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Abstract  We re-examined the four-dimensional spacetime formulation of invariance of electromagnetic fields between 

two inertial frames under Lorentz transformation, which predicts a pure electric (magnetic) field in one inertial frame is 

composed the Cartesian components of a pure both electric and magnetic fields in another inertial frame. This contradicts the 

Lorentz invariance condition which requires that the vector quantities in one inertial frame must have the same form in 

another inertial frame. In this work, we introduce a three-dimensional quasi-time vector to modify the classical 

four-dimensional spacetime (3+1) to a new six-dimensional spacetime (3+3) and derive spacetime metric equation and 

relativistic velocity. We use the classical vector transformation theory to derive expressions for Cartesian components of 

relativistic velocity and net electromagnetic force vectors. Considering two massive inertial frames form a closed system, we 

integrated the transformed relativistic velocity with the law of conservation of energy to prove that contrary to the common 

belief, the electromagnetic field that appears as a purely electric (magnetic) field in one massive inertial frame, it also appears 

as a pure electric (magnetic) field in another massive inertial frame under Lorentz transformation. As an application of the 

proposed six-dimensional spacetime theory, we prove Lorentz invariance of Maxwell’s equations with and without charge 

and current source. We also prove the scalar electromagnetic wave equations with and without charge and current source and 

the conservation laws of the continuity equations of current and densities of electromagnetic energy and linear and angular 

momentums between two massive inertial frames under Lorentz transformation.  

Keywords  Six dimensional spacetime, Lorentz transformation, Massive inertial frames, Relativistic velocity 

transformation, Invariance of electric and magnetic fields, Maxwell equations, Scalar electromagnetic wave equations, 

Conservation laws for current continuity and electromagnetic energy and momentum 

 

1. Introduction 

Maxwell’s equations and Lorentz force are the foundations 

of the electromagnetic theory and describe how the charge 

and current sources with densities   and J  generate 

electric and magnetic fields ( E  and B ), and Lorentz force 

( F ) acting on a charge q moving with velocity v  [1]:  

/  E  (Gauss law of electrostatics), 

 0 B  (Gauss law of magnetism)         (1) 


  



B
E

t
 (Faraday’s law), 
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1



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

E
B J

tc
 (Ampere-Maxwell Law) (2) 
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   F q E v B  (Lorentz force)            (3) 

Maxwell’s equations lead to several conservation laws in 

electrodynamics [1], such as equations of current continuity 

and laws of conservation of electromagnetic energy and 

momentum.  

Historically, Einstein [2] proved the validity of Maxwell’s 

equations in inertial frames by using Lorentz transformation 

[3] and proposed two postulates; (i) The laws of physics are 

invariant in all inertial frames moving with uniform 

velocities relative to one another. (ii) The speed of light in 

vacuum is the same in all inertial frames and is independent 

of the direction of the motion of the emitting body. Einstein 

combines the rates of change of linear momentum ( /dp dt ) 

and energy ( / )dE dt  and, after some complicated algebra, 

finds expressions for the Cartesian components of electric 

and magnetic fields in inertial frames moving relative to each 

other along the x-direction [2] 
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where 2 2 1/21/ (1 / )  v c  is known as Lorentz factor. Here v is the speed of the inertial frames moving relative to each 

other and c is the speed of light in vacuum. Equations (4) and (5) state that electric and magnetic fields are Lorentz invariant 

along the direction of motion (x-axis) while there is a change along the perpendicular directions (y, and z-axes). Close 

inspection shows that although the scalar product of electric and magnetic fields is invariant, their vector product is not  

invariant between two inertial frames under Lorentz transformation. This has serious impact on the invariance of Maxwell’s 

equations, electromagnetic wave equations, and conservation laws such as continuity equation of current and electromagnetic 

energy and momentum between two inertial frames. Therefore, current formulation of the invariance of electromagnetic 

fields and Maxwell’s equations between two inertial frames under Lorentz transformation remains to be one of the century 

long unsolved problems [4]-[7].  

In this article, our aim is to prove the relativistic invariance of electromagnetic fields and Maxwell’s equations between 

two inertial frames under Lorentz transformation. The outline of the presentation is as follows. In section 2 we introduce a 

three-dimensional quasi-time vector to modify the classical four-dimensional spacetime (3+1) to a new six-dimensional 

spacetime (3+3) and derive spacetime metric equation and relativistic velocity. In section 3 we use the classical vector 

transformation method to derive Cartesian components of position, relativistic velocity and electromagnetic force vectors in 

six dimensional spacetime. In section 4 we use the transformed velocity in the law of energy conservation to prove that 

contrary to common belief, the electric (magnetic) field in so called a massive inertial frame is composed of electric 

(magnetic) field in another massive inertial frame. In sections 5 and 6 we prove the invariance of Maxwell equations and 

electromagnetic wave equations between two massive inertial frames.  

2. A six-Dimensional Spacetime Frame  

In this section, we introduce time as a three-dimensional quasi-time vector ( , , ) x y zt t t t  and ( , , )    x y zt t t t , along with 

three dimensional position vector ( , , )r r x y z and uniform velocity ( , , ) x y zv v v v , in three-dimensional space to modify 

the four-dimensional spacetime (3+1) to define a six-dimensional spacetime (3+3). This idea was first proposed by Mignani 

and Recami [8] and used by others [9]-[16]. They added two extra time coordinates in the primed and unprimed 

4-dimensional inertial frames  , , ,x y z t         and  , , ,x y z t   to interpret the imaginary quantities in the 

superluminal Lorentz transformations. Time is taken as a vector in the Euclidian 3-dimensional space 3T , so that an event 

can be represented in Euclidian 6-dimensional space 6 3 3( ) M R icT  as ( , , , , , ) x y zP x y z cit cit cit . Cartesian 

components of position vector do not have any physical meaning for tachyons [8], but the magnitude of time vector 
2 2 2 1/2( )  x x xt t t t  is observable for bradyons [9]. Pappas [13] later on proposed the time vector as ( , , ) x y zt t t t  in 

Euclidian 3-dimensional time space 3T so that an event is represented in a 6-dimensional Euclidian spacetime 
6 3 3( ) M R cT  as point ( , , , , , ) x y zP x y z ct ct ct described by the set of linear equations [13]-[16] 

 
2 2

( ); ( ); ( ); ( )               i i
i i i i i i i i i i i i i i i i i i

v v
x x v t t t x x x v t t t x

c c
  (6) 

where 2 2 1/21/ (1 / )  i iv c  is Lorentz factor, which is anisotropic along the , ,   ix x y z  and , ,ix x y z  axes in the so 

called six-dimensional massive inertial frames  , , , , ,          x y zx y z t t t  and  , , , , ,   x y zx y z t t t  rather than inertial 

frames. A laboratory or an observatory in which a free body is observed to retain its motion is considered as examples of 

massive inertial frames.  

