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Abstract  Quantum extension of the Newton’s second law of motion in the relativistic form (referred to as Einstein’s 

second law) is proposed in order to adjust it to the realm of elementary particles subjected to extreme accelerations. An 

underlying idea is the quantization of proper time, set in a close connection with the concept of maximal proper acceleration. 

The relativistic concept of proper time 𝜏 is identified with the quantum notion of evolution parameter. The postulated 

quantum of proper time 𝜏𝑞  is thought to depend on the particle mass: 𝜏𝑞~𝑚𝑝𝑎𝑟
−1 ; consequently relates to the Compton 

wavelength as 𝜏𝑞~𝜆𝐶 and to the Caianiello’s maximal proper acceleration as 𝜏𝑞~𝐴𝑚𝑎𝑥
−1 , 𝐴𝑚𝑎𝑥 = 2𝑚𝑐3 ℏ . Quantization of 

proper time makes the relativistic increase of particle mass/energy discrete, which impacts on the general shape of Newton’s 

second law, now including both velocity and acceleration limits. Introducing the acceleration-dependent term results in a 

gradual neutralization of the mass increase as determined by the mass-velocity relation, together with the increasing proper 

acceleration. The new formula satisfies the correspondence principle with respect to the classical (Newtonian and relativistic) 

cases, and to the relevant formula connecting Planck units of force, mass and acceleration. The obtained results are 

juxtaposed with the quantization of spacetime proposed by the Causal Sets approach to quantum gravity. 
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1. Introduction 

The idea of maximal acceleration has been the topic of 

lively debate during last decades. Different investigations 

have brought different results, all of them rooted in   

various quantum theories [1], [2], [3], [4]. The limits put on 

proper acceleration (defined as acceleration measured by  

an onboard accelerometer) appeared to depend on the   

mass of an accelerated point-like particle. A remarkable 

early example involving the concept of maximal proper 

acceleration refers to electron. Developing the earlier works 

by Sauter [5], Heisenberg and Euler [6] in the framework of 

Quantum Electrodynamics (QED), Schwinger derived the 

limit [7]:  

𝐸𝑆 =
𝑚𝑒

2𝑐3

𝑞𝑒ℏ
                 (1) 

(𝑚𝑒  - electron mass, 𝑞𝑒  - elementary charge, 𝑐 - speed 

of light, ℏ - reduced Planck constant, 𝐸𝑆 - Schwinger limit 

of the dimension 𝑇𝑐 , where 𝑇 /Tesla/ is the magnetic 

induction). Beyond this limit electromagnetic field for    

the quantum vacuum becomes nonlinear making the 

photon-photon scattering inelastic, in consequence causing  
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spontaneous creation of virtual electron-positron pairs. The 

resultant maximal limit for the proper acceleration of 

electron proves to be:  

𝑎𝑆 =
𝐸𝑆𝑞𝑒

𝑚𝑒
=

𝑚𝑒𝑐
3

ℏ
≈ 2.33 × 1029𝑚𝑠−2     (2) 

Another example is the Planck acceleration, defined as 

acceleration from zero speed to the speed of light within the 

Planck time. It is sometimes interpreted as the proper 

acceleration at the event horizon of a Planck black hole, i.e. 

black hole with the Schwarzschild radius equal to the 

Compton wavelength. Planck acceleration binds together the 

fundamental constants of physics, yielding an inconceivably 

great value: 

𝑎𝑃 =  
𝑐7

ℏ𝐺
 

1 2 

≈ 5.56 × 1051𝑚𝑠−2      (3) 

It is not clear whether Planck acceleration is a purely 

theoretical quantity, refers solely to the early universe, or   

is too present in definite quantum phenomena currently 

observed. Special Theory of Relativity (STR) does not allow 

massive body to achieve the speed of light; however, it does 

not basically prevent from changing mass for pure energy, i.e. 

from replacing massive particle by the massless photon. Like 

any other acceleration, Planck acceleration is expressible by 

different combinations of kinematical units, here specified as 

Planck length, Planck time and speed of light:  

𝑎𝑃 =
𝑐

𝑡𝑃
=

ℓ𝑃

𝑡𝑃
2 =

𝑐2

ℓ𝑃
            (4) 
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All the basic Planck units consist of fundamental constants: 

ℏ, 𝑐, 𝐺; hence, the due conversion of any from the above 

expressions gives the Planck acceleration related to Planck 

mass: 

𝑎𝑃 =
𝑚𝑃𝑐

3

ℏ
                                  (5) 

(𝑡𝑃 - Planck time, ℓ𝑃 - Planck length, 𝑚𝑃 - Planck mass). 

Both Schwinger and Planck accelerations, regardless of 

possible difference in their physical meaning have identical 

structure. Therefore, they both can be considered as specific 

manifestations of the general concept known as Caianiello’s 

maximal proper acceleration, derived from quantum 

mechanics (QM), in particular from the Heisenberg 

uncertainty principle [8], [9], [10], [11]:  

𝐴𝑚𝑎𝑥 =
2𝑚𝑐3

ℏ
              (6) 

It is clearly evident from Eqns. (2), (5) and (6) that 

maximal proper acceleration is basically a quantum 

phenomenon. Special relativity does not apply itself a limit 

on acceleration, which results in the absence of respective 

term in the relativistic formula for the Newton’s second law 

of motion, hereinafter called the Einstein’s second law of 

motion. Meanwhile, it is reasonable to expect that the 

mass-dependent limit of the proper acceleration, assuming it 

really exist, should affect an ultimate shape of the second law. 

Using simple methods, we shall try to fulfil this expectation. 

Our goal is to implement the Caianiello’s limit into the 

Einstein’s second law of motion, so as to make it applicable 

to the extreme accelerations likely present in the quantum 

realm of elementary particles. This may provide us with a 

deeper insight into the atomic physics of “quantum jump”, 

usually interpreted as an abrupt (basically timeless) 

transition from one quantum state to another, e.g. in the pair 

production/annihilation or photon emission/absorption. 

