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Abstract  Three discoveries of profound significance are described using three-dimensional aerodynamic theory of 

compressible flow in unbounded domains with a fixed-to-body reference frame and cylindrical-polar coordinates. The first 

discovery demonstrates how special relativity expressions are obtainable from within the formulation of the steady-rotating 

source problem. The second follows from developing a conservative, induced velocity body force for curved filament 

vortices when simulating a harmonic-oscillating source that rotates and translates along its centerline. The third demonstrates 

how the focusing (0+2) cubic nonlinear Schrödinger equation is exactly contained within the associated convected wave 

equation for a source that is rotating, translating, and oscillating. 
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1. Introduction 

Three important discoveries are presented using 

aerodynamic theory for subsonic conditions in unbounded 

domains. The first discovery follows from proving that  

the expressions of special relativity are obtained exactly by 

solving the nonlinear convected wave equation for a steady, 

rotating source in compressible flow. The problem is solved 

with absolute 3D cylindrical-polar and absolute time 

coordinates in a non-inertial, fixed-to-body reference frame. 

This has previously [1] only been shown for a steady, 

translating source with absolute 3D Cartesian and absolute 

time coordinates in a fixed-to-body reference frame. 

The second discovery involves adding a conservative 

body force, that should never have been ignored in the first 

place, from the Navier-Stokes equation – the induced 

velocity contribution. Its formulation is based on the 

localized induction approximation (LIA) theory for curved 

vortex filaments. This paper addresses the effect of vortices 

that remain attached to slender, solid bodies translating and 

rotating through a compressible fluid. Even though it is not 

discussed here, an induced velocity body force can also be 

generated by the presence of curved vortex filaments that 

terminate and remain attached to surface boundaries (e.g., 
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solid-fluid or fluid1-fluid2) or to hydrodynamic surfaces 

such as Lamb surfaces that form, break free, and move with 

the fluid flow system [2]. This could be a potential source 

of seed-points for turbulence. 

The third discovery comes about after laying bare what 

has always been present in plain sight – the embedding of 

the exact cubic nonlinear Schrödinger (NLS) equation 

within the convected wave equation for compressible flow. 

However, it requires one to resist the parsimonious logic of 

eliminating cross-derivatives from partial differential 

equations in the pursuit of mathematical beauty and 

over-emphasis on simplicity. The embedding of the cubic 

NLS equation means that frictionless solitons and other 

nonlinear vortex processes are predicted to be present 

within equations describing simple laminar flow systems. 

Such complex features can’t be simulated or even 

approximated by summing linear perturbations in either 

analytical or numerical simulations of incompressible flow 

equations. 

2. Background & Review 

2.1. Motivation 

It was demonstrated in a 2017 paper [1] that the unsteady, 

nonlinear convected wave equation exactly represented the 

disturbance created by a steady translating source using an 

absolute 3D Cartesian and absolute time coordinate system. 

The source was assumed to translate at a constant speed 

along a straight line through an initially motionless, 

compressible fluid in an unbounded domain. Furthermore,  
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it was demonstrated that the classical Lorentz transforms 

(i.e., special relativity) used for velocity, acceleration, 

momentum, energy, and mass are mathematical artefacts 

that arise from ignoring nonlinear cross-derivative terms in 

the convected wave equation and assuming the fluid was 

incompressible. 

This paper will present two major findings for unbounded, 

compressible fluids using an absolute 3D cylindrical-polar 

and absolute time coordinate system. Both findings appear 

to have never been presented or suggested before: 

1)  To show that the convected wave equation analysis 

and findings of the 2017 paper [1] can be exactly 

extended to a source attached to a constant-speed 

rotating reference frame; 

2)  To derive the (0+2) cubic nonlinear Schrödinger 

equation for a harmonic oscillating source attached to 

a constant-speed rotating reference frame that 

simultaneously is also translating at a constant speed 

along the frame’s centerline axis. 

The second finding is developed after including an 

additional body-force term in the Navier-Stokes equations. 

This conservative body-force term is the negative gradient 

of a potential. This term also represents a potential energy 

source that is proportional to the bending stiffness of an 

elastic, curved filament vortex subjected to a self-induced 

velocity using the theory of the localized induction 

approximation. In aerodynamics, this body force arises 

from the bounded horseshoe vortices that trail from each 

wingtip surface. These vortices are the ones that engine 

exhaust makes visible in high altitude contrails. 

2.2. Navier-Stokes Equation 

The 3D Navier-Stokes equation for an inviscid fluid can 

be written in the following form: 

 f

f

grad p
grad

t 


  



f

f f BF

V
V V F       (1) 

Term BFF , with units 2L T , represents a body force per 

unit mass that acts on the fluid. Replace term gradf fV V  

with the equivalent vector expression 1

2
( )grad f fV V

( )curl f fV V . If we restrict ourselves to body forces that 

are conservative, we can then replace term BFF  with the 

negative gradient of a potential term BF , with units 

2 2L T , (e.g., gh BF  for gravity). The Navier-Stokes 

equation (1) reduces as: 
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The problem is further restricted if the fgrad p  term is 

replaced with a barotropic relationship when ( )f f fp  , 

such that: 
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Under the special condition of irrotational flow, the 

curl fV  term (i.e., vorticity) vanishes. However, vorticity 

will vanish everywhere except along infinitesimally thin 

vortex lines. In addition, irrotational flow means the velocity 

vector fV  in (3) can be replaced with the gradient of a 

scalar velocity potential term f , with units 2L T , such 

that: 
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The following is a summary of assumptions for the fluid 

represented by the Navier-Stokes expression given in (4): 

a) Inviscid (negligible viscosity) 

b) Barotropic (density is a function of pressure) 

c) Subjected to a conservative body force 

d) Unsteady flow 

e) Irrotational (except along thin vortex lines) 

f) Potential based flow 

g) Compressible (density varies in time and space) 

h) Homentropic (uniform & constant entropy) 

An isentropic flow means the entropy level of each 

infinitesimal fluid volume does not change with time but 

may vary from volume element to volume element. Thus, 

homentropic flow is isentropic but an isentropic flow is not 

necessarily homentropic. 

2.3. Bernoulli Function 

The expression within the brackets shown in (4) is called 

the Bernoulli function BFH , with units 2 2L T , thus: 

0BFgrad H                          (5) 

0
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The 0BFgrad H   condition means the Bernoulli 

function is independent of location along a streamline. 