In this work, we extend our recent work on special relativity [17], [18] to study the relativistic invariance of 

electromagnetic fields. The theory is based on a six-dimensional spacetime in which two massive inertial frames 

 , , , , ,          x y zx y z t t t  and  , , , , ,   x y zx y z t t t initially coincide with an absolutely stationary inertial frame



38 Hilmi Ü nlü:  Relativistic Invariance of Electromagnetic Fields and Maxwell’s Equations in Theory of Electrodynamics 

 

 

 0 0 0 0 0 0, , ,   x y z t  at time 0   t t t . We assume that Einstein’s two postulates are also valid in the 6-dimensional 

spacetime in which we allow time (space) change in all three Cartesian coordinate axes. We assume that the massive inertial 

frames   and   move relative to each other with a three-dimensional uniform velocity ( , , ) x y zv v v v . Time is taken as 

three-dimensional quasi-vector ( , , ) x y zt t t t . Here cos sin xv v , sin sin yv v , coszv v  and 

cos sin xt t , sin sin yt t , coszt t  in spherical polar coordinates. The magnitude of quasi-time vectors in the 

massive inertial frames   and   ( 2 2 2 1/2| | ( )   x x xt t t t t  and 2 2 2 1/2| | ( )       x y zt t t t t ) is measurable and Cartesian 

components ( , , )x y zt t t  and ( , , )  x y zt t t  are treated just as mathematical tools in the formulation [9]-[16].  

We adopt Einstein’s four-dimensional spacetime formulation of the special theory of relativity [2]. We consider an event of 

sending a light signal from point
1 1 11 1 1 1( , , , , , )x y zP x y z t t t  and second event of the light signal arrival at point 

2 2 22 2 2 2( , , , , , )x y zP x y z t t t  in the six-dimensional massive inertial frame  . The coordinates of the events are related to each 

other by the following relation 

           
2 1 2 1 2 1

2 2 22 2 2 2 2 2
2 1 2 1 2 1 0           x x y y z zx x y y z z c t t c t t c t t    (7a) 

We can write the following relation for the same two events at points 
1 1 11 1 1 1( , , , , , )      x y zP x y z t t t  and 

2 2 22 2 2 2( , , , , , )      x y zP x y z t t t  taking place in the second six-dimensional massive inertial frame    

           
2 1 2 1 2 1

2 2 22 2 2 2 2 2
2 1 2 1 2 1 0                         x x y y z zx x y y z z c t t c t t c t t   (7b) 

where c c  according to Einstein’s second postulate. Defining the coordinates of two events as 
1 1 11 1 1( , , , , , )x y zx y z t t t  and

2 2 22 2 2( , , , , , )x y zx y z t t t  in   and 
1 1 11 1 1( , , , , , )     x y zx y z t t t  and

2 2 22 2 2( , , , , , )     x y zx y z t t t  in  , we can write the following 

six-dimensional spacetime intervals  

           
2 1 2 1 2 1

1/2
2 2 22 2 2 2 2 2

2 1 2 1 2 1
 

              
x x y y z zs x x y y z z c t t c t t c t t    (8a) 

           
2 1 2 1 2 1

1/2
2 2 22 2 2 2 2 2

2 1 2 1 2 1
 

                             
x x y y z zs x x y y z z c t t c t t c t t   (8b) 

as the intervals between the events taking place in the six-dimensional massive inertial frames   and  . 

Just as in the case of four dimensional spacetime theory of special relativity [2], the intervals describing the motion of the 

simultaneous events in six-dimensional massive inertial frames can be positive (space like separation), negative (time like 

separation), or zero (null separation). A pair of events with null separation can be connected by a signal at the speed of light. 

The intervals of two event infinitely close to each other in the massive frames   and   are written as  

 2 2 2 2 2 2 2 2     x y zds dx dy dz c dt dt dt         (9a) 

 2 2 2 2 2 2 2 2            x y zds dx dy dz c dt dt dt         (9b) 

where the differential spacetime along the coordinate axes are defined as [17], [18] 

2 2 2

, ,

( / ) , ( / ) , ( / )

       

       

x x y y z z

x x x y y y z z z

dx dx v dt dy dy v dt dz dz v dt

dt dt v c dx dt dt v c dy dt dt v c dz
    (10a) 

2 2 2

, , ;

( / ) , ( / ) , ( / )

          

          

x x y y z z

x x x y y y z z z

dx dx v dt dy dy v dt dz dz v dt

dt dt v c dx dt dt v c dy dt dt v c dz
    (10b) 

The intervals in Eqs. (9a) and (9b) are related to each other by a metric equation [17], [18] 

 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

( ) ( ) ( )                  

           

x z x

xx x y y z z

y y z

xx yy zz t t t t y t t z

dx dy dz c dt dt dt dx dy dz c dt dt dt

a dx a dy a dz c a dt a dt a dt
  (11) 
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where a  are speed dependent coefficients and are given by the following coupled equations 

   2 2 2 2 2 2 2 2 2, ,               
 x x y y zz t tz z

xx xx x yy yy y zz zt t t t
a a a     (12a) 

2 2 2 2 2 2 2 2 2, ,        
             

    x x y y z zt t t t t tx x y y z z
t t xx x t t yy y t t zz za a a     (12b) 

Setting 1 a  transforms covariant equation (11) into the following invariant form  

2 2 2 2 2 2 2 2 2 2 2 2 2 2( ) ( )                x z xy y zdx dy dz c dt dt dt dx dy dz c dt dt dt    (13) 

which states that, just as in the three dimensions, the relativistic quantities (such as velocity and electromagnetic field) should 

be invariant between two massive inertial frames under Lorentz transformation. Solving the coupled equations (12a) and (12b) 

for 1 a , one then finds 

2 2 21/ 1 , 1/ 1 , 1/ 1                
x x y y z zxx t t x yy t t y zz t t z     (14) 

which are 6-dimensional analogue of classical Lorentz scaling factor. Square of Lorentz scaling factor 2
  forms a (6x6) 

orthogonal boost matrix and metric Eq. (11) can be written as  

2

2

2

2 2 2 2

2

2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

   
 






 







 
 
 
 
 
 
       
 
 
 
 
 
 
 

xx

yy

zz

x x

y y

z z

t t

t t

t t

ds ds dx dx dx dx    (15) 

We then write the following matrix equation for line elements in the massive inertial frame   

2

2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 ( / )

0 0 0 0 0 ( / )

0 0 0 0 0 ( / )













           
         

         
    
           

x x

y y

y y

x xxx

y yyy

z zzz

t t x xx

t tx y y

x t t
z z

dx v dt
dx

dy v dt
dy

dz v dtdz

dt v c dxdt

dt dt v c dy

dt
dt v c dz





      (16) 

In frame  , one replaces 
ixv  with 

ixv  and primed and unprimed subscripts in Eq. (16). One then writes  

( ) , ( ) , ( )

( / ) , ( / ), ( / )

  

     

       

       
x x y y z z

xx x x yy y y zz z z

x t t x x y t t y y z t t z z

dx dx v dt dy d dy v dt dz dz v dt

dt dt dx c dt dt dy c dt dt dz c
  (17a) 