These questions are the subject matter of Secs. 2 and 3. 

Instead, in Sec. 4 the obtained results are briefly compared 

with the idea of quantization of spacetime proposed by the 

Causal Sets Theory. 

2. Dynamics Including Maximal Proper 
Acceleration. Quantization of Proper 
Time 

STR applies a universal limit on velocity identified with 

the speed of light. Together with the principle of relativity, 

this determines both relativistic kinematics and dynamics, 

thereby redefines the Newtonian concepts of force, 

momentum, energy and mass. Mass, an invariant in the 

Newton’s second law:  

𝐅 =
𝑑𝐏

𝑑𝑡
=

𝑑 𝑚𝐯 

𝑑𝑡
             (7) 

is subject in STR to the mass-velocity relation. The 

momentum is defined as 𝐏 = 𝛾 𝐯 𝑚0𝐯 , where 𝛾 𝐯 =
 1 − 𝑣2 𝑐2  −1 2  is the Lorentz factor. Differentiating gives 

the force formula: 

𝐅 = 𝛾 𝐯 3𝑚0𝐚∥ + 𝛾 𝐯 𝑚0𝐚⊥      (8) 

where 𝐚∥  and 𝐚⊥  are the parallel and perpendicular 

components of acceleration, respectively. Hence, in the case 

of net force acting upon an object in the direction parallel to 

the instantaneous velocity vector (actually considered), the 

Einstein’s second law of motion is: 

𝐅 = 𝛾 𝐯 3𝑚0𝒂∥              (9) 

(hereinafter, we shall denote invariant/rest mass simply   

by 𝑚 , referred to as “mass”). In practice, energy and 

momentum of a particle are obtainable from the independent 

measurements, whereas mass becomes deduced from these 

measurements according to the relationship:  

𝐸2 = 𝑃2𝑐2 + 𝑚2𝑐4           (10) 

where 𝑃2  is the dot product of 3-momentum 𝐏 , i.e. 

𝑃 =  𝐏 ∙ 𝐏 . This formula applies both to massive and 

massless particles. In the latter case (of photon) one has 

always:  

𝐸2 − 𝑃2𝑐2 = 0            (11) 

yielding zero mass.  

Time in QM is usually treated not as an observable (thus 

as a quantity defined by respective time-operator) but as the 

wave function parameter. This conforms with the classical 

dynamics and, in fact, with physics in general, considering 

the latter conceived as a description of how the inanimate 

objects behave in time. In accord with that, the wave function 

in the Schrodinger equation is basically time-dependent 

(except solutions with stationary waves/states). On the other 

hand, to comply with STR, time should be treated on equal 

footing with space. Hence, temporal and spatial coordinates 

(taken together) should be treated either as parameters or as 

operators. It is admittedly possible to treat both time and 

space as parameters (as it is in Quantum Field Theory). 

Consequently however, it should be also possible to treat  

all constituents of the position 4-vector as operators. 

Considering the correctness of this premise, another question 

arises: how the STR notions of coordinate time and proper 

time relate to the QM notions of time-as-parameter and 

time-as-operator? The answer here proposed is the following. 

Proper time is an observable (operator) and plays the role of 

evolution parameter. Instead, coordinate time is the function 

parameter. The reason for such distinction comes out from 

the fact that proper time is an invariant of Lorentz 

transformation; besides, in the context of acceleration, it 

refers to mass, specific for any (type of) elementary particle. 

This links the proper time with the concept of maximal 

proper acceleration, unique for each particle. Consequently, 

we postulate the proper time to be a discrete quantity.  

Expressed in terms of operators, energy and momentum 

are respectively: 𝐸 = 𝑖ℏ 𝜕 𝜕𝑡  , 𝑝 = −𝑖ℏ 𝜕 𝜕𝑥   (along 

𝑥 dimension). In connection with Eq. (10) this makes the 

starting point for any theory of relativistic quantum 

mechanics (RQM), i.e. QM formulated in the Poincare 

covariant form. However, RQM does not say what exactly 

happens in the time range during which the particles convert 

into one another, e.g. in the fermions-bosons exchange or in 



 International Journal of Theoretical and Mathematical Physics 2020, 10(3): 51-59 53 

 

 

deep inelastic scattering. The same concerns the photon 

emission/absorption and the related quantum leap of electron 

from one orbital to another. The respective energy levels are 

connected with two separate probability functions; hence the 

change from one probability function to another means in 

fact the collapse of wave function. The problem is that, on 

one hand the respective “event” is treated as point-like 

(instantaneous), but on the other hand there is a certain time 

interval during which the probability to find electron in a 

given location must regard the superposition of both 

sequential wave functions. Hence, the question of duration  

of “quantum jump” is equivalent to the question of duration 

of respective superposition and the due probability to 

observe/detect given eigenstate. This problem is likely 

solvable if we assume that “quantum jump” is discrete with 

respect to the proper time of given particle, and is continuous, 

i.e. spreads over superposition, in the observer’s frame 

equipped with coordinate time. Only then this what is 

“instantaneous” according to the particle’s proper time may 

become “fuzzy” according to the inertial observer’s 

coordinate time. A direct consequence of setting the (proper) 

time-operator is the claim according to which superposition 

of two quantum states should be also comprehended as the 

superposition over time. The probability to find a system in a 

given eigenstate would then spread over time, exactly as it 

spreads over different eigenvalues of position, energy or 

momentum. In particular, the collapse of wave function 

connected with the act of measurement (always meaning 

interaction with observed object) would not be interpreted as 

instantaneous, hence would not be precisely fixed in the 

coordinate time. 

