conservation law 

𝐅 ,𝟎𝟎
𝟎𝟎  = −𝛄𝟐𝛃𝟐   

𝝏𝐀

𝝏𝒕
+ 𝛁𝛗 

𝟐

,𝟎𝟎
+ 𝛄𝟐( 

𝝏𝐀

𝝏𝒕
+ 𝛁𝛗)𝟑

,𝟎𝟎
 

𝐅 ,𝐢𝐢
𝐢𝐢  = −𝛄𝟐(𝛁 × 𝐀)𝟑

,𝟏𝟏
− 𝛄𝟐𝛃𝟐(𝛁 × 𝐀)𝟐

,𝟏𝟏
 + (𝛁 × 𝐀)𝟑

,𝟐𝟐
 −( 

𝝏𝐀

𝝏𝒕
+ 𝛁𝛗)𝟑

,𝟑𝟑
 

 

 

6. Conservation law is developed in both cases 

 

7. We do have USEM for noninertial frame 

 𝐋
𝛍 =  

 
 
 
 
 
 
 
 
 
 
𝟎 𝟎 −

𝐚𝟐

𝐜𝟐𝛚𝟐

(𝟏 −  
𝐚𝟐

𝐜𝟐𝛚𝟐)

𝟏

(𝟏 − 
𝐚𝟐

𝐜𝟐𝛚𝟐)

𝟎 𝟎
𝟏

(𝟏 −  
𝐚𝟐

𝐜𝟐𝛚𝟐)
−

𝐚𝟐

𝐜𝟐𝛚𝟐

(𝟏 − 
𝐚𝟐

𝐜𝟐𝛚𝟐)

𝟎 𝟏 𝟎 𝟎
𝟏 𝟎 𝟎 𝟎  

 
 
 
 
 
 
 
 
 

 

The model under STL and USEM for noninertial frame gives the 

universal form 

 

8. We have developed numerical USEM like 

𝐊

 = 

 
 
 
 
 
 
𝟎 𝟏 𝟏 𝟏
𝟏

𝟑
𝟎 𝟏 −𝟏

𝟏

𝟑
−𝟏 𝟎 𝟏

𝟏

𝟑
𝟏 −𝟏 𝟎  
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The results of four models are same so we present the 

results of model-1 only. Equation numbers of results are as 

mentioned in the model. 

6.1. Spacetime Exchange in 4-Vectors 

 J0 = 𝐉i (5) 

Charge density is transformed into current density 

 𝐉i = J0 (6) 

Current density is transformed into charge density 

 𝐉 =  𝐉 (7) 

Such that 4-current density as a whole remains same 

6.2. Spacetime Exchange of Electric and Magnetic Field 

Electric field is transformed in to magnetic field 

 𝐅0 = 𝐅i   (15) 

Magnetic field is transformed in to electric field 

 𝐅i = 𝐅0   (16) 

But electromagnetic field remains same and anti-symmetric 

 𝐅 = 0   (17) 

6.3. Spacetime Exchange of Gauss’s and Ampere’s Law 

This is the most beautiful part of the discovery where 

electromagnetic laws are derived from each other. It became 

possible due to STL and ULTM in 2D acting as USEM. Its 

simplicity lies in its single step operation. 

Gauss’s law is transformed into Ampere’s law 

 𝐅 ,
0 = [(𝛁 × 𝐁)−𝐄,0]  (24) 

In usual 3D notation, we have 

 (𝛁. 𝐄) = [ 𝛁 × 𝐁  𝐄,0]  (25) 

Ampere’s law is transformed into Gauss’s law 

 𝐅 ,
i = 𝛁. 𝐄 (26) 

Writing in usual notation 

[ 𝛁 × 𝐁  𝐄,0] = 𝛁. 𝐄 

The combination of Gauss’s law and Ampere’s Law 

remains same as per required by EPR.  

 𝐅 ,


=  𝛁. 𝐄 + [ 𝛁 × 𝐁 𝐄,0]  (27) 

6.4. Spacetime Exchange of Conservation Law 

Conservation of Gauss’s law is transformed into 

conservation of Ampere’s law 

 𝐅 ,0
0  =  𝛁.  𝛁 × 𝐁 − 𝛁. 𝐄,0   (32) 

Conservation of Ampere’s law is transformed into 

conservation of Gauss’s law 

 𝐅 ,i
i  = 𝛁. 𝐄,0  (33) 

Conservation law remains same after transformation in its 

original form required by symmetry principle and EPR. 