( ) , ( ) , ( );

( / ) , ( / ), ( / )

  

     

        

          
x x y y z z

xx x x yy y y zz z z

x t t x x y t t y y z t t z z

dx dx v dt dy dy v dt dz dz v dt

dt dt dx c dt dt dy c dt dt dz c
  (17b) 

Figure 1 shows the variation of Lorentz scaling factor components  xx  and  yy  with azimuthal angle   for polar angle 

/ 2   and speed ratio /  v c . Figure 1 suggests the replacement of classical Lorentz scaling factor   in four 

-dimensions with its analogue   in six-dimensions.  
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Figure 1.  Angle variation of Lorentz scaling factors  xx  (red line) and  yy  (blue line) for (left) / 6, / 4, / 3, / 2      and (right) 

/  v c  ratio=0.60, 0.70, 0.80 and 0.90 and / 2   in six-dimensional spherical spacetime coordinates as   frame moves relative to   frame 

Using Eqs. (17a) and (17b) with  
x xxx t t ,  

y yyy t t  and  
z zzz t t , we can write the following expressions for 

Cartesian components of the relativistic velocities u  and u  of an event taking place in massive inertial frame   and 

observed in another massive inertial frame   [17], [18] 

 
 

 
 

2 2
,

1 / 1 /

 
        

   

x x x xx x
x x x x x x

x x x xx x x x

u v u vdt dtdx dx
u u v u u v

dt dt dt dtu v c u v c
   (18a)  

   
 

2 2
,

1 / 1 /

 
        

   

y yy y y y
y y y y y y

y y y yy y y y

u vdt u v dtdy dy
u u v u u v

dt dt dt dtu v c u v c
  (18b) 

   
 

2 2
,

1 / 1 /

  
        

   

z zz z z z
z z z z z z

z z z zz z z z

u vdt u v dtdz dz
u u v u u v

dt dt dt dtu v c u v c
   (18c) 

When   moves parallel to x axis of   at the speed of light, Eqs. (18a) - (18c) give   xu c  and xu c  (   yu c  

and yu c ,   zu c  and zu c ), in agreement with 4-dimensional theory [2].  

In order to extend the range of the validity of Eqs. (18a), (18b) and (18c) to any relative speed we combine Eqs. (17a) and 

(17b) and write x, y and z of u  and u  in frames   and  , respectively 

 
2 2

2 2
1 1   

   
            

       
   

i i

i i i x x i i i i i x x ii i i i
i i

x xi i
x x x t t x x x x x t t x

x x

v vdx dx
u v u v v

dt dtc c
    (19a) 

 
2 2

2 2
1 1   

   
          

      
   

i i

i i i x x i i i i i x x ii i i i
i i

x xi
x x x t t x x x x x t t x

x x

v vdxdx
u v u v v

dt dtc c
    (19b) 

which gives the velocity of an event taking place in frame  (  ) and observed in frame  ( ) 

2 2

2 2
1 1 1 1

      
               
             

      

i i

i i i

x x
x x x x

v v
u v u v

c c
        (20a) 

2 2

2 2
1 1 1 1

      
            
            

      

i i

i i i i

x x
x x x x

v v
u v u v

c c
         (20b) 
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The negative sign means that an event is taking place along + direction in the in frame   and observed in -x direction in 

frame  . Equations (20a) and (20b) can explicitly written as 

cos sin , sin sin , cos                 x x y y z zu v v u v v u v v      (21a) 

cos sin , sin sin , cos         x x y y z zu v v u v v u v v       (21b) 

Figure 2 shows plot of Eqs. (20c) and (20d) for x and y components of u and u  at speed of light. As the polar angle 

increases from / 6   to / 2 , the magnitude of components of u  and u  velocity increase and become unity at 

/ 2  . The overlapping values of the x and y Cartesian components of u  and u  suggest an interaction effect between 

the events. Equations (20c) and (20d) suggest that xu , yu , zu  components of u  and xu , yu , zu  components of u  

can be determined by using the relative speed of two frames, without requiring one of the unknowns to be known.  

  

(a)                                                 (b) 

Figure 2.  The plot of x- and y- components of u  (Fig. 2a) and u  (Fig. 2b) of an event taking place in massive inertial frame  (  ) and observed in 

massive inertial frame   ( ) as a function of azimuthal angle   for polar angle / 6, / 4, / 3, / 2      

3. Relativistic Vector Transformation 

In this section, we discuss the classical vector transformation [19] to lay down the groundwork for the study of the 

invariance of electromagnetic fields between two massive inertial frames. For now, we momentarily set aside the relativity 

and focus on the transformation of ordinary vectors (i.e., space position, velocity, and force) in three dimensions. The massive 

inertial frames   and   coincide with a rest (an absolutely stationary) inertial frame  , at 0  t t  and have common 

z-axis ( z z , in Fig. 3). We define unit vectors ˆˆ ˆ( , , )  i j k  in the massive inertial frame   in terms of unit vectors ˆˆ ˆ( , , )i j k  

in the massive inertial frame   by using the following linear transformation matrix equation  

ˆˆ ˆ ˆ ˆ ˆcos( ) cos( ) cos( )ˆ ˆ ˆcos sin 0

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos( ) cos( ) cos( ) sin cos 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 1ˆ ˆcos( ) cos( ) cos( )

 

 

                   
                

                      

i i i j i ki i i

j j i j j j k j j

k k i k j k k k k

    (22a) 

Setting     in Eq. (21a) we can relate ˆˆ ˆ( , , )i j k  in frame   to ' ' 'ˆˆ ˆ( , , )i j k  in frame   

ˆˆ ˆ ˆ ˆ ˆcos( ) cos( ) cos( )ˆ ˆ ˆcos sin 0

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos( ) cos( ) cos( ) sin cos 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 1ˆ ˆcos( ) cos( ) cos( )

 

 

                   
                

                       

i i i j i ki i i

j j i j j j k j j

k k i k j k k k k

    (22b) 
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(a)                                                           (b) 

Figure 3.  The schematic diagram of unit vectors in a rotation through azimuthal angle   in counterclockwise of ( , )x y  plane into ( , ) x y  plane (a) 

and in clockwise of ( , ) x y  into ( , )x y  plane for 0 2    and / 2  . In both cases z  or z  axes are kept the same 

We now consider the transformation of Cartesian components of position, velocity and force vectors. The translation of a 

position vector does not affect its Cartesian components [19], which transform under rotation according to Eqs. (22a) and 

(22b). We define three-dimensional stationary position vectors ( , , )   r x y z  and ( , , )r x y z  in the inertial frames   

and   relative to unit vectors ˆˆ ˆ( , , )  i j k  and ˆˆ ˆ( , , )i j k , as shown in Fig. 4, by the following equations  

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cos                 r x i y j z k x y i x y j zk       (23a) 

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cos                 r xi yj zk x y i x y j z k       (23b) 

which can be written in the form of transformation matrix equations for Cartesian components 

 

cos sin 0

sin cos 0

0 0 1

 

 

    
    
      

        

x x

y y

z z

      (24a) 

 

cos sin 0

sin cos 0

0 0 1

 

 

    
    

    
        

x x

y y

z z

        (24b) 

  

(a)                                                            (b) 

Figure 4.  The schematic diagram of r  and r  in terms of unit vectors in a rotation through angle   in counterclockwise of ( , )x y  plane into 

( , ) x y  plane (a) and in clockwise of ( , ) x y  into ( , )x y  plane for 0 2    and / 2  . In both cases z  or z  axes are kept the same 
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The scalar product of r  with itself in   (or r  in  ) frame leads to    r r r r , which states that the magnitude of 

the position vectors r  and r  Lorentz scalar and have the same length | | | | r r  from the origin. The spacetime metric 

equation is also invariant relative to the rotation of coordinates about third axis ( 2 2 ds ds ) for any coordinate rotations of 

reference system [19]. 