Let us return to the second law of motion. From Eq. (9) it 

follows that, unlike in the Newton’s second law (Eq. 7), 

acceleration does not depend linearly on force; by extension, 

for the constant force, velocity is no more a linear   

function of time. The mass component of momentum tends 

to infinity while the velocity component grows ever slower 

approaching the 𝑐 -limit. Hence, Newton’s second law 

𝐅 = 𝑑 𝑚𝐯 𝑑𝑡  appears to be a good approximation for 

𝑣 → 0 only. The question is whether these (relativistic) rules 

are universal; in particular, whether they also pertain to the 

relationship connecting the Planck units of force, mass and 

acceleration: 

𝐹𝑃 = 𝑚𝑃𝑎𝑃             (12) 

According to the STR phenomenology, the above 

equation constitutes no more than a purely static (purely 

formal) correlation between respective three quantities. 

From that viewpoint, the Planck relationship is by no means 

specific. Any (i.e. also bigger than Planck ones) two 

quantities from the above triad can be counterbalanced by 

the remaining one, in the image of the Newton’s second law. 

Since two of the quantities involved (force and acceleration) 

are, due to their immense values, definitely not “usual” in the 

Newtonian sense, so this equation cannot be treated as the 

“true” relativistic second law of motion in the Newtonian 

limit. On the contrary, what we deal here with is not the “low” 

(Newtonian) limit, but rather “high” limit (likely the extreme 

one), which means that Planck relationship demands new 

physical interpretation, different from Newtonian and 

relativistic ones.  

Dependently of the magnitude of relative velocity, the 

mass is assumed to include the velocity contribution 

determined by the Lorentz factor. Considering that 𝑚𝑃 

stands for the (rest) mass of a hypothetic Planck particle: 

~10−8𝑘𝑔 , and specifying: 𝑡0 = 0 , 𝑣0 = 0 , one should 

consequently expect that in any infinitesimal time interval 

following 𝑡0  the mass would continuously increase in 

agreement with the Einstein’s second law. On the other hand, 

due to the physical reference of Planck units, it is likely   

that at the end of acceleration (i.e., after the time interval 

equal to Planck time: ∆𝑡 = 𝑡𝑃 ≈ 10−44𝑠) the velocity would 

somehow achieve the 𝑐  value. According to STR, this 

would imply an infinite value of mass, which makes this 

approach surely a wrong track.  

However, allowing for a certain departure from the 

relativistic orthodoxy, we may interpret Eq. (12) as revealing 

some hidden properties of nature, absent in the classical 

domain, but present in the quantum-mechanical regime. We 

shall namely consider scenario in which Planck mass 

subjected to Planck acceleration does not increase after 𝑡0. 

The reason for such conjecture is not simply that Planck 

force and Planck acceleration are so enormous (𝐹𝑃 ≈ 1044𝑁, 

𝑎𝑃 ≈ 5.56 × 1051𝑚𝑠−2). More important is that respective 

quantities, although dimensional, are nevertheless not 

arbitrary. With no doubt they are unique, regardless of 

whether they are normalized to unity or expressed in any of 

dimensional units. The supposition/premise according to 

which Planck time is the shortest physically sensible time 

interval implies the conclusion that acceleration cannot be 

sensed by the Planck particle within the time shorter than 

Planck time. We use the notion of “Planck particle”, instead 

of a wider notion “Planck-mass particle” since while 

identifying the particle size with the Compton wavelength, 

Planck mass can take the form of a particle only as Planck 

particle, i.e. Planck black hole. On the other hand, the 

Schwarzschild black hole as observed from distance does not 

differ from any other point mass.  

Let’s consider acceleration in the uniform field of a Planck 

particle equipped with an onboard accelerometer (which is 

tantamount with assumption as to the ability of Planck 

particle to “sense” acceleration). Say, at 𝜏0 = 0 , this 

accelerator indicates Planck acceleration. Provided that 

proper time sensed by Planck particle is infinitely divisible, 

sequential indications of accelerometer after 𝜏0  would 

exponentially decrease due to the mass increase in observer’s 

frame, so that at certain arbitrary 𝜏1 accelerometer would 

show certain definite nonzero value, in agreement with the 

Einstein’s second law. In this scenario, the speed of light 

would never be achieved. 

However, the assumed discreteness of proper time brings 

substantial change to the mass-velocity relation and the 

respective mass-acceleration dependence. If the time interval 

experienced by Planck particle cannot be shorter than 𝑡𝑃 

(which means that no change in acceleration is “sensed” 

during the time ∆𝜏 = 𝜏1 − 𝜏0 ), then Lorentz factor has    

no “occasion” to increase, hence to manifest itself in the 

observer’s frame. From the point of view of inertial observer 
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equipped with standard clock measuring the coordinate time, 

this looks as if the quantum effect connected with the 

discreteness of proper time cancelled the time dilation    

and, consequently, the mass increase. Both the mass increase 

and respective extension of the coordinate time would not 

occur neither for particle nor for observer, with all three 

times equalized: 𝑡1 = 𝜏1 = 𝑡𝑃. Consequently, the respective 

phenomenon would be perceived as if obeyed the Newton’s 

second law. As a consequence, this means replacement of a 

scenario consistent with the Einstein’s second law by a 

different scenario obeying the new shape of the second law, 

appropriate for the quantum realm of elementary particles. 

By analogy to the Newtonian limit appropriate for 𝑣 ≪ 𝑐, 

we shall describe such scenario “quasi-Newtonian”. 

Eliminating the impact of Lorentz factor due to maximal 

proper acceleration, along with discreteness of proper time, 

opens doors to the possibility of achieving the speed of light 

by a massive particle. In the hypothetic case of Planck 

particle and Planck acceleration, the speed of light is 

obtainable according to the Planck relationship: 𝑐 = 𝑎𝑃𝑡𝑃, 

excluding the mass increase. Conversion of massive particle 

into photon (observed as a replacement of massive particle 

by photon) is the basically allowed and ubiquitous 

phenomenon under definite conditions, namely fulfilling  

the conservation laws, including the ones specific for QM 

like charge and lepton number. Hence, the postulated 

discreteness of proper time is a necessary but insufficient 

condition to “convert” massive particle into photon. In the 

Planck case, the hypothetic Planck photon would have the 

frequency: 

𝑓𝑃 = 𝑚𝑃𝑐
2 ℏ             (13) 

equal to the Planck angular frequency 𝜔𝑃 ≈ 1.855 ×
1034 𝑟𝑎𝑑 𝑠 , and to the inverse of Planck time 𝑡𝑃 ≈ 5.391 ×
10−44𝑠.  