Compressibility of a fluid can be defined as the relative 

change in the local fluid density f , with units 3M L , in 

response to a change in the local fluid pressure fp ,    

with units 2
TM L . An adiabatic compression means the 

entropy content of the fluid remains approximately constant 
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during a compression event. The freestream characteristic 

speed of the fluid, called the speed of sound c , with units 

L T , can be defined [3], such that: 

2 p
c

 




 

 
  

 

               (7) 

The   subscript indicates fluid properties are to be 

evaluated outside the zone of disturbance. 

2.4. Momentum and Continuity Equations 

The momentum equation can be written for a fluid 

subjected to a conserved body force [4] in terms of a material 

derivative ( )D Dt  as: 

 f f f

D
grad p

Dt
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V
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            (9) 

The continuity equation represents the change in the 

quantity of fluid contained in a differential volume element 
3

d x  in the time interval d t . This change is set equal to the 

amount of fluid flowing in the volume element minus the 

amount flowing out of the volume element [3], such that: 

( )
f

f

D
div

Dt


  fV              (10) 

The gradient of a velocity potential  f  can be expressed 

in terms of the fluid velocity for irrotational flow, such that: 

grad f fV                (11) 

2.5. Compressible, Nonlinear, Convected-Wave Equation 

The momentum and continuity equations can be combined 

and flow velocity fV  replaced with velocity potential  f  

for irrotational, inviscid, barotropic, isentropic flow [5] [6] 

subjected to a body force: 
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  (12) 

Consider for the moment a fixed-to-body Cartesian 

coordinate system. The above wave equation (12) is an 

exact expression for the unsteady, nonlinear flow of a 

compressible fluid. It is written in terms of velocity 

potential  f  that is valid for both subsonic and supersonic 

flow conditions. However, (12) does not hold for transonic 

velocities since additional terms are needed to account for 

compression-shock and temperature loses. Replace the 

velocity potential term  f  with a subscript symbol ’ c ’, 

c , to indicate compressible conditions. One can then write 

(12) as follows: 
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In the format given in (13), the reference frame is 

attached to the leading edge of the vehicle (or any slender, 

solid object). The positive X-axis is pointed towards the 

downstream end of the vehicle. Because of the 

fixed-to-body reference frame, the vehicle is stationary 

while the ambient fluid moves with freestream speed V , 

directed parallel to the positive X-axis. The wave equation 

(13) is classified as a hyperbolic partial differential equation 

in terms of spatial coordinate X and time coordinate t  for 

subsonic speeds. 

2.6. Convected-Wave Equation in Cylindrical-Polar 

Coordinates 

The unsteady convected wave equation (12) can also be 

written in a cylindrical-polar coordinate system, such that: 
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Term c  is the polar radius; c  is the azimuth angle; 

Cosc c cx    is the Cartesian X-coordinate; and 

Sinc c cy    is the Cartesian Y-coordinate. The 

cylindrical-polar velocity components are as follows: 
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Term c zV  is the longitudinal velocity component parallel 

to the longitudinal unit vector ˆze ; term cV   is the 

circumferential velocity component parallel to the tangential 

unit vector ̂e ; and term cV   is the radial velocity 

component parallel to the polar-radial unit vector ˆe . 

Hence, one can write the velocity vector for compressible 

flow conditions cV  as the sum of the three vector 

components: 

ˆ ˆ ˆc c c zV V V    c ρ zV e e e         (16) 

The quotient of a velocity component with that of the 

freestream speed of sound c  from (7) is defined as the 

Mach number for that velocity component, such that: 

; ;
c c c z

z

V V V
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c c c
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  

       (17) 

The total Mach number fM  for a fluid velocity is 

defined as the sum of its squared components. It must be less 

than one for subsonic flow conditions: 

2 2 2
f zM M M M             (18) 

1fM                 (19) 

Only the cylindrical-polar coordinate version of the wave 

equation (14) will be discussed in the remainder of the paper. 

3. Case 1 - Rotating but Non-Translating 
Reference frame with a Vanishing 
Body Force for Subsonic Velocities 

The first case will demonstrate that the 3D nonlinear 

convected wave equation in cylindrical-polar coordinates 

for compressible flow conditions with a non-inertial, 

fixed-to-body reference frame in an unbounded domain 

reduces to a 2D equation in Cartesian coordinates. This 

occurs when: 

1)  A source is assumed to consist of a small, slender, 

solid object; 

2)  Source is fixed to a non-inertial reference frame that 

rotates at a constant, subsonic, angular speed about the 

centerline axis; 

3)  Fluid in an unbounded domain is initially at rest; 

4)  Fluids are limited to those that are inviscid (i.e., 

viscosity 0c  ), irrotational (i.e., 0urlc u ), 

barotropic (i.e., cp   cf  ), isentropic (i.e., 

constant entropy), and compressible; 

5)  No body force acts on the surrounding fluid. 

Using the above assumptions, we will set the following 

terms for a rotating but non-translating reference frame and 

a negligible body force: 

0; 0; 0; & 0f f f z BFV V V          (20) 

3.1. Linearization of Wave Equation 

The fluid density f , fluid pressure fp , fluid velocity 

fV , and velocity potential f  will be linearized as 

follows with a perturbation component: 
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The subscript   is used to indicate terms that are 

evaluated at freestream or undisturbed conditions. 

It will be assumed that the magnitude of the perturbed 

velocity V̂  is much smaller than the magnitude of the 

freestream velocity V  and that the magnitude of the 

freestream velocity is much smaller than the characteristic 

speed of the fluid c : 
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VV

V
       (22) 

Substitute the linearized variables from (21) and the 

Mach number expression from (17) into the general wave 

equation (14) for compressible flow conditions. The 

unsteady, convected wave equation for the perturbed 

velocity potential in 3D cylindrical-polar coordinates will 

then reduce as follows for Case 1 conditions in a 

fixed-to-body reference frame: 
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 (23) 

Term  , with units L , is the polar-radius coordinate in 

the cylindrical-polar coordinate system for compressible 

flow. All third- and fourth-order perturbation terms have 

been dropped in (23). 

3.2. Change in Variables 

Define the dimensionless parameter 2
1 M    , 

spatial variable s , with units L , and temporal variable  , 

with units L , for subsonic velocity conditions, where: 

 0s                  (24) 

 0t t V               (25) 

The s  variable represents an estimate of the 

circumferential arclength traversed when the azimuth angle 

changes by the angle 0  . 