Likewise, one can write the following transformation matrix equations for Cartesian components of relativistic velocity 

vectors u  and u  in the massive inertial frames   and  , respectively 

 

cos sin 0

sin cos 0

0 0 1

 

 

     
    
      

    
     

x x

y y

z z

u u

u u

u u

      (25a) 

 

cos sin 0

sin cos 0

0 0 1

 

 

    
    

    
    

    

x x

y y

z z

u u

u u

u u

      (25b) 

from which the relativistic velocity vectors in the massive inertial frames   and   are written as 

   ' ' 'ˆ ˆˆ ˆ ˆ ˆcos sin sin cos              x y z x y x y zu u i u j u k u u i u u j u k     (26a) 

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cos                 x y z x y x y zu u i u j u k u u i u u j u k     (26b) 

Figure 5 compares the Cartesian components of the transformed relativistic velocity of an event taking place in frame   

(  ) and observed in frame  ( ). As the light source at the origin of a frame is flashed on and off rapidly, observers in both 

frames see a spherical shell of radiation which expands outward from the origin in all directions [2]. 

  

(a)                                                       (b) 

Figure 5.  Polar plot of xu  and yu components of u (a) and xu , yu  components of u  (b) plotted as a function of azimuthal angle   for 

/ 6, / 4, / 3, / 2     , respectively [17], [18] 

The upper limit for the relative speed in both frames is equal to speed of light in vacuum 

2
2 2 2 2 2

2

2
2 2 2 2 2 2

2

| | 0, | |

| | 0, | |


               



        

x y z

x y z

ds
u u u c u c u c

dt

ds
u u u c u c u c

dt

        (27) 

which proves that the speed of light is Lorentz scalar (  c c ) between massive inertial frames. 

Furthermore, similar to defining stationary position vectors r  and r  in Fig. 4, we define stationary net force vectors 

( , , )    x y zF F F F  and ( , , ) x y zF F F F  relative to unit vectors ˆˆ ˆ( , , )  i j k  and ˆˆ ˆ( , , )i j k in the massive inertial frames   

and  , respectively. We then write the following matrix equations  
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cos sin 0

sin cos 0

0 0 1

 

 

     
    

      
    

     

x x

y y

z z

F F

F F

F F

    (28a) 

cos sin 0

sin cos 0

0 0 1

 

 

    
    

    
    

    

x x

y y

z z

F F

F F

F F

    (28b) 

from which, similar to writing Eqs. (21a) and (21b), we can write the net force vectors as 

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cos                 x y z x y x y zF F i F j F k F F i F F j F k     (29a) 

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cos                 x y z x y x y zF F i F j F k F F i F F j F k     (29b) 

The scalar product of F  with itself in the massive inertial frame   leads to the scalar product of F  with itself in the 

massive inertial frame  :    F F F F , which states that net forces have the same length ( | | | | F F ) from the origin, so 

vector transformation is identified as a rotation if it causes no change in vector’s magnitude [19]. 

4. Relativistic Invariance of Electromagnetic Fields  

Considering the massive inertial frames   and   form a closed system in the six-dimensional spacetime, the rate at 

which work is done by the net force on a particle are written as [17], [18] 

.   
i i

i

x x x x y y z z
x

dE
F u F u F u F u

dt
    (30a) 

.


          
 i i

i

x x x x y y z z
x

dE
F u F u F u F u

dt
    (30b) 

where 
ixF  and 

ixF  are the Cartesian components of Lorentz force massive inertial frames   and   

     , ,                         x x y z z y y y z x x z z z x y y xF q E u B u B F q E u B u B F q E u B u B  (31a) 

     , ,        x x y z z y y y z x x z z z x y y xF q E u B u B F q E u B u B F q E u B u B  (31b) 

where ju  ( ku ) and ju  ( ku ) are x, y and z components of u  and u , given by Eqs. (25a) and (25b).  

Since the massive inertial frames   and   form a closed system in six-dimensional spacetime, we can write the 

following relation for Lorentz invariance of the conservation of relativistic power law (rate of relativistic energy change) 

between the massive inertial frames   and   [17], [18] 


           


i i

x x y y z z x x y y z z
x x

dE dE
F u F u F u F u F u F u

dt dt
      (32) 

Combining the velocity transformation matrix equations (25b) and (25a) with the conservation of power law in equation 

(32) we can write the following explicit algebraic equations  

   cos sin sin cos   

         

        

x x y y z z x x y y z z

x y x x y y z z

F u F u F u F u F u F u

F F u F F u F u
    (33a) 

   cos sin sin cos   

         

        

x x y y z z x x y y z z

x y x x y y z z

F u F u F u F u F u F u

F F u F F u F u
    (33b) 

Component by component matching both sides of Eq. (33a) and then (33b), respectively, one obtains the transformation 

matrix equations (28a) and (28b) for the net electromagnetic forces.  

Substituting Eqs. (31a) and (31b) into Eq. (33a) we write the following set of equations 
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     cos sin            x y z z y x y z z y y z x x zE u B u B E u B u B E u B u B     (34a) 

     sin cos             y z x x z x y z z y y z x x zE u B u B E u B u B E u B u B     (34b) 

        z x y y x z x y y xE u B u B E u B u B         (34c) 

Using Eq. (25a) for xu , yu , and zu  in Eqs. (34a) - (34c), we write the transformation equations 

cos sin 0

sin cos 0

0 0 1

 

 

     
    

      
    

     

x x

y y

z z

E E

E E

E E

    (35a) 

cos sin 0

sin cos 0

0 0 1

 

 

     
    

      
    

     

x x

y y

z z

B B

B B

B B

    (35b) 

which allows us to write the following expressions for electric and magnetic fields in frame   

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cos                 x y z x y x y zE E i E j E k E E i E E j E k    (36a) 

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cos                 x y z x y x y zB B i B j B k B B i B B j B k    (36b) 

Likewise, using Eq. (25b) for xu , yu , and zu  in Eq. (33b) and following the steps in writing Eqs. (35a) and (35b), we 

then write the following transformation equations 

cos sin 0

sin cos 0

0 0 1

 

 

    
    

    
    

    

x x

y y

z z

E E

E E

E E

    (37a) 

cos sin 0

= sin cos 0

0 0 1

 

 

    
    

    
    

    

x x

y y

z z

B B

B B

B B

    (37b) 

from which the electric and magnetic field vectors in the inertial frame   are written as 

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cos                 x y z x y x y zE E i E j E k E E i E E j E k     (38b) 

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cos                  x y z x y x y zB B i B j B k B B i B B j B k    (38b) 

Equations (35)-(38) are in full agreement with the first postulate of special relativity: Just as with three dimensional 

quantities, the relativistic vector quantities such as electric and magnetic fields should not change between two massive 

inertial frames under Lorentz transformation. 