Based on above premises, let’s consider the case of 

electron-positron annihilation. Assuming that: (1) maximal 

proper acceleration is involved in this phenomenon; (2)   

on account of the discreteness of proper time the 

quasi-Newtonian equation 𝑎 = 𝐹 𝑚  takes effect, we ask 

whether and how 𝑎  is identifiable with 𝐴𝑚𝑎𝑥 . First, to 

identify these quantities, we should assume that 𝑎 stands 

both for the coordinate and proper acceleration. This results 

from equality of proper and coordinate times; we shall 

additionally justify this assumption further below. In order to 

obtain the force acting between colliding particles we must 

divide the aggregated rest energy of electron and positron: 

𝐸𝑒𝑒+ = 2𝑚𝑒𝑐
2  by the respective distance, assumed the 

latter to be the reduced Compton wavelength 𝜆C = ℏ 𝑚𝑒𝑐 . 

Consequently, it follows: 

𝑎 =
𝐸
𝑒𝑒+

𝜆C𝑚𝑒
=

2𝑚𝑒𝑐
3

ℏ
= 2𝑎𝑆 = 𝐴𝑚𝑎𝑥 (𝑒)     (14) 

(𝑎𝑆 - Schwinger acceleration, 𝐴𝑚𝑎𝑥 (𝑒) - maximal proper 

acceleration for electron) 

In the general case (including elastic collisions), the 

apparently smooth world line of an accelerated particle    

is supposed to reveal its discrete nature at a “quantum 

magnification”. In every quantum time-point (construed as 

iteration of given specific 𝜏𝑞 ) the particle’s “relativistic 

mass” changes discreetly adapting to the current relative 

velocity; then remains unchanged (as described in terms of 

coordinate time) until the next quantum time-point. In other 

words, the particle manifests itself in each comoving 

observer’s inertial frame in a discrete manner, each time with 

the mass corresponding to given relative velocity. Hence, 

despite discreteness, the Lorentz symmetry is preserved  

with the accuracy to the “lately” obtained mass value. The 

continuous increase of velocity becomes replaced by the 

sequence of discrete changes of velocity. Consequently, the 

continuous (smooth) mass-velocity function with mass 

tending to infinity becomes replaced by the “stepwise plot” 

(discrete function) that does not tend to infinity due to the 

“quantum ablation” of infinity. 

The above interpretation is, for sure, incompatible with the 

Einstein’s second law as it currently stands. Our goal is 

however to convert this law to a form suitable for quantum 

scale and extreme accelerations. Accordingly, we interpret 

Eq. (12) (let us call it the “Planck’s second law”) as it were 

“in opposition” to the purely relativistic approach, which 

means an expectation that Planck’s second law would 

emerge in natural way from the extended relativistic second 

law in the quantum realm of extreme accelerations.  

Let’s write some equations/definitions needful for the 

further reasoning. Coordinate acceleration is defined as:  

𝐚 ≝ 𝑑𝐯 𝑑𝑡                (15) 

where 𝐯 = 𝑑𝐱 𝑑𝑡  - (coordinate velocity) and 𝑡 (coordinate 

time), both measured in the observer’s inertial frame. Instead, 

proper acceleration is defined as: 

𝛂≝ 𝑑𝐮 𝑑𝑡               (16) 

where 𝐮= 𝑑𝐱 𝑑𝜏  - the “proper velocity” is the quotient of 

coordinate distance by proper time. From that it follows that 

proper velocity is the product of coordinate velocity and 

Lorentz factor, the latter being 𝛾 = 𝑑𝑡 𝑑𝜏 : 

𝐮 =
𝑑𝐱

𝑑𝑡
×

𝑑𝑡

𝑑𝜏
= 𝛾𝐯            (17) 

Hence, proper acceleration can be also written as: 

𝛂 = 𝑑𝐯 𝑑𝜏               (18) 

For the unidirectional motion with acceleration vector 

parallel to velocity vector, proper and coordinate 

accelerations relate to each other as: 

𝛂 =
𝑑 𝛾𝐯 

𝑑𝑡
=

𝑑

𝑑𝑡
 

d𝐱

d𝜏
 = 𝛾3𝐚       (19) 

In order to validate the Planck’s second law, the 

coordinate acceleration should equal the proper acceleration 

implying 𝛾 = 𝑑𝑡 𝑑𝜏 = 1 . For that to happen, coordinate 

time should equal the proper time, and both should equal the 

Planck time, as mentioned before. The question is how it can 

occur considering that proper and coordinate times tend to 

diverge (and not to converge) together with the increase of 

relative velocity; in particular, for 𝑣 → 𝑐 one has 𝑑𝑡 𝑑𝜏 →
∞. 

The latter is however true only if time is assumed to    

be infinitely divisible, hence differentiable variable. The 

condition  ∆𝜏 → 0 is vital for defining the Lorentz factor as 

𝛾 = 𝑑𝑡 𝑑𝜏 . In the classical mechanics change in velocity is 
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axiomatically assumed to be continuous function of time so 

that differentiability is always secured; hence no departure 

from the Einstein’s second law of motion is possible. If, 

instead, proper time is discrete, then Lorentz factor defined 

as 𝛾 = 𝑑𝑡 𝑑𝜏  may serve as an approximation only, being 

only obtainable by the methods of numerical differentiation. 