Take the following partial derivatives in terms of the s  
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variable using the chain-rule of differentiation: 
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Take the following partial derivatives in terms of the   

variable using the chain-rule of differentiation: 
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The wave equation (23) reduces as follows for Case 1 

after substitution of the derivatives from (26) and (27): 

 2 2

2 2

ˆ ˆ

ˆ ˆ

ˆ
ˆ 1

2

ss zz

s

M

M M


 

  

 

 


 


 

 

 
    (28) 

Consider a new perturbation velocity potential term 
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Term a  in (29) is an arbitrary dimensionless 

coefficient. 

Replace the potential ̂  and its derivatives in the wave 

equation (28) with the new potential   and divide out the 

common term 
a

  when finished, such that: 
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The first bracketed term in (30) can be reduced to a 

standard radial coordinate form by setting the a  

coefficient equal to 21
2

a M  . The wave equation for a 

fixed-to-body reference frame (30) simplifies as follows 

upon back substitution with the new a  coefficient, such 

that: 
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The subscript c  has been added in (31) to remind us that 

this equation is based on a compressible fluid assumption. 

3.3. Separation-of-Variables 

Consider the following separation-of-variables solution 

c c cX R  , where only the cX  component varies with 

time: 
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Substitute the transform (32) into the compressible wave 

(31) and divide the resultant expression by the term c cX R : 

2 2 2 2
2 2 2

2 2 2

42

2 2

0

1
2

1 1

4

c c c c

c c cc c c

c c c

c c cc c

c

X X X X
M M

X ss z

MR R R

R

  






  





 

    
  

     

  
  
  

 

(33) 

Term 0c  is an unknown constant coefficient. The cX  

and cR  terms are independently set equal to 0c , giving 

the coupled differential equations: 

42

02 2

1
0

4

c c c
c c

c cc c

MR R R
R 

  

 
   


     (34) 

2 2 2 2
2 2 2

2 2 2

0

2

0

c c c c

c cc c c

c c

X X X X
M M

ss z

X

  





   

 
   

 

 (35) 

3.4. Wave Equation for the Bessel Laplacian 

The first equation (34), which is not a function of time, is 

called the wave equation for the Bessel Laplacian. It is of 

order 
21

2
v M , which has non-integer values. The details 

of the solution will not be presented here but they will be 

shown in Case 2 to equal: 

   0c c cr v c cR C J             (36) 

Term crC  is an unknown, real valued constant. It should 

be obvious that the parameter 0c  must be positive valued 

for a physically meaningful solution when cR  is based on 

the Bessel function of the first kind  vJ  . 

3.5. 2D Wave Equation and Special Relativity 

We will now examine the transient, 2D wave equation 

given in (35) that includes the term 0c cX . It should be 

noted that (35) is in the proper form of a 2D Cartesian 

coordinate system representing a compressible fluid.    

The coordinate set  , ,c c cs z   for compressible flow 

conditions will be transformed to an equivalent coordinate 

set  , ,ic ic ics z   for incompressible flow conditions: 
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   , , , ,c c c c ic ic ic icX s z X s z         (37) 

ic c c c cs a s b                         (38) 

ic cz z                               (39) 

ic c c c cc s d                         (40) 

Term   is defined as 2
1 M     and ca , cb , cc , 

cd  are unknown coefficients of the compressible-to- 

incompressible coordinate transform. 

The 2D wave equation with term 0c icX  can be written 

in Cartesian coordinates for an incompressible fluid medium 

with a fixed-to-body reference frame as: 

2 2 2
2

02 2 2

ic ic ic
c ic

ic ic ic

X X X
M X

s z
 




  
 

  
   (41) 

The coordinate transform linking the partial differential 

equation (35) with (41) is written in matrix form as: 

2 2

1 01ic c

ic c

s s

M  
 

    
    
     

      (42) 

The matrix in (42) is in fact the Miles transform [6].  

The classical Lorentz transform [7] from Special Relativity 

is related to (42) by pre-multiplying the Galilean transform 

matrix with that of the Miles transform matrix: 

     

2 2 2

1 0 1 11 11 1

0 1 1

Miles Galilean Lorentz

M M   
 

    
             

    (43) 

Note that the coefficient 0c  played no role in the 

derivation of the transform matrices shown in (42) and (43). 

All details of the derivations for (42) and (43) can be 

found in the 2017 [1] paper. Furthermore, [1] shows    

how the resultant PDE can be converted between     

sixteen fixed-to-body, fixed-in-space, compressible, and 

incompressible reference frames. 

3.6. Separation-of-Variables: Again 

The wave equation in (41) can be further solved by   

using the separation-of-variables method a second time by 

replacing term icX  with the following triple product: 

       , ,ic ic ic ic ic ic icX s z S s Z z T     (44) 

Partial differential equations that can be solved using the 

method of separation-of-variables leads to solutions that are 

products of exponential functions with either real or 

imaginary arguments [8]. 

Substitute (44) into (41) and divide the resultant 

expression by the triple product S Z T : 

22 2 2

02 2 2

1 1
c

ic ic ic

MS Z T

S Z Ts z

 



  

 
  

   (45) 

Set the right-hand side expression equal to another 

constant 0  since it is independent of the left-hand side 

expression: 

22 2 2

02 2 2

0

1 1
c

ic ic ic

MS Z T

S Z Ts z

 





  

 
  



    (46) 

Set the right-hand side term from the first line in (46) equal 

the right-hand side term from the second line in (46) and 

rearrange terms, such that: 

 2
0 0

2 2
0

c

ic

T
T

M

 




 


       (47) 

There are four possible solutions to (47) that depend upon 

the sign of the terms 0 0c  , 0 0  , 0 , and whether 

the Mach number M  vanishes or not. Three phase angles 

are defined in terms of the unknown constants: 

0 0

0 0

0

T

Z

S

c

M

 

 




 

  

 

           (48) 

The four possible analytical solutions for term T  are as 

follows: 

i. If  0 0 0c    and 0M   

     Cos SinT Tic c ic s icT A A        (49) 

ii. If  0 0 0c    and 0M   

  ic T ic T
ic p nT A e A e

    
         (50) 

iii. If  0 0 0c c    and 0M   

  00 01ic icT A A                     (51) 

iv. If 0M   

  1icT                               (52) 

The terms cA , sA , pA , nA , 00A , & 01A  are 

unknown constants of integration that are solved based on 

the boundary conditions in an unbounded domain. 