As verification, let us consider a static point charge Q that is at rest at the origin of the massive inertial frame   which is 

assumed to coincide with the absolutely stationary inertial frame   and second massive frame   moves relative to first 

massive frame with uniform velocity ( , , ) x y zu u u u . The produced electric fields in the massive frames   and   are 

written as 

 2 3/2

ˆ ˆ ˆˆ ˆ ˆ ˆ
4 4 

      x y z
Q r Q

E xi yj zk E i E j E k
r r

        (39a) 

2 3/2

ˆ ˆ ˆˆ ˆ ˆ ˆ
4 4 


                   
  

x y z
Q r Q

E x i y j z k E i E j E k
r r

      (39b) 

where 2 2 r r . Using the unit vectors ˆˆ ˆ( , , )  i j k  described in Eq. (22a) we can re-write Eq. (39b) as 
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2 3/2

ˆ ˆ ˆˆ ˆ ˆ ˆ
4 4 


         
  

x y z
Q r Q

E xi yj zk E i E j E k E
r r

      (39c) 

which states a pure electric field in one frame appears as a pure electric field in another frame.  

Since observer in frame   sees the charge Q in frame   as moving with uniform velocity ( , , ) x y zu u u u , the 

magnetic field produced by charge Q in frames   and   can be written as 

 
   2 3/2

ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

4 4

 

 


         x y z x y z

Q u r Q
B u i u j u k xi yj zk B i B j B k

r r
   (40a) 

 
     2 3/2

ˆ
ˆˆ ˆ

4 4

 

 

 
                       
 

y z x z x y

Q u r Q
B u z u y i u z u x j u y u x k

r r
   (40b) 

Substituting unit vectors ˆˆ ˆ( , , )  i j k  from Eq. (22a) into Eq. (40b), one can write 

       

   

3/2
ˆˆ ˆ ˆ ˆcos sin sin cos

4

ˆ ˆˆ ˆ ˆ ˆcos sin sin cos


   



   

                      
 

            

y z x z x y

x y x y z x y z

Q
B u z u y i j u z u x i j u y u x k

r

B B i B B j B k B i B j B k B

 (40c) 

which states a pure magnetic field in one frame appears as a pure magnetic field in another one. 

One can easily show that scalar and vector products of electric and magnetic fields are Lorentz invariant between the 

massive inertial frames. The scalar products of E  and B  in the massive inertial frame   ( E  and B  in the inertial 

frame  ) are written as 

  

    

cos sin cos sin

sin cos sin cos

   

   

              

          

x x y y z z x y x y

x y x y z z x x y y z z

E B E B E B E B E E B B

E E B B E B E B E B E B E B
  (41a) 

  

    

cos sin cos sin

sin cos sin cos

   

   

          

                     

x x y y z z x y x y

x y x y z z x x y y z z

E B E B E B E B E E B B

E E B B E B E B E B E B E B
  (41b) 

which are Lorentz scalars between two inertial frames. Likewise, the scalar product of electric field E ( E ) with itself and 

magnetic field B ( B ) with itself in the massive inertial frame   ( ) yields 

     

     

2 2 22 2 2

2 22 2 2

cos sin sin cos

cos sin sin cos

   

   

             

             

x y z x y x y z

x y z x y x y z

E E E E E E E E E E

E E E E E E E E E E

  (42a) 

     

     

2 2 22 2 2

2 2 22 2 2

cos sin sin cos

cos sin sin cos

   

   

             

             

x y z x y x y z

x y z x y x y z

B B B B B B B B B B

B B B B B B B B B B

  (42b) 

which state that  E E  and  B B  (Lorentz scalar invariants). We can then write  

       2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

1 1 1 1

2 2 2 2
           


   

i i i ix x x x
E c B E c B E c B E c B

c c c c
 (43) 

where , ,ix x y z . Equation (43) is important for determining electromagnetic energy density. 

The vector product of electric and magnetic fields can be determined by using Eqs. (36a) and (36b) for E  and B  and  

Eq. (38a) and (38b) for E  and B , which yield the following equations 

     

    
      

ˆˆ ˆ

ˆcos sin

ˆˆcos sin

 

 

                      

   

        

y z y z x z x z x y x y

y z z y z x x z

z x x z z y y z x y y x

E B E B B E i B E E B j E B B E k

E B E B E B E B i

E B E B E B E B j E B E B k E B

  (44a) 
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     

    
      

ˆˆ ˆ

ˆcos sin

ˆcos sin

 

 

      

          

                

y z z y z x x z x y y x

y z z y x z z x

z x x z z y y z x y y x

E B E B E B i E B E B j E B E B k

E B E B E B E B i

E B E B E B E B j E B E B k E B

   (44b) 

which states that the vector product of electric and magnetic fields is Lorentz invariant between two massive inertial frames 

  and  ( )   E B E B , which is essential in proving the Lorentz invariance of Poynting vector and conservation laws 

for charge (current) continuity equation and electromagnetic energy and momentum. This eliminates the non-invariance of 

electric and magnetic fields       E B E B  according to classical four-dimensional spacetime theory [2].  

5. Relativistic Invariance of Maxwell’s Equations  

Maxwell’s equation of electrodynamics must take the same form (invariant) in every inertial frame. And it is quite tedious 

to demonstrate this invariance explicitly by using the transformation rules in the classical four-dimensional theory of special 

relativity [2]. This motivated us to demonstrate the Lorentz invariance of Maxwell’s equations between massive inertial 

frames by using the vector transformation rules described in the previous section. In doing so, we begin with the differential 

forms of Maxwell’s equations in the six-dimensional massive inertial frames   and  , written as 

2

1
/ , 0, ,  

 
             

 
i i

i i i i
x x

B E
E B E B J

t tc
    (45a) 

2

1
/ , 0, ,  

  
                        

  
i i

i i i i
x x

B E
E B E B J

t tc
   (45b) 

Recall that Gauss’ theorem relates the flux of a vector field ( )V r  through a closed surface to the volume integral of its 

divergence inside the surface [20] in massive inertial frames are written as 

0 0

1 1
. , . 