Assuming the quantum (quanta) of proper time 𝜏𝑞  

extremely small, the difference between discreteness and 

continuity (i.e., between ∆𝜏 → 𝜏𝑞  and ∆𝜏 → 0 ) becomes 

meaningless in the usual macro scale. This means that, 

despite mathematical inadequacy, the derivative works 

“properly” for small ∆𝜏, yet big enough compared with 𝜏𝑞  

( ∆𝜏 ≫ 𝜏𝑞 ). However, in the range of coordinate time 

equivalent to the proper time such that ∆𝜏 ≈ 𝜏𝑞 , the 

derivative becomes undefined; hence Lorentz factor defined 

as 𝛾 = 𝑑𝑡 𝑑𝜏  becomes inadequate. Consequently, Lorentz 

factor defined as 𝛾 𝐯 =  1 − 𝑣2 𝑐2  −1 2  also becomes 

inadequate. 

Physically this means the absence (or limitation) of mass 

increase within the coordinate time corresponding to 

∆𝜏 ≈ 𝜏𝑞 . 

Quantization of proper time does not imply that physical 

properties of proper time are different from that of 

coordinate time. These are two faces of basically the same 

physical entity. The clock(s) measuring the coordinate   

time can, as well, utilize the reproducibility of quantum 

phenomena (as they directly do in atomic clocks). The 

property of continuity of the coordinate time are instead 

connected with fact that coordinate time is, first of all, a 

formal construct. This means that the assumed continuity of 

the coordinate time is taken by assumption. The only 

physical condition for a given clock to be appropriate tool in 

measuring the coordinate time is, apart from reproducibility, 

the demand of being at rest with respect to inertial observer. 

Instead, the discreteness of proper time pertains to the 

general property of time in the quantum scale. This property 

does not however refer to time itself, which here means the 

time considered in isolation of mass. It is instead (postulated 

to be) an intrinsic property of individual particles in relation 

to their mass, encoded in the observed quantum-mechanical 

phenomena.  

The postulate of quantization (discretization) of proper 

time and the concept of maximal proper acceleration are  

both connected with the Heisenberg uncertainty principle. 

Mathematically, the variables representing complementary 

quantities (such as position and momentum) do not commute, 

which physically means they cannot be measured at the same 

time with equal accuracy. This gave reason to suppose that, 

in the quantum (and Planck) scale, spacetime itself subjects 

to noncommutative, ergo “discrete” quantum geometry [12].  

The particle’s maximal proper acceleration corresponds 

with the reduced Compton wavelength 𝜆C = ℏ 𝑚𝑐 , namely 

for any given particle one has: 

𝐴𝑚𝑎𝑥  𝜆C 2  = 𝑐2            (20) 

From the limit put on the measurement of particle position: 

∆𝑥 ≥ ℏ 2𝑚𝑐  it follows that half of the reduced Compton 

wavelength is the minimal distance to determine the  

particle position: 𝜆𝑞 = 𝜆C 2 , where 𝜆𝑞  is the quantum   

of distance attached to given particle, provided its identity  

to be preserved. We interpret this property in terms of 

discretization of proper space in connection with respective 

discretization of proper time associated with a massive 

particle along its worldline, according to the Heisenberg 

uncertainty relation: ∆𝐸∆𝑇 ≥ ℏ 2 . Hence, we postulate the 

proper time 𝜏  to be a discrete variable related to the 

Compton wavelength. The relevant quantum of proper time 

is the time that photon needs to cover the distance 𝜆𝑞 : 

𝜏𝑞 =
𝜆𝑞

𝑐
=

ℏ

2𝑚𝑐 2           (21) 

From 𝐴𝑚𝑎𝑥 = 2𝜆𝑞 𝜏𝑞
2 , considering 𝜆𝑞 = 𝜏𝑞𝑐, one has: 

𝐴𝑚𝑎𝑥 = 𝑐 𝜏𝑞             (22) 

and, consequently: 

𝜏𝑞 = 𝑐 𝐴𝑚𝑎𝑥             (23) 

This allows formulating definition: 

Maximal proper acceleration is the acceleration causing 

discrete conversion of an elementary massive particle to 

photon, within the proper time equal to the respective single 

time quantum related to particle mass. 

The proper time interval in the classical view defined as: 

∆𝜏 =  𝑑𝜏 =  
𝑑𝑆

𝑐

𝑃2

𝑃1
          (24) 

where 𝑃1, 𝑃2 denote two sequential events on the particle’s 

world line, becomes redefined as: 

∆𝜏 = 𝑛𝜏𝑞 =
𝑛𝑐

𝐴𝑚𝑎𝑥
          (25) 

where 𝑛 ∈ ℕ.  

3. Derivation of the Extended Second 
Law of Motion 

In result of assumed discreteness of proper time, reaching 

a given velocity succeeds without supplying energy in an 

amount exactly determined by the Lorentz factor. The 

resultant energy saving depends on the value of proper 

acceleration and thereby on the value of the force acting on 

given mass. In principle, this mechanism allows the massive 

particle to achieve the speed of light at the expense of finite 

energy, which should be interpreted as the change of entire 

energy connected with invariant mass for the pure energy of 

motion. As stated before, this takes the form of conversion of 

the mass particle to photon. The energy required to obtain 

𝐴𝑚𝑎𝑥  (and thus to reach the speed of light in a single 

“quantum jump”) is relatively small being just equal to the 

rest energy of an accelerated particle: 

𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝑚𝐴𝑚𝑎𝑥 𝜆𝑞 = 𝑚𝑐2         (26) 

In the case of a particle with Planck mass, provided the 

formerly established relationships: 𝐴𝑚𝑎𝑥 = 𝑐 𝜏𝑞 ; 𝜏𝑞 =

𝜆𝑞 𝑐 ; 𝜆𝑞 = 𝜆C 2 , the required energy equals Planck energy: 

𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝑚𝑃𝐴𝑚𝑎𝑥 𝜆𝑞 =  
ℏ𝑐

𝐺
 

1

2
×

2𝑐2

𝜆C
×

𝜆C

2
=  

ℏ𝑐5

𝐺
 

1

2
= 𝐸𝑃(27) 
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Planck energy (𝐸𝑃~109J) is immense, but only when 

considered in the scale of a single particle. The “difficulty” 

in achieving maximal proper acceleration lies therefore not 

in the amount of required energy but in focusing this energy 

on a single particle and expending it during extremely short 

time 𝜏𝑞  on the extremely short distance 𝜆𝑞 . This is exactly 

postulated to happen in the “ideal” inelastic collisions.   