Rearrange the left-hand side of equation (46) and solve for 

the Z  component: 

2 2

02 2

0

1 1

ic ic

S Z

S Zs z




 
 
 
 

 
  

 



       (53) 

Set the right-hand side of the first line equal the right-hand 

side of the second line with unknown coefficient 0  and 



 International Journal of Theoretical and Mathematical Physics 2020, 10(1): 1-17 7 

 

 

solve for Z : 

 
2

0 02
0

ic

Z
Z

z
 


  



         (54) 

There are three possible solutions to (54), depending upon 

the sign of the expression 
0 0  : 

i. If  0 0 0    

  z zic Z ic Z
ic p nZ z B e B e

  
        (55) 

ii. If  0 0 0    

     Cos SinZ Zic c ic s icZ z B z B z     (56) 

iii. If  0 0 0    

  00 01ic icZ z B B z            (57) 

The terms cB , sB , pB , nB , 00B , & 01B  are unknown 

constants of integration that are solved based on the 

boundary conditions in an unbounded domain. 

Rearrange the left-hand side of equation (53) and solve for 

the S  component: 

2

02
0

ic

S
S

s



 


           (58) 

There are three possible solutions to (58), depending upon 

the sign of the coefficient 
0

 : 

i. If 0 0   

  s sic S ic S
ic p nS s C e C e

  
         (59) 

ii. If 0 0   

     Cos SinS Sic c ic s icS s C s C s      (60) 

iii. If 0 0   

  00 01ic icS s C C s             (61) 

The coefficients cC , sC , pC , nC , 00C , & 01C  are 

unknown constants of integration that are solved based on 

the boundary conditions in an unbounded domain. 

3.7. Final Solution to Case 1 

The final solution of Case 1 for the velocity potential 

f  of compressible flow in a fixed-to-body reference 

frame can be written in the following form: 

 

       0

,f

cr
v c ic ic iccv

c

t

C
J S s Z z T   



  



x

 (62) 

The conversion of incompressible coordinates ics , icz , 

and ic  to compressible coordinates cs , cz , and c  are 

listed in (39) and (42). Order v  of the Bessel function is 

defined as 21
2

v M . 

The purpose of presenting Case 1 is to show how the 

original 3D, nonlinear, convected wave equation (23) in 

cylindrical-polar coordinates for a compressible fluid in a 

rotating, but non-translating, fixed-to-body reference frame 

can be transformed to a system of two partial differential 

equations. One of the partial differential equation (PDE) 

expressions is solved as a steady wave equation for the 

Bessel Laplacian. The other PDE expression is solved as a 

2D, transient, wave equation in Cartesian coordinates. This 

was made possible by converting the azimuth coordinate   

to a circumferential arclength coordinate s . It was pointed 

out in a 2017 paper [1] that the resultant PDE could be 

converted between sixteen fixed-to-body, fixed-in-space, 

compressible, and incompressible reference frames. The 

transformations are based on the Miles, Galilean, and 

Lorentz matrices. 

4. Case 2 - Rotating and Translating 
Reference Frame Subjected to a 
Conservative Body Force for  
Subsonic Velocities 

4.1. Introduction to Case 2 

The second case will demonstrate that the 3D nonlinear 

convected wave equation for compressible flow conditions 

with a non-inertial, fixed-to-body reference frame in an 

unbounded domain reduces exactly to the (0+2) focusing 

cubic NLS equation. This occurs when: 

1)  A source is assumed to consist of a small, slender, 

solid object; 

2)  Source is a harmonic oscillator of the form 

  ( )0
A

i t t
x e

  
; 

3)  Source is fixed to a non-inertial reference frame that 

rotates at a constant, subsonic, angular speed about the 

centerline axis; 

4)  Source simultaneously translates at a constant, 

subsonic speed in a direction parallel to the centerline 

axis; 

5)  Fluid in an unbounded domain is initially at rest; 

6)  Fluids are limited to those that are inviscid (i.e., 

viscosity 0c  ), irrotational (i.e., 0urlc u , 

except along infinitely thin vortex lines), barotropic 

(i.e., cp   cf  ), isentropic (i.e., constant entropy), 

and compressible; 

7)  One or more curved vortex filaments are instantly 

generated by a source. The filaments remain attached 

to the source, but they extend into the downwind 

direction; 

8)  Each curved vortex filament generates an induced 

velocity in a direction perpendicular to the centerline. 

The induced velocity produces a conservative body 

force that acts on the surrounding fluid. 
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4.2. Wave Equation to be Solved in Case 2 

As previously stated, we shall assume in Case 2 a 

rotating and translating reference frame subjected to a 

conservative body force and a harmonic oscillator source: 

0; 0; 0; & 0f f f z BFV V V          (63) 

The corresponding convected wave equation to be solved 

is given in (14) and after applying the conditions of (63): 

2 2

2 2 2

2

2

2 2

Φ
1 Φ Φ 1

V V1 2
Φ Φ

Φ VV 1
2 1

Φ

Φ

c

c c

c c

c BF

z
zz

c

c t z
t t zt

c

c zz

c c

c c cc

D

c D tc c

V V

c c

V

c





 




 













 

  

  

   

  


   

   
   

  
  

 
 
 

 
 
 
 

 (64) 

4.3. Linearization of Wave Equation 

The fluid density f , fluid pressure fp , fluid velocity 

fV , and velocity potential f  will be linearized with a 

perturbation component in the same way as shown in (21) 

and (22) and substituted into (64). Upon dropping all third 

and fourth-order perturbation terms, the convected wave 

equation from (64) reduces to the following: 

   

 

2 2

2

2

2

2

ˆ

1 1

1 2ˆ ˆ

ˆ

2 1

1

ˆ ˆ

ˆ

ˆ

BF

zz z

c

t
t t zt

c

z

c c

M M

M M z
cc

M M Mz

D

D tc


 




 
 





 





 















   

  

  




 
 
 
     (65) 

The Mach coefficients M  and M z  are defined in 

(17). 

Before proceeding with the solution of (65) for the 

nonlinear Schrödinger equation, it is worthwhile to review 

the Madelung transform that has been used since 1927. 