 
  

                 
     

S V V S V V

V dA Vdv dv V dA V dv dv    (46) 

Since any scalar function, such as electric and magnetic fields, is continuous at any point in space in both frames (  ) 

[21], we write the following chain rules for differential operators  

                        
     

                 

i i

i i

i i

x xi i i i
x x

i i i i i x i i i x i i i

t tx x x x
a

x x x x x t x x x t x x x
     (47a) 

                        
     

                 

i i i i

x xi i
i i i i i i i i i i i

x x x xi i
t t

x x x x x i x x x i x x x

t t t tx x
a

t t t t t x t t t x t t t
    (47b) 

'2 2

2 2
,

                             
         
                        

i i

i i i i i i
i

x xi i

i i i x i i i x x x x xi x

t tx x

x x x t x x x t t t t tx t
  (47c) 

where 
2 2 2   

i i i i x x ii i
x x x x t t x

a  and 
2 2 2   

x x x x i i ii i i i
t t t t x x x

a  are given in Eqs. (12a) and (12b) with 
2 2 
i i x xi i

x x t t
 given by 

Eq. (14). In the following we will use Stokes theorem and chain rules to prove the Lorentz invariance of Maxwell’s equations 

between two massive inertial frames. 

5.1. Gauss Law of Electrostatics 

Since the electric field wave function is continuous at any point in space in both frames, taking   E  and   E  and 

applying the chain rule in Eq. (47a) we write  

       2 2 2 2 2 2 2 2. 1 1 1 1 .             
    

           
     i i i

xx x yy y zz z ix x x

E E E
E E

x y z
 (48) 
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where 2 2(1 ) 1  
i i ix x x

 and . /     E . Matching both sides of Eq. (48) yields 0 0     . Since 0 0   , we have 

   . Consequently, covariant Eq. (44) is transformed into invariant form 

. .
 

 


     


E E     (49) 

which is the Lorentz invariant Gauss law of electrostatics between the six-dimensional massive inertial frames   and   

(or between four-dimensonal inertial frames   and  ). Here we should keep in mind that 2/ 1     and 

2/ 1      defined with respect to the rest charge density   in the absolutely steady inertial frame  , in static 

equilibrium. 

5.2. Gauss law of Magnetism 

Since magnetic field wave function is continuous at any point in space [21], taking   B  and   B  and using the 

chain rule in Eq. (47a) we write  

       2 2 2 2 2 2 2 2. 1 1 1 1 .       
    

          
     i i i

xx x yy y zz z x x x

B B B
B B

x y z
   (50) 

Matching both sides of Eq. (47), one finds 2 1/21/ (1 )   
i i i

x x x
, which transforms Eq. (46) to  

. .  B B    (51) 

which is Lorentz invariant Gauss law of magnetism between the six-dimensional massive inertial frames   and   (or 

between four-dimensonal inertial frames   and  ). 

5.3. Faraday’s Law of Induction 

Let us write the differential form of Faraday’s law of induction in Eq. (45a) in x directions of system of Cartesian polar 

coordinates  

     , ,
      

              
        

y y yx x xz z z

x y z
x y z

E B EB E EE E B
E E E

y z t z x t x y t
 (52) 

Applying the chain rule for differential operators in Eq. (47a) and (47b) to x, y, and z components in Eq. (52) for the 

differential form of Faraday’s law of induction we write  

 2

2
1 

                
      

               

i i i i i i i ii i

i
i i

x x x x x x x xx xi i i
x

i i i i x i i i i x i

E E E E t E v E Ex x x

x x x x t x x x x t xc
   (53a) 
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2
1 

                   
                         

i i i i i i i i i i i

i
i i i i i i i i i i

x x x x x x x x x x xi i
x

x x x x i x x x x i x x

B B B t B B t v t B Bx x

t t t t x t t t t x t tc
  (53b) 

where , ,ix x y z . Combining Eqs. (49a) and (49b) side by side, we write a covariant equation 

      2 2 2 21 1   
 

        
 

i i

i i i x x ii ii i
i i

x x

x x x t t xx x
x x

B B
E E

t t
      (54) 

Matching both sides of Eq. (54), one finds 2 2 1/21/ (1 / )    
i i x x ii i

x x t t x
v c  in Eq. (14) for Lorentz factor. When   and   

move along +x axis, 6-dimensional spacetime (3+3) becomes 4-dimensional (3+1) with 2 2 1/21/ (1 / )      xx tt v c  

and Eq. (54) reduces to four-dimensional invariant form 

 
    

 

B B
E E

t t
    (55) 

which is Lorentz invariant Faraday’s law of induction between four-dimensonal inertial frames   and   frames in 

vacuum.  
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5.4. Ampere-Maxwell Law 

We write the following forms of Ampere-Maxwell’s law (extended form of Maxwell law of induction in Eq. (45a) to 

include the current) in x, y and z-directions 
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y x xz
x xx
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y z t t
      (56a) 
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y yx z
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y y
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      (56b) 

        
   

      
   

y x z z
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z z
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B J E

x y t t
       (56c) 

where 2/ 1     and 2/ 1      are the conductivities in the massive inertial frames   and   and   

is the rest conductivity in the absolutely steady inertial frame  . Applying chain rule in Eq. (47a) and (47b) to the 

differential form of Ampere-Faraday’s law in x, y, and z-directions and write first, second and third terms in Eqs. (56a), (56b), 

and (56c), we write  
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  (57b) 

Combining Eqs. (57a), and (57b) side by side and adding  
ixE  and    

ixE  on the left and right sides we write the 

Ampere-Maxwell law which is covariant between two massive inertial frames  
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 (58) 

Matching both sides of Eq. (58), one finds 2 2 1/21/ (1 / )    
i i x x ii i

x x t t x
v c  in Eq. (14) for Lorentz scaling factor, which 

transforms covariant Eq. (54) into the following invariant form 
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         (59) 

When frames   and   move in one dimension (e.g., along x axis), 6-dimensional spacetime (3+3) reduces to 

4-dimensional spacetime (3+1). Consequently, the Lorentz scaling factor reduces to 2 2 1/21/ (1 / )      xx tt v c  and 

Eq. (59) then takes the following 4-dimensional invariant form 

 
    

 

B B
E E

t t
     (60) 

which is the Lorentz invariant Maxwell law of induction between four-dimensonal inertial frames   and   in vacuum. 

Recall that ( )E B  and ( ) E B  are invariant vectors and ,   and ,    are invariant scalars (      ) between 

two frames. 

6. Relativistic Invariance of Electromagnetic Wave Equations  

One of the consequences of Maxwell’s equations are the scalar wave equations [20]. Using the formula 
2    [20], we write Faraday’s law of induction in a charge free medium 
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where ( ) 0   i i E  and ( ) 0     i i E . Using the chain rule in Eqs. (47a), (47b), and (47c) for differential operators one 

then writes each component of Eq. (61a) and (61b) as  
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In a charge free medium, covariant form of Faraday’s law between two frames is then written as 
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Matching both sides of Eq. (63) one finds 
2 1/21/ (1 )    

i i t t ix xi i
x x x

 in Eq. (14) for the components of Lorentz scaling 

factor and Eq. (63) becomes Lorentz invariant since E  and E  are invariant vectors ( E E ) and ,   and ,    are 

invariant scalars (      ). Maxwell’s scalar wave equation (63) for the electric field in the six-dimensional spacetime 

can then be written as 
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Component by component matching both sides of Eq. (64) then yield the components of Lorentz scaling factor given by Eq. 