The mentioned above energy saving (maximal for 𝐴𝑚𝑎𝑥 ) 

connected with quantization/discretization of proper time is 

the purely quantum effect connected with the Heisenberg 

uncertainty principle, which becomes evident considering 

that in the case of 𝐴𝑚𝑎𝑥  we have: 

𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ×  𝜆𝑞𝜏𝑞 = ℏ         (28) 

In the particular case of Planck acceleration, it is also: 

𝐹𝑃 ×  ℓ𝑃𝑡𝑃 = ℏ            (29) 

From our former consideration as to the consequences of 

quantization of proper time it follows that quantum extension 

of the second law of motion should consist in a due 

modification of the Lorentz factor, now supposed to depend 

both on velocity and acceleration. In analogy to velocity 

factor 𝛽 = 𝑣 𝑐 , let’s introduce an “acceleration factor”: 

𝛿 = 𝛼 𝐴𝑚𝑎𝑥               (30) 

defined as the ratio of actual proper acceleration to the 

particle’s maximal proper acceleration. Mathematically, 

both 𝛽 and 𝛿 are just real numbers, such that 0 ≤ 𝛽 < 1 

and 0 ≤ 𝛿 ≤ 1. Let’s insert the acceleration factor to the 

Lorentz factor: 

𝛾 𝐯,𝛂 =  1 − 𝛽2 + 𝛿2 −
1

2        (31) 

What is the reason or justification of such implementation 

of the factor 𝛿? Let us notice first that it is not about the 

Lorentz factor present in the Lorentz transformation since 

the latter connects inertial frames, hence applies to uniform 

motions, for which it is always 𝛿 = 0. The same refers to 

other inertial transformations, in particular Tangherlini 

transformation (see “Additional remark” ending this paper). 

Admittedly, the above extension of the Lorentz factor 

including acceleration factor 𝛿  is rather “guessed” than 

formally derived. It is not however a rare practice in the 

physical research. Here, “derivation” consists in fact that this 

exact form fulfils expectations connected with the postulated 

consequences of the quantization of proper time, as 

implemented to the second law, each time determined by 

different assumptions as to velocity and acceleration. This is 

clearly visible in Eqns. (36 - 39).  

Besides, justification of Eq. (31) becomes more visible 

after rewriting respective quantities. Denoting maximal 

acceleration 𝐴𝑚𝑎𝑥 = 𝑐 𝜏𝑞 , and considering that proper 

acceleration 𝛼 = 𝑢 𝑡  can also be expressed as 𝛼 = 𝑣 ∆𝜏 , 

we obtain the relationship: 
𝑣𝜏𝑞

𝑐∆𝜏
=

𝛼

𝐴𝑚𝑎𝑥
              (32) 

where ∆𝜏 stands for the proper time in which given particle 

accelerates from zero coordinate velocity to the proper 

velocity 𝑢 such that 𝑢 = 𝛾𝑣. Hence, Eq. (31) rewrites to the 

form: 

𝛾 𝐯,𝛂 =  1 − 𝛽2 + 𝛿2 −
1

2 =  1 −
𝑣2

𝑐2 +
𝑣2

𝑐2

𝜏𝑞
2

∆𝜏2 
−

1

2
  (33) 

Ultimately then: 

𝛾 𝐯,𝛂 =  1 − 𝛽2  1 −
𝜏𝑞

2

∆𝜏2  
−

1

2
       (34) 

By definition ∆𝜏 ≥ 𝜏𝑞 , which implies  𝜏𝑞 ∆𝜏  ≤ 1 ; 

hence, it is always 𝛿 ≤ 𝛽, which eliminates the otherwise 

absurd possibility, namely that acceleration process would 

be, by itself, the source of energy. Finally, the second law 

including the Caianiello’s limit takes the shape: 

𝐅 =
𝑚𝐚

 1−
𝑣2

𝑐2+
𝑣2𝜏𝑞

2

𝑐2∆𝜏2 

3
2

=
𝑚𝐚

 1−𝛽2+𝛿2 
3
2

        (35) 

According to the principle of correspondence, 

dependently on different assumptions as to the velocity and 

acceleration, Eq. (35) reduces itself to the following four 

scenarios: 

1) Newton’s limit (Newton’s second law): 

lim𝑣→0,𝛿→0 
𝑚𝐚

 1−𝛽2+𝛿2 
3
2

= 𝐅 = 𝑚𝐚 ~ 0    (36) 

2) Einstein’s limit (Einstein’s second law): 

lim𝛿→0 
𝑚𝐚

 1−𝛽2+𝛿2 
3
2

= 𝐅 = 𝛾3𝑚𝐚        (37) 

3) Quasi-Newtonian limit: 

lim𝛿→𝛽  
𝑚𝐚

 1−𝛽2+𝛿2 
3
2

= 𝐅 = 𝑚𝐚         (38) 

4) Quasi-Newtonian maximal limit:  

lim𝛽  →1,𝛿→1  
𝑚𝐚

 1−𝛽2+𝛿2 
3
2

= 𝐅 = 𝑚𝐀𝒎𝒂𝒙   (39) 

In accordance with above scenarios, the main properties of 

the “extended second law of motion” are the following: For 

small values of proper acceleration ( 𝛼 ≪ 𝐴𝑚𝑎𝑥 ), the 

Newton’s and/or Einstein’s second laws hold (Eqns. 36, 37); 

Provided acceleration keeps pace with the increasing 

velocity ( 𝛿~𝛽 ), the quasi-Newtonian dynamics holds, 

regardless of the value of 𝑣 (Eq. 38). Unlike in the pure 

Einstein’s second law of motion, for 𝛿 → 1 the condition 

𝛽 → 1 does not involve infinite energy. This may result in 

conversion of massive particle into photon at the finite 

expense of energy, hence the finite value of force (Eq. 39).  