4.4. Brief History of Madelung Transforms 

The Madelung transform was first introduced by 

Madelung [9]. It defines the complex valued wavefunction 

m  in polar form as i m
mm r e


  . The argument of the 

wavefunction equals term m
 
and the modulus is term 

mr . The fluid density f is then identified with term 

mr  and the fluid velocity fV  is identified with the 

gradient operator as f mV grad  . The Madelung 

transform only satisfies the (1+1) linear Schrödinger 

equation. It also brings about an unusual term called the 

Bohm quantum potential mU  that appears in the resultant 

momentum equation [10], where 2
m m mU     . 

A more recent and relevant use of the Madelung 

transformation is given in [10]. He assumes an ideal gas  

law and temperature T  that is a function of time only. The 

resultant (1+1) nonlinear Schrödinger equation formulation 

contains the Bohm-quantum potential mU  [11] and the 

Bialynicki-Birula logarithmic potential [12]. Several exact 

solutions for inviscid, irrotational, isentropic, and 

compressible flow are derived [10] but they are essentially 

restricted to finite domain problems. This is because the 

velocity and density functions increase indefinitely with 

distance from the origin. 

Only the Hasimoto transform [13], in conjunction with 

LIA based flow theory of curved vortex filaments, is known 

to be consistent with the (1+1) and (0+2) cubic NLS 

equations. However, what has completely been absent in the 

literature is a rational theory demonstrating the derivation or 

origin of the cubic NLS equation itself using the classical 

Navier-Stokes equations for compressible flow. This paper 

will show, apparently for the first time, a derivation based 

on an aerodynamic application. 

4.5. Development of Convected Wave Equation 

4.5.1. Source as a Harmonic Oscillator 

The source disturbance will be treated as a harmonic 

oscillator. The resultant 3D wave will vary harmonically in 

time. One can then write the perturbed velocity potential ̂ , 

with units 2L T , as a function of a steady-perturbation 

velocity potential H , with units 2L T , and a harmonic 

component: 

( )0ˆ( , , , ) ( , , )H
i t t

z t z e
       

      (66) 

Term  , with units 1 T , represents the spin angular 

speed of the harmonic oscillator source. 

4.5.2. Including a New Conservative Body Force 

A conservative body force BFF  is expressed as the 

negative gradient of a potential BF : 

BF BFgrad  F           (67) 

Potential BF , with units 2 2L T , is related to a 

potential energy source that is proportional BF , with units 

21 L , to the bending stiffness of an elastic, curved filament 

vortex undergoing self-induction: 

  21
, ,

2
BF BF Hz             (68) 

4.5.3. Localized Induction Approximation 

Assuming the applicability of the localized induction 

approximation (LIA) for a curved filament or vortex, then 
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the velocity induced, LIAu , with units L T , at position X  

along the filament centerline is given by the time derivative 

of the position vector [13] [14] [15] [16] [17] [18]: 

= LIA

LIA

t

G 







X
u

B

               (69) 

Term LIAG , with units of 2L T , is called the coefficient 

of local induction. 

4.5.4. Frenet-Serret Formulas of Differential Geometry 

Term   in (69), with units of 1 L , is the curvature of the 

filament curve and the dimensionless unit vector B  is the 

binormal vector from the Frenet-Serret formulas of 

differential geometry [19]. If the dimensionless unit vector 

T  is the tangent vector parallel to the centerline of the 

filament curve and dimensionless unit vector N  is the 

normal vector, then the partial derivative of the tangent 

vector with respect to arc-length s  along the curve is: 






T
N=

s
              (70) 

Hence, the magnitude of the self-induced velocity LIAu  is 

given as [15] [20] [21] [22] [23]: 

LIA LIAG u            (71) 

Term LIAG  in (69) and (71) is a function of the vortex 

strength, radius of the vortex core, and cut-off arclength [13]. 

4.5.5. Components of the Fluid Velocity Vector fV  

At any point in the unbounded domain, the fluid velocity 

fV  will be assumed to consist of freestream velocity V ; 

the perturbation velocity  , , ,z t v  due to the presence  

of the solid; slender body moving through the fluid; and   

the induced velocity component  , , ,LIA z t v  generated 

by the presence of the curved filament LIA LIAG u

vortex that trails downwind of the slender body that behaves 

as a harmonic source: 

   

 

   

   

0

0

, , , , , ,

, , ,

, ,

, ,

LIA

LIA

f

i t t

i t t

z t z t

z t

z

z

e

e





   

 

 

 



 


 

 



 



V V v

v

V u

u

 (72) 

Velocity u , with units L T , is the steady-perturbation 

velocity component due to the presence of a slender solid 

body; and LIAu , with units L T , is the steady-perturbation 

velocity component due to the self-inducted velocity 

produced by the curved filament vortex (i.e., at point 

 , , z   along the filament). 

4.5.6. Gradient of the Steady-Perturbation Velocity Potential 

The gradient of the steady-perturbation velocity potential 

H  consists of two contributions: 

1
ˆ ˆ ˆH H H

H

LIA

zgrad
z

 
  


  

  
  

  

 

e e e

u u

 (73) 

This means induced velocity vector LIAu  vanishes if no 

curved filament vortex forms or if the vortex does not remain 

attached to the solid, slender translating body. 

Take the dot product of fluid velocity fV  and the 

Hgrad   term from (73): 

      

   

0 0

0

H

LIA LIA

LIA

LIA LIA LIA LIA

f

i t t i t t

i t t

grad

e e

e

 





   


 

 

   

 

   

V

V u u u u

V u V u

u u u u u u u u

(74) 

Assume the following relative magnitudes between 

velocity components: 

a)  Steady-perturbation velocity is small compared to 

freestream velocity: 

1 u V              (75) 

b)  Steady-perturbation velocity is small compared to 

induced velocity:  

1LIA u u             (76) 

c)  Induced velocity is not parallel to freestream velocity: 

 2 2
,LIA LIAMax V u V u      (77) 

The dot product of fluid velocity fV  and Hgrad   

given in (74) reduces as follows upon substitution of the 

assumptions given in (75), (76), and (77): 

 

 

2

2 2

0

0

H LIA

LIA

i t t
f

i t t

grad e

G e









 

 





V u
       (78) 

The gradient of the body force potential BF  given in 

(68) can now be evaluate as follows: 

BF H HBFgrad grad           (79) 

Take the dot product of fluid velocity fV  with the 

gradient expression given in (78) and (79): 