(14). When the massive inertial frames   and   move along x axis, the 6-dimensional spacetime (3+3) reduces to the 

4-dimensional spacetime (3+1). Lorentz scaling factor reduces to 2 2 1/21/ (1 / )      xx tt v c  and Eq. (64) reduces to 

the following four-dimensional invariant form 
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which is the Lorentz invariant Maxwell wave equation between four-dimensonal inertial frames   and   in vacuum. 

Likewise, using the formula from vector analysis 2    [20] one writes the differential equations for 

Ampere-Maxwell law in frames   and   in charge free medium as 
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where ( ) 0   i i B , and ( ) 0     i i B . Following the steps in writing Eq. (63), we write  
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In a charge free medium, combining Eqs. (67a), (67b) and (67c) covariant form of Maxwell’s wave equation in six 

dimensional spacetime between two massive inertial frames is written as 
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Matching both sides of Eq. (68), one finds 2 2 1/21/ (1 / )    
i i x x ii i

x x t t x
v c  in Eq. (14) for Lorentz scaling factor and  

Eq. (68) becomes invariant. Since B  and B  are invariant vectors ( B B ) and ,   and ,   are invariant scalars 

(      ), wave equation (68) is then written as  
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Component by component matching both sides of Eq. (68) yield the components of Lorentz scaling factor in six 

dimensions given by Eq. (14). When   and   move along x axis, the 6-dimensional spacetime (3+3) reduces to the 

4-dimensional spacetime (3+1) and Lorentz factor reduces to 2 2 1/21/ (1 / )      xx tt v c  and Eq. (69) reduces to the 

following four-dimensional invariant form 
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which is the Lorentz invariant Maxwell wave equation between four-dimensonal inertial frames   and   in vacuum. 

7. Results and Discussions  

Throughout previous sections, we demonstrated that use of classical vector transformation allows one first to derive 

expressions for Cartesian components of relativistic invariant vector quantities, having the same length from the origin, so 

that a vector transformation is identified as a rotation if it causes no change in the magnitude of a vector [19]. With 

transformed velocity components used in the law of conservation of electromagnetic energy in a closed system, we proved 

that the electromagnetic fields and Maxwell’s equations and scalar wave equations are Lorentz invariant between two 

massive inertial frames. In this section we will give a summary discussion about the applications of the proposed theory in 

deriving the expressions for the relativistic invariance of the electromagnetic wave equations in the materials medium and the 

conservation laws of charge (current) continuity equation and continuity of electromagnetic energy and linear and angular 

Momentums between two massive inertial frames under Lorentz transformation. 

7.1. Relativistic Invariance of Electromagnetic Wave Equations in Materials Medium 

One can easily extend the six-dimensional spacetime theory to material medium wherein D E  and / H B  by 

replacing the speed of light in vacuum with that in material medium as 1/    m m mc  and 1/  m m mc  in the massive 

inertial frames   and  . As an example, the covariant Maxwell’s scalar wave equations for the electric and magnetic 

fields in material medium between two massive inertial frames under Lorentz transformation can then be written as 
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                
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 (71b) 

where ( )  m m  and ( ) m m  are the Lorentz scalar dielectric constant and magnetic permittivity of a material medium in 

massive inertial frames   and  . Here ,m  are the Lorentz scaling factors  

2 2 2
, , , , , ,1/ 1 ; 1/ 1 ; 1/ 1                

x x y y z zm xx m t t mx m yy m t t my m zz m t t mz   (72) 

where / mx x mv c , / my y mv c , / mz z mv c are the normalized x, y, and z components of relative velocity of the 

massive inertial frames   and   in a material medium. 

We can extend the derivations carried out above to the cases in which charge and current densities are not zero. Using 

/   i m mE , /     i m mE  with   iB A  and     iB A , with E  and E  which are defined in the 

massive inertial frames   and   according to 

/ /           i i i iE A t E A t          (73a) 

2 2

1 1
0, 0

 
       

 
i i

i im m

A A
t tc c

 (Lorentz gauge)       (73b) 

0, 0
  

        
 

mi mi
i mi i mi

i i

J J
t t

 (Continuity equation)      (73c) 

with , , , ,i j k x y z , respectively. Here  (  ) and A ( A ) are the scalar and vector potentials. mi mi miJ u  and 

  mi mi miJ u  are current densities with charge densities 2
0 / 1   mi mi and 2

0 / 1    mi mi  in a material 

medium in the massive inertial frames   and   with 0  the charge density in the absolutely stationary inertial (rest) 

frame. We can then write the following equations  

2 2
2 2

2 2 2 2

1 1
/ /   

    
              

        
i i i m i i mi m

m i m ic t c t
        (74a) 

2 2
2 2

2 2 2 2

1 1
 

    
            

        
i i m mi i i m i

m i m i

A J A J
c t c t

        (74b) 

which are invariant between the massive inertial frames   and  . Setting   mi mi  in Eqs. (68a) and (68b) one finds 

 mx mxu u ,  my myu u  and  mz mzu u , respectively, for the velocity components. 

7.2. Relativistic Invariance of Conservation Laws in Electrodynamics  

Since electromagnetic waves are associated with propagation of energy and momentum in space [19], the proof of the 
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relativistic invariance of the following relations is essential 

0, 0,
  

        
 

i iJ J
t t

 Electric charge continuity equations     (75a) 

. 0, . 0,
 

            
 

em emu u
S J E S J E

t t
 Energy continuity equations   (75b) 

. 0, . 0,
 

       
 

g g
T f T f

t t
Maxwell energy-momentum stress tensor  (75c) 

where   /     S E B and   /  S E B are the energy fluxes, known as Poynting vectors, and 

2 2 2( ) / 2emu E c B      and 2 2 2( ) / 2emu E c B   are the electromagnetic energy densities,   2/      g E B S c  

and   2/  g E B S c  are the electromagnetic linear momentum densities and       f E J B  and 

  f E J B  are the Lorentz force per unit volume exerted by the fields on the electric charge. Finally, T  and T  are 

Maxwell energy-stress tensors, written as 

       2 2 2 2 2 2 2 21 1
,

2 2
                   ij i j i j ij ij i j i j ijT E E c B B E c B T E E c B B E c B  (75d) 

where the indices i and j refer to the coordinates x, y and z. ij  is the Kronecker delta which is unity if the indices are the 

same (   xx yy zz ) and zero otherwise ( 0    xy yz zx ). Maxwell energy-stress tensor T  is the force (stress) per 

unit area acting on a surface in both inertial frames with diagonal elements representing pressure and off diagonal elements 

are shears. In the following sub-sections we will discuss the invariance electromagnetic energy and momentum densities 

between two inertial frames under Lorentz transformation. 