 

 𝐅,,


 = 𝛁. 𝐄,0 + 𝛁. [ 𝛁 × 𝐁 − 𝛁. 𝐄,0] = 0  (34) 

Results of Dual Electrodynamics 

6.5. Spacetime Exchange of Dual Electric and Magnetic 

Field  

Dual Electric field is transformed in to dual of magnetic 

field 

∗ 𝐅0 =   𝐄1 − 𝐄2 − 𝐁3  

 +  𝐄3 − 𝐄1 − 𝐁2 + [(𝐄2 − 𝐄3) − 𝐁1]  (40) 

Dual of Magnetic field is transformed in to dual electric 

field 

 *𝐅i = 𝐁   (41) 

The dual of electromagnetic field tensor becomes zero due 

to anti-symmetry 

∗ 𝐅 =  𝐁1 + 𝐁2 + 𝐁3 +   𝐄1 − 𝐄2 − 𝐁3  

 +  𝐄3 − 𝐄1 − 𝐁2 + [(𝐄2 − 𝐄3) − 𝐁1] = 0  (44) 

6.6. Spacetime Exchange of Dual Maxwell’s Equations  

Gauss’s law for magnetism is transformed into Faraday’s 

law 

 ∗ 𝐅 ,
0 = − [(𝛁 × 𝐄)+𝐁,0]  

 (50) 

 (𝛁. 𝐁) = − [(𝛁 × 𝐄)+𝐁,0]  (51) 

Faraday’s law is transformed into Gauss’s law for 

magnetism 

 ∗ 𝐅 ,
i = 𝛁. 𝐁  (52) 

[(𝛁 × 𝐄)+𝐁,0] = 𝛁. 𝐁 

Sum of Gauss’s law for magnetism and Faraday’s law 

remains same for all observers.  

 ∗ 𝐅 ,


=  𝛁. 𝐁 − [(𝛁 × 𝐄)+𝐁,0]  (53) 

6.7. Spacetime Exchange of Dual Conservation Law  

Conservation of Gauss’s law for magnetism is 

transformed into conservation of Faraday’s law 

 ∗ 𝐅 ,0
0  = − 𝛁.  𝛁 × 𝐄 + 𝛁. 𝐁,0   (58) 

Conservation of Faraday’s law is transformed into 

conservation of Gauss’s law for magnetism 

 *𝐅 ,i
i  = 𝛁. 𝐁,0  (59) 

Dual conservation law remains same after transformation 

in its original form required by symmetry principle and EPR. 

 ∗ 𝐅,,


 =  𝛁. 𝐁,0 − [𝛁.  𝛁 × 𝐄 + 𝛁. 𝐁,0  = 0  (60) 

The results in terms of potential can be seen from equation 

(2.1) to (2.20) in model-2. 

From the above discussion and comparison, it is observed 

that universality of laws of physics appears when we look at 

them as a whole. In other words, partial response of laws of 

physics is relative but the collective behavior of laws of 
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physics is universal. In the contemporary literature, time and 

space are relative but spacetime as a whole is discussed 

nowhere. In our framework, all the spacetime laws in terms 

of 4-vectors and tensors are universal.  

7. Conclusions 

The toolkit of STL for 4-vectors and tensors based on 

USEM has provided a single step derivation of electromagnetic 

laws from electrostatics and magnetostatics through spacetime 

exchange symmetry in universal form. The derivation of 

electromagnetic laws in terms of electric field, magnetic 

field as well as well as in terms of potentials has proved that 

both are equally valid. In our model, all the spacetime laws 

of physics remain same for all observers is the outstanding 

consequence of STL for 4-vectors and tensors based on 

physical and numerical USEM. STL for 4-vectors and tensors 

not only helping in spacetime exchanger methodology but 

also in discovering hidden world of physics like zero-point 

origin of 4D electromagnetic wave and conservation law as 

7D wave in the recent paper [8]. ULTM in 2D as USEM 

made the derivation of electromagnetic laws from each other 

so simple and direct is a miraculous power of mathematics. 

ULTM in 2D for noninertial frame, in circular geometry and 

the numerical matrices show the same results. Spacetime 

exchange of physical quantities might help in quantum field 

theory and physical activity near the vicinity of black holes. 

It may help to understand happenings inside the LHC 

experiment where exchange of energy and matter is expected. 

Our future research is in process in the field of inertia and 

gravitation.  
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