 2 2

2 2

0

ˆ

BF BF HLIA

BF LIA

i t t
f grad G e

G


  

  

 
  

 

V
 (80) 

4.5.7. Material Derivative of Body Force Potential 

The time derivative of body force potential BF  

vanishes since the steady-perturbation velocity potential H  

is not a function of time: 
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0

BF H
HBF

t t


 

 
 

 



         (81) 

The material derivative of body force potential BF  can 

now be completely evaluated using the results of (80) and 

(81) 

2 2 ˆ
BF LIA

BF BF
BFf

D
grad

Dt t

G  

 
  



 

V
     (82) 

4.5.8. Derivatives of the Perturbed Velocity Potential 

Differentiate the perturbed velocity potential ̂  from (66) 

with respect to time for the case when the source is a simple 

harmonic oscillator with constant amplitude H  and a 

constant angular speed   that does not depend on the 

amplitude: 

 

 
2

2

2

0

0

ˆ

ˆ

H

H

i t t

i t t

i e
t

e
t









 

 

 


 




 



      (83) 

Substitute the time derivates of the perturbed velocity 

potential ̂  from (83), the material derivative formula for 

the body force potential from (82) into the linearized wave 

equation (65), and divide out the common term 
( )0i t t

e
 

 

when finished: 

   

 

2 2

2

2

2

2

2 2

2

1 1

2

2 1

H

H H

H

H H

H H

BF
HLIA

zz z

z

z

M M

i
M M z

cc

M M Mz

c
G






 





 















 


















   

 
    

 

  




   (84) 

4.5.9. Introducing a New Perturbed Velocity Potential 

Create a new perturbation velocity potential  , , z   , 

with units 2 aL T , to replace the steady-perturbed velocity 

potential H , with units 2L T , where the coefficient a  is 

unknown: 

   , , , ,H
a

z z                    (85) 

 2 2

2 2 2

12

H

H

a

a

a

a aa

  


  

  
 

   

  
  

  

   
   

   

    (86) 

Substitute the formulas (85) and (86) into the wave 

equation (84); replace 2
1 M  with term 

2
  and 2

1 zM  

with term 2

z ; and divide out the common term 
a

 , such 

that: 

 

    

2 22

2

2

2
2 2

2 2

2

2

2

2 1

1 1

BF
LIA

zzz

i
M M z z

c

z
M M z

a M

a a a M

G
c c

 
 



















   











 






 

  

 

 

 

 

  

 
 
 

 
 

 
 

   (87) 

The    expression in (87) can be reduced to a 

standard radial coordinate form by setting coefficient a  

equal to the following: 

2

2

M
a                 (88) 

Substitute coefficient a  from (88) into (87): 

2 2

2 2

2
2 2

2 2

4

2

2

4

BF
LIA

zzz

i
M M z z

c

z
M M z

M

G
c c

  

















 
   

 





 






 

   

  

  

 
 
 

 
 

 
 

   (89) 

4.5.10. Change in Spatial and Temporal Coordinates 

Define the longitudinal spatial variable s , with units L , 

and the transverse spatial variable b , with units L , for 

subsonic velocity conditions, where: 

 0



 





s            (90) 

 0

z

z z
b




             (91) 

The s  variable represents an estimate of the 

circumferential arclength travelled when the azimuth angle 

changes by the amount 0   and then rescaled by  . The 

b  variable represents an estimate of the transvers arclength 

travelled when the Z coordinate changes by the distance 

0z z  and then rescaled by z . 

Take the following partial derivatives in terms of the s  

variable (90) using the chain-rule of differentiation: 

f f





 

 


 s
            (92) 

2 2 2

2 2 2

f f





 

 


 s
           (93) 
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Take the following partial derivatives in terms of the b  

variable (91) using the chain-rule of differentiation: 

1

z

f f

z b 

 


 
              (94) 

2 2

2 2 2

1

z

f f

z b 

 


 
             (95) 

Substitute the change of variables and derivatives from 

(90) to (95) into the wave equation of (89) 

2

2
2 2

2 2

4

2

2

4

LIA
BF

bb

b

z
b

i z

c z

z

M

M M

M M
G

c c

 











 

 

 
  

 

 




 



 

   

 
   

 

 
  
 
 



ss

s

s

  (96) 

4.6. Separation-of-Variables 

Consider the following separation-of-variables solution 

R    to the compressible, convected wave equation (96), 

where only the R  term varies with the polar radius  : 

     , , ,b R b   s s         (97) 

The separation-of-variables term  ,b s  in (97) is 

called the wave function of the compressible, convected 

wave equation given in (96). Substitute the new transform 

(97) into the wave equation (96) and divide the resultant 

expression by the term R : 

2
2 2

2 2

1 BF
LIAbb G

c c




 


  
          
ss  

2

2

b

b

i z

c z

z

z

M M

M M











 

 



   
 
 
 


  



s

s

            (98) 

4

2

0

1

4

R M R
R

R

 


 



 
    
 
 



 

Term 0 , with units 21 L , is an unknown constant. 

Introduce the following new dimensionless space variable 

  to replace the polar radius   in the R  bracketed 

expression when the coefficient 0  is greater than zero: 

0                  (99) 

2 2

2 2

0

0

R R

R R


 


 

 


 

 


 

              (100) 

Substitute the above relationships (99) to (100) into the 

R  bracketed expression in (98) after setting it equal to 0 : 

2
2

2 2

0
0 0 0

1

0

R R R
R v

R


  

  

   
   

  



 (101) 

Term v  is defined by the following expression: 

2 41

4
v M             (102) 

Multiply the bracketed expression in (101) by the term 
2

0R  , such that: 

 2 2 2 0R R R v             (103) 

The ordinary differential equation in (103), which is not a 

function of time, is called the wave equation for the Bessel 

Laplacian of order v . It should be obvious from (102) that 

the order v  is a non-integer with a value always greater than 

zero for subsonic flow velocities. The general solution to 

(103) is: 

     pv v nv vR C J C J         (104) 

Bessel functions of the first kind with positive valued 

orders v  behave [24] with      1

2
1

v

vJ v     as the 

argument 0   with a fixed value for order v  when 

1, 2, 3,v        ; and where     is the gamma function. 