In the particular (extreme) case, the “Planck’s second    

law” 𝐹𝑃 = 𝑚𝑃𝑎𝑃 holds, assuming 𝛽 = 1, 𝛿 = 1 (implying 

𝑎 = 𝛼 = 𝑎𝑃 ) and 𝑚 = 𝑚𝑃 . This case is extreme in the 

twofold sense: as describing conversion of massive particle 

into photon due to 𝐴𝑚𝑎𝑥 , and as determining maximum 

value for 𝐴𝑚𝑎𝑥 , equal to Planck acceleration. In other words, 

the Planck particle of the otherwise “ordinary” mass is 

defined as the heaviest hypothetical particle subject to the 

maximal proper acceleration. 

There may arise an ambiguity while confronting the 

here-proposed extension of the second law of motion with 

the relativistic rules. The relevant questions are: What is the 

real energy of a particle in the uniform motion? Does it 

depend on its past acceleration (provided it occurred) and the 
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respective amount of used energy? The general answer is: 

the particle’s energy does not depend on the past, but rather 

on future action applied to given particle. Any question 

concerning energy in the quantum context of acceleration 

should always refer to dynamics, no matter what state of 

motion (uniform or non-uniform) is considered. This in 

particular means that energy of a particle moving uniformly 

in a given inertial frame remains unspecified in the limits 

related to acceleration factor 𝛿 . The relativistic value of 

energy determined by the pure mass-velocity relation makes 

only the “reference point” corresponding with 𝛿 ≈ 0, and 

consequently with 𝐹 ≈ 0. Hence, energy (and momentum) 

remains unspecified until the actual “question is posed”, 

which in the quantum phenomenology means: until the 

measurement is executed. In this case, executing 

measurement of the particle mass/energy is tantamount with 

applying force, in the sense that exact result of this 

measurement depends on the value of applied force. 

Quantitively, the bigger force/acceleration is involved, the 

lesser energy is spent to obtain the same final effect, e.g.   

to stop the moving particle. Identifying the action made  

upon the particle with the measurement of its mass/energy  

is consistent with the classical modus operandi in 

measurements of total energy, according to the 

mass-velocity relation; it is too specifically consistent with 

the general demand of QM stating that relevant quantities 

remain unspecified until definite experiment is executed. 

4. Mass-dependent Quantization of 
Spacetime vs. Causal Sets Theory 

In the mid-nineteenth century Riemann considered a 

hypothesis of discrete manifold corresponding with 

quantized spacetime. A century later, Einstein returned to 

this idea within his attempts of unifying general relativity 

and quantum theory [13]. Currently, this idea has been 

undertaken by the theory (under construction) of Causal Sets 

(CST) [14], [15], [16], one of several attempts to formulate 

the complete theory of quantum gravity. The underlying idea, 

namely that spacetime is fundamentally discrete is not    

the sole property of CST within these attempts; e.g., the 

Quantum Loop Gravity also postulates discreteness of 

spacetime at the Planck scale. Specifically, CST replaces the 

classical causal structure of spacetime in relativity, i.e. the 

one determined on the smooth Lorentzian manifold by the 

“partial order” of spacetime events (called “elements”). 

Particular sets of the causally related “elements” form the 

“causal sets” (“causets”) or, considering the property of 

being “partially ordered”, “partially ordered sets” (“posets”), 

The partial order is defined as the binary relation satisfying 

the following conditions: (1) reflexivity, (2) transitivity,    

(3) anti-circularity and (4) finitarity (local finiteness). In 

particular, the condition of anti-circularity means exclusion 

of the closed causal curves (timelike loops), whereas local 

finiteness refers to the density of elements, i.e. secures their 

finite number, on the average proportional to the local 

“volume” of spacetime, defined according to GR. From the 

above four conditions, only (4) is specific for CST, while 

three others are basically appropriate for relativity. It should 

be noted however that non-circularity (3) is an external 

condition, arbitrarily applied to GR rather than intrinsic 

property resulting from this theory [17]. Anyway, causet is 

defined as the locally finite, partially ordered set. The 

mutual relations between the conditions (1-3), (4) and the 

resultant discrete geometry of spacetime are expressed by the 

rule (coined by Sorkin): Order + Number = Geometry.  

Deemed as important achievement of CST is the claim 

that, despite replacing the (smooth) manifold by discrete 

manifold reduced to elements, any causet defined according 

to the partial order retains the Lorentz invariance. This 

means that, despite the effects inherently connected with the 

Lorentz transformation (length contraction, time dilation, 

relativity of simultaneity), the causal partial order, i.e. 

cause-effect chain or (alternatively) causal disconnection is 

preserved for all inertial observers. In other words, causets 

are the Lorentz invariants. In consequence, the discrete 

geometry of spacetime postulated by CST can be 

consistently embedded in the smooth Lorentzian manifold.  

Another question refers to the scale of discretization. It is 

widely assumed that discreteness of spacetime refers to the 

extremely small sub-Planckian scales, which means that all 

spacetime quanta (elements) correspond to the Planck 

spacetime volume determined by Planck length and Planck 

time. The advantage connected with the uniformity of 

spacetime quanta is the conceptual simplicity of theory. 

Likewise, it seems reasonable to suppose that fundamental 

constituents of discrete spacetime are the smallest physically 

sensible quantities, actually the Planck ones. However, this, 

together with the questions related to general logic of this 

theory, brings us to the possible disadvantages of CST. Let 

us discuss them one by one. 

First, it is not true that, thanks to the partial order, the 

causets reconstruct the spacetime, as it is specifically defined 

in special and general relativity. It is rather true (but not as 

much unexpected) that any causet considered as embedded 

in the smooth Lorentzian manifold would satisfy these 

conditions. A possibility of reconstructing the relativity 

theory based on pure causal relations instead of known 

postulates (say, the known two of STR) would be fascinating. 