7.2.1. Current Continuity Equation 

We start with employing the chain rule to differentiation in Eqs. (47a) and (47b) to write the following differential relations  

 2 2 2 2

2 2 2
1

     
   

          
                  

t t t t t t ix x x x x xi i i i i i
i i i

yx z
x

x x x

vv v

t t x y z tc c c
     (76a) 

     2 2 2 2 2 2. 1 1 1     
    

      
    

xx x yy y zz z
J J J

J
x y z

        (76b) 

Side by side additions of Eqs. (76a) and (76b) allows us to write the following equation 

 
2

2 2 2

2
. 1 . 1

 
  

   
         

    
i i t t ix xi i

i i

i ix x x
x x

v
J J

t tc
        (77) 

where , ,ix x y z  and c  is the Lorentz scalar speed of light ( ) c c . Matching both sides of Eq. (76) yields 

2 1/21/ (1 )     
i i x x ii i

x x t t x
 in Eq. (14). When the massive inertial frames   and   move in one dimension (e.g., along 

x axis), the six-dimensional spacetime (3+3) reduces to the classical four-dimensional spacetime (3+1). Lorentz scaling 

factor reduces to 2 2 1/21/ (1 / )    xx tt v c and covariant Eq. (77) is then transformed into the following 

four-dimensional invariant form 

. .
  

     
 

i iJ J
t t

     (78) 

which is the Lorentz invariant current continuity equation between four-dimensonal inertial frames   and   in vacuum. 

7.2.2. Electromagnetic Energy Continuity Equation 

Since Poynting’s theorem [20] states that the power flowing out of the volume and the time rate of increase of energy 

storage inside the volume equal to the total power delivered by the source to a closed electrical circuit and they can be 

summarized according to the following relations in the massive inertial frames   and   
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   . , . 

 

 
           

      
i i

em em

x xS v v S v v

u u
S da dv E J dv S da dv E J dv

t t
   (79) 

Considering E  and J  are in the same direction ( 2. E J E ) using Ampere-Maxwell equation, the differential forms of 

Eq. (79) in the massive inertial frames   and   are written as 

      2. . . . . . 
 

              
  

i i i

em
i i i

x x x

uB E
E B B E E B B E E J E

t t t
   (80a) 

      2. . . . . . 
   

                          
    

i i i

em
i i i

x x x

uB E
E B B E E B B E E J E

t t t
  (80b) 

where      . . .     a b b a a b [19] is used. Since    E B E B , one can easily show that the Poynting vector is 

Lorentz invariant between two massive inertial frames  

       2 2
0 0

1 1
 

 
                 


S E B E B S S c E B c E B S    (81) 

which states that direction of light propagation is independent of massive inertial frames. Since     E B S , 

 E B S , 2 2 2( ) / 2emu E c B     , and 2 2 2( ) / 2emu E c B  , letting   S  or emu  and   S  or emu , the first 

and second terms on the left side of Eq. (80a) in frame   are 

     2 2 2 2 2 2. 1 1 1     
    

        
    

xx x yy y zz z
S S S

S
x y z

        (82a) 
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2 2 2
1   
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                   

t t t t t t ix x x x x xi i i i i i
i i i i

y yem em x x em emz z
x

x x x x

v tu u v t u uv t

t t x y z t tc c c
  (82b) 

Side by side addition of Eqs. (82a) and (82b) allows us to write the following equation for the invariance of the continuous 

electromagnetic energy between two massive inertial frames 

   2 2 2 2 2 2. 1 . 1     
 

             
 i i i t t ix xi i

i i

em em
i ix x x x

x x

u u
S E S E

t t
     (83) 

Since . .  E E E E  (or 2 2   E E ) is Lorentz invariant, matching both sides of Eq. (83), one finds 

2 1/21/ (1 )     
i i x x ii i

x x t t x
 in Eq. (14). When   and   move in the x-direction, 6-dimensional spacetime (3+3) 

reduces to 4-dimensional spacetime (3+1). Lorentz scaling factor reduces to 2 2 1/21/ (1 / )    xx tt v c and Eq. (83) is 

transformed into 4-dimensional invariant form 

. .
 

     
 

em em
i i

u u
S S

t t
    (84) 

which is Lorentz invariant between four-dimensonal frames   and   in vacuum with no charge source. 

7.2.3. Electromagnetic Momentum Continuity Equation 

The electromagnetic field linear and angular momentums per unit volume in both frames are defined as [1] 

   2 2

1 1
,         


g E B S g E B S

c c
       (85a) 

   2 2

1 1
,           


l r g r S l r g r S

c c
       (85b) 

Since  S S  and    r S r S , so are  g g  and  l l , both are Lorentz invariant between the   and   frames. 

Employing the chain rule in Eqs. (47a) and (47b) to the components of Maxwell stress tensor equation (75d) allows us to 

write the following relations in the frame 
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          
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ij y ij ijx z
xx yy zz

T v T Tv v
T

x y zc c c
       (86b) 

                      f E J B E E B E E B f
       (86c) 

Since f f , addition of Eqs. (86a), (86b), and (86c) allows us to write the following equation 

   2 2 2 2. 1 1   
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   t t i i i ix xi i

i i

ij

x x x x
x x i

Tg g
T f f

t t x
       (87)  

 

Matching both sides of Eq. (87), one finds 
2 1/21/ (1 )     

i i x x ii i
x x t t x

 in Eq. (14). When   and 

  move in one dimension (e.g., along x axis), the 

six-dimensional spacetime (3+3) reduces to the classical 

four-dimensional spacetime (3+1). Lorentz scaling factor 

reduces to 2 2 1/21/ (1 / )    xx tt v c and Eq. (87) is 

transformed into four-dimensional invariant form  

 . .
 

   
 

i i
g g

T T
t t

 (88) 

which is Lorentz invariant between the four-dimensonal 

inertial frames   and   in vacuum. 

8. Conclusions  

We introduced a new six-dimensional spacetime frame 

which allows the space and time influence of each other in 

the system of spherical coordinates. After satisfying Lorentz 

invariance of metric equation between two massive inertial 

frames, we derived expressions for Cartesian components  

of the relativistic velocity which is valid at any speed. Using 

the classical vector transformation method, we derived 

expressions for the Cartesian components of transformed 

relativistic velocity and electromagnetic force vectors. 

Considering two massive inertial frames form a closed 

system, we implemented the transformed relativistic velocity 

components into the law of conservation of energy to prove 

that contrary to the common belief, the electromagnetic field 

that appears as a purely electric (magnetic) field in one 

massive inertial frame, it also appears as a pure electric 

(magnetic) field in another massive inertial frame under 

Lorentz transformation. As applications of the proposed 

theory, we proved the relativistic invariance of Maxwell 

equations and scalar wave equations with and without charge 

and current sources, and conservation laws for the continuity 

of current and electromagnetic energy and momentum. Since 

the magnitudes of quasi-time vectors are measurable in both 

massive inertial frames and their Cartesian components are 

treated as mathematical tools, we proved that the predictions 

of the invariance of scalar and vector quantities in the 

six-dimensional spacetime frame reduce to those in the 

four-dimensional spacetime frame. 
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