With  vJ    1 1

2 4
2Cos v      as the argument 

   . Bessel functions of the first kind with negative 

valued orders behave with  vJ    as the argument 

0  . Hence, the constant nvC  must vanish for 

physically meaningful solutions for finite valued induced 

velocities along the curved filament vortex: 

   pv vR C J          (105) 

Now return to the   bracketed expression in (98) that 

was set equal to 0 . Multiply all terms by the wave function 

  and rearrange terms, such that: 

2
2 2

2 20

2

2 2

BF
LIA

b

b

z
bb

z

z

z

M M

MM
i i

c c

G
c c











 

 

 

 


 

 



 

  
    

   

   
       

   
   

 
   

 

ss

s

s

   (106) 

The left side of the expression given in (106) is in the form 

of the (0+2) focusing cubic nonlinear Schrödinger (NLS) 

equation. It will be shortly shown how the remaining two 

terms on the right side of the expression in (106) are to be 

properly treated. 

4.7. Solving for the Wave Function   

In the previous section, we solved the 

separation-of-variable term R  from the convected wave 
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equation as a function of the polar radius. The remaining 

separation-of-variable term  , called the wave function, 

will now be evaluated. 

4.7.1. Introducing the Hasimoto transform 

Consider the Hasimoto transform [13], [23], [25] for the 

complex valued wave function   when the torsion of the 

filament vortices is not constant with arclength s : 

 
 0

0

0

,
i d

b e
 




 

 

s
s

s s
s      (107) 

Term   with units of 1 L  is the torsion of the filament 

vortex and 0  is a reference torsion value. For the special 

case of constant torsion 0  , the Hasimoto transform 

reduces to the following form: 

 
 0 0

0

,
i

b e





 

s s
s        (108) 

It should be noted that both curvature  ,b s  and torsion 

 ,b s  will be considered general functions of arclength s  

along the filament and the transverse distance b  from the 

filament’s centerline. 

Let   represent the complex conjugate of the wave 

function  , such that from (107): 

 
 

0

0
0,

i d

b e
 



 
 

 

s
s

s s
s      (109) 

It then follows from (107) and (109) that: 

0

2




 
   

 
 

             (110) 

4.7.2. Differential and Riemannian geometry 

The (0+2) NLS equation is formulated in differential 

geometry using Riemannian geometry with - lines  and 

b - line  coordinate curves on the 0n   congruence 

surface with Riemannian metric [26]: 

   
2 2

2 I IsbI Fd d db G db s s       (111) 

The metric coefficients  IF  and  IG  are given as 

  0IF   and  
2 2

0IG    on the 0n   surface. 

Function n  is called [26] the abnormality of the vector 

N-field. 

Two of the constraints for torsion and curvature functions 

on the 0n   manifold are called the Da Rios-Betchov 

equations [25]: 

0 2 0b      s s         (112) 

2
2

0 0
0

1

2
b d B


  




 

 
     

 
 


s

s s sss  (113) 

The 0B  coefficient is defined as 
2 21

0 0 04 AB A   . 

Terms AA  and 0B  are integration constants. 

4.7.3. Solution for Torsion Function 

A solution for the torsion function  ,b s  that satisfies 

both the LIA assumption, the Hasimoto transform, and Da 

Rios-Betchov equations on the 0n   manifold surface is: 

 
2

0 0

21 2,
2

b C C




 
 
 
 

s          (114) 

Coefficient 2C  is defined in terms of LIA based 

coefficients 1C , 1D , & 1H  for the filament vortex: 

3 2
2 1 1 1 11 1 2C H C D HC C         (115) 

Terms 1C , 1D , & 1H  are integration and boundary 

constants. 

4.7.4. Conservation Expressions for Torsion, Curvature, and 

Wave Function 

Differentiate the torsion solution (114) with respect to the 

- lines  and then the b - line  coordinate curves: 

3
0

2 3

3
0

2 3b b

C

C

 

 

















s s
            (116) 

Or, upon rearranging (116) 

3

3
2 0

3

3
2 0

1

1
bb

C

C

 

 

















s s

           (117) 

Differentiate the Hasimoto transform for wave function 

  in (107) with respect to the - lines  and the b - line  

coordinate curves: 

 

 

0

0

0
b

b

i

i d
b





 


 

 

 

 


 
  

 

  
   



 s s

s

s
s

s

 (118) 

Substitute the formulas for torsion   from (114) and 

derivative s  from (116) into the first Da Rios-Betchov 

equation (112) to obtain the conservation expression: 

1 0b C  s          (119) 

Substitute the formulas for torsion   from (114), 

derivatives s and b  from (117) into the first Da 

Rios-Betchov equation (112) to obtain the conservation 

expression: 
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1 0b C  s             (120) 

Finally, substitute derivatives b  from (119) and b  

from (120) into the b  derivative of the Hasimoto 

transform given in the second line of (118); rearrange and 

replace the resultant terms using the s  derivative of the 

Hasimoto transform given in the first line of (118), such that: 

1 0b C  s           (121) 

The derivation for all three conservation form expressions 

given in (119), (120), & (121) for the curvature  , torsion 

  and wave function   is apparently new for the (0+2) 

NLS equation. 

4.7.5. Wave Function with Multiple Derivatives 

Differentiate the wave function   conservation form 

expression in (121) with respect to the b - line  and then the 

-lines  coordinate curves: 

1

1

bb b

b

C

C

 

 

 

 

s

sss
          (122) 

Substitute derivative b s  from the second line of (122) 

back into the first line of (122), such that: 

2
1bb C  ss           (123) 

The b  derivative from (121), the b s  derivative from 

the second line of (122), and the bb  derivative from (123) 

can now be used to replace terms in the (0+2) NLS equation 

(106), such that: 

2
1 1

1

2
2 2
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


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 

 


 

 



 
   

 

 
  

 

   
       

   
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ss

s
 (124) 

4.7.6. A New Compressibility Constant 

Define a compressibility coefficient compC , such that: 

2
1 11 2comp

z

z

M M
C C C

 
       (125) 

And define the proportionality coefficient BF  from the 

body force term, such that: 

2

2

1

2

BF LIA

compC

G

c





            (126) 

Substitute the compC  coefficient from (125) and the BF  

constant from (126) into the (0+2) NLS equation (124), such 

that: 
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    (127) 

4.7.7. Standard form of the (0+2) NLS 

The standard form of the (0+2) NLS is as follows: 

0 0 0

22
0

1 1
2 4

0

b

A

i i U

A

 

 

   

    

ss s
      (128) 