However, nothing like that takes place, neither in smooth nor 

discrete version. Hence, the concept of causets does not by 

itself reconstruct (but rather mimic) the relativity theory in 

the discrete form. 

Second, the assumed property of homogeneity of discrete 

spacetime (equality of spacetime quanta) is not consistent at 

least with the “spirit” of quantum theory. This claim is    

not obvious at first sight, hence demands justification. Let’s 

start from reminding the basic goal of CST, which is the 

pursuit of quantum gravity. In contrast to other (successful) 

attempts of unifying the fundamental interactions of nature 

(electromagnetic, week and strong), in the case of gravitation, 

spacetime is not a stage or a “background structure” [15] for 

interactions to occur, but is itself a part of unification. In 

other words, unlike in the case with other forces, unification 
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including gravity means that we deal not only with  

quantum dynamics on spacetime structure, but also with 

quantum dynamics of spacetime structure [15]. This follows 

directly from the Einstein’s GR equation connecting 

energy-momentum tensor with the metric and curvature 

tensors/scalars (Riemannian metric on M). Any attempts of 

connecting GR with QM must take into account this basic 

fact. Considering that quantities denoted on the right side  

of Einstein’s equation undergo quantization, the terms on 

left-side describing metrical structure of Lorentzian 

manifold must do either. Consequently, according to the 

quantum point of view, the measurable properties of 

spacetime are the observables subject to the Heisenberg 

uncertainty principle, same as energy and momentum. As 

crazy as it may seem, considering spacetime in terms of 

observable, or quantum operator, should be taken seriously. 

Otherwise the equality sign connecting both sides of 

Einstein’s equation would be unjustified.  

This however points to a certain deficiency of CS 

approach. As far as the general assumption as to the discrete 

structure of spacetime is rational, its specific formulation 

within CST is not consistent with QM. This is because 

discretization of spacetime should not be determined in 

isolation of experiment, i.e. both homogeneity and the scale 

of discreteness should not be prespecified. The measurable 

properties of an observable not simply are but rather appear 

(manifest themselves) differently in different experiments. 

The third objection links to the previous one. It namely 

addresses the disproportion of hypothetic (homogenous) 

space-time quanta with the scale of observed constituents of 

physical reality (elementary particles and respective 

interactions). As a matter of fact, basic Planck units bind 

together fundamental constants of physics; nevertheless, 

Planck length and Planck time are many orders below the 

atomic scale, while Planck mass is many orders above. Say, 

for instance, we consider emission of photon, corresponding 

to the transition of atom from the excited to ground state. The 

subatomic distances between respective orbitals, although 

extremely small (and to some extent “fuzzy”, due to 

uncertainty principle), are however incomparably greater 

than Planck length ℓ𝑃~10−35𝑚 . The same refers to the 

respective time intervals as compared with Planck time. 

Hence, if we intend to describe the said phenomenon as a 

discrete manifestation of different quantum states “before” 

and “after” (with no action in between), the CS approach 

seems to be an inadequate tool. In fact, using the Planck 

“bricks” for discretization of spacetime rather fixes than 

eliminates the continuous character of real phenomena in 

their “normal” quantum scale. This would be like describing 

the sandstorm in “quantum” terms, i.e. using the scale related 

to the granularity of sand. 

In contrast to that, connecting the postulated discreteness 

of spacetime with the (invariant) mass of elementary 

particles, and with related quantities/concepts, such as 

Compton wavelength and Caianiello’s maximal proper 

acceleration, seems to match better the demands of both 

relativity and quantum physics. This namely means fulfilling 

the general postulate of GR according to which spacetime 

and matter are inseparably connected, as well as the QM 

postulate stating that nature does not “exist” except of 

manifesting in experiments. The latter provides physical 

disambiguation to the prophetic Berkeley’s rule: esse = 

percipi. 

5. Conclusions 

Based on the Caianiello’s idea of maximal proper 

acceleration, we have postulated the proper time 𝜏 sensed 

by individual elementary particles to be quantized in a direct 

relation to their mass. On that ground, we have derived the 

“extended second law of motion” including, apart from the 

relativistic velocity-dependent term (Lorentz factor), also the 

acceleration-dependent term, related to the Caianiello’s 

maximal acceleration. A limiting case of the so-defined 

extended second law of motion refers to the Planck time 

which is recognized not as a universal quantum of time (as it 

is proposed by the Causal Sets Theory) but as the smallest 

hypothetical quantum of proper time from the whole range of 

time quanta associated with different masses of elementary 

particles. 

The values of maximal proper acceleration are typically 

extremely high; even for the faint particles such as electron 

the respective corrections to the second law are in practice 

negligible compared with corrections caused by the 

relativistic increase of mass/energy. However, the proposed 

extension of the second law, verifiable in principle, is likely 

verifiable in the real specially aimed experiments, present or 

future. 

Assuming the Einstein’s equivalence principle, i.e. entire 

equivalence between effects caused by the uniform 

gravitational field and constant acceleration, the quantized 

proper time experienced by an accelerated massive particle 

should also be ascribed to a stationary particle subjected to 

gravitation. This observation may provide a clue in searching 

for the ultimate shape of quantum gravity. 

A particular prediction refers to the principle of the 

uniqueness of free fall. The particles of a smaller mass 

should, according to the smaller value of maximal proper 

acceleration, subject to a slightly greater acceleration than 

particles of bigger mass. However, the supposed effect (very 

small deviation from the universality of uniqueness of free 

fall) would be only noticeable in the presence of extremely 

strong gravitation, in which quantum effects likely dominate. 

Additional remark: This paper extends STR to the form 

including the quantum effects connected with acceleration. 

However, as shown in another my paper published in IJTMP 

[18], for the fundamental reasons of self-inconsistency STR 

demands to be replaced by the preferred frame theory (PFT), 

with the Tangherlini transformation replacing the Lorentz 

transformation. Hence, the quantum extension should indeed 

apply to PFT, not to STR. This is both possible and necessary; 

however, I did not find indicated to mix together two 

modifications in one paper.  
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