The dimensionless term 0U  is called the pseudo-speed 

coefficient. It is expressed in terms of the reference torsion 

0  and reference curvature 0  values: 

0
0

0

2U



               (129) 

4.7.8. Standard form of the (0+1) NLS 

After eliminating the b  derivative in (128) using the 

conservation form expression (121), the standard form of the 

(0+1) NLS is written as follows: 

 0 0 1

22
0

1 1
2 4

0A

i U C

A



 

  

    

ss s
    (130) 

4.7.9. Association of Variables 

Upon comparing the compressible (0+1) NLS in (124) 

with the standard form of the (0+1) NLS in (130), one can 

write the following three associations between variables: 

0 0

1
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M
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
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          (131) 
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    (133) 

Substitute the formula for pseudo-speed 0U  from (129) 

into the first association (131) and solve for the reference 

torsion 0 , such that: 

0

1

comp

M

c C






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           (134) 

Solve for the reference curvature 0  from the second 

association (132), such that: 
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1
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z

M
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
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The separation-of-variables coefficient 0  is evaluated 

from the third association expression (133), such that: 

2
2
02

1
0 4 A compA C

c







          (136) 

Take the ratio of 0 0   from expressions (134) and 

(135), such that: 

0

0

0

2 z
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M
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U





 

 




             (137) 

The vortex curve reference coefficients 0 , 0 , and 

separation-of-variables coefficient 0  have been expressed 

in terms of LIA based coefficients 1C , 1D , 1H  and 

aerodynamic source terms  , M , M z , and c . 

4.8. Solution to the NLS 

4.8.1. Differential Equation for Curvature 

Substitute for the derivative b  from the second 

conservation expression (120) into the integral term in the 

second Da Rios-Betchov equation (113) and then substitute 

in the LIA based torsion formula from (114), such that: 

2 2
0 0

1 1 2 1 0 02

2 2 2
0 0
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 ss

   (138) 

Rearrange terms in (138) and multiply the resultant 

expression by  , such that: 
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4.8.2. Cubic Polynomial Equation for the Auxiliary Function 

Define the dimensionless auxiliary function F  as 
2 2

0F   . The following cubic polynomial can be obtained 

by substitution of the auxiliary F  into (139) and 

integration: 

 
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2

2 2 2 23 2
1 30 1 1 22 3 2 0

F
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s
(140) 

The integration constant 3B  in (140) is given by: 

4 2 2 4 2
3 11 1 1 1 1
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    (141) 

4.8.3. Elliptic function solution for the (0+2) cubic NLS 

The solution to the nonlinear ordinary differential 

equation in (140) is the Jacobian elliptic sine function sn , 

such that: 
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s
  (142) 

Dimensionless term ek  is the Jacobi modulus; 

dimensionless term eu  is the Jacobian elliptic angle; and 

1F , 2F , & 3F  are the three cubic roots when solving the 

nonlinear ODE given in (140) in terms of the coefficients 

0 , 0 , 1C , 2C , and 0B . Term 1C  is Kida’s [27] sliding 

speed coefficient; term 1D  is a constant of integration for 

elevation of the resultant vortex filament; and 1H  is Kida’s 

[27] translation speed coefficient. 

An extensive discussion is given in Ch. 6 of [28]       

for additional constraints imposed on the 1C , 1D , & 1H  

parameters for curve closure, periodicity, and knotting. 

4.8.4. Final Solution to Case 2 

The final solution of Case 2 for the velocity potential f  

of compressible flow in a fixed-to-body reference frame can 

be written in the following form: 
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  


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x

s
s

s ss (143) 

A subscript c  is listed with coordinates c , cs , ct , 

and torsion c  to remind us that they are being used under 

the assumption of a reference frame subjected to 

compressible flow conditions. Term v  in (143) is given by 

21
2

v M ;  vJ   is the Bessel function of the first kind, 

order v; 0  is the separation-of-variables integration 

constant evaluated in (136); arclength coordinate cs  is 

given in (90); transverse arclength coordinate b  is given in 

(91); torsion function   is given in (114); curvature 

function   is given in (142); reference torsion 0  is given 

in (134); and reference curvature 0  is given in (135). 

4.9. Summary of Case 2 

Authors since 1927 have solved the logarithmic density 

version of the (0+1) NLS using the Madelung transform and 

quantum hydrodynamics. However, a derivation of the  

(0+1) & (0+2) focusing cubic NLS equation from the 

Navier-Stokes equation using the Hasimoto transform and 

an aerodynamic body force is apparently new. The 

derivation presented here gives the exact expression for the 
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steady form of the cubic NLS that matches the curvature 

and torsion constraints derived from Riemann geometry for 

curved surfaces. 

Case 2 involves the transient, 3D, nonlinear, convected 

wave equation (64) in a fixed-to-body reference frame for a 

compressible fluid with constant coefficients expressed in 

cylindrical-polar coordinates for a source that is both rotating 

and translating. There are three reasons for presenting this 

problem: the first is to show that the (0+2) cubic NLS is 

embedded within the PDE of the original wave equation 

(after converting the partial derivatives b s  and bb ); the 

second is to show that the (0+1) cubic NLS is embedded 

within the PDE of the wave equation; and the third is to show 

that there is an analytically solution (143) to the wave 

equation (64). The conversion of the partial derivates b , 

b s , and bb  is based on the discovery of three new 

conservation form expressions (119), (120), & (121) for the 

curvature  , torsion   and wave function  . 

5. Discussion 

This article examines the derivation and solution of 

unsteady convected waves for compressible fluids using  

an analogous problem from aerodynamics. The take-away 

conclusion is that one is able to scale from the 

smallest-to-largest and slowest-to-fastest processes in the 

universe using Newton’s classical laws for fluids based on a 

system of absolute space and time coordinates. This is made 

possible by recognizing and retaining the effects of fluid 

compressibility that are intrinsically associated with the 

cross-derivative terms between space and time. The 

retention of the cross-derivatives makes the resultant 

convected nonlinear wave equations more difficult to solve. 

In compensation, it eliminates the artificial contradictions 

and mysticisms imposed with using elastic space-time 

coordinates when one insists on assuming incompressible 

flow conditions for in vacuo problems. 

This paper and the 2017 paper [1] don’t reject the 

scientific data obtained from 100 years of testing special 

relativity. What is presented here is a radically different 

physical interpretation of prior test results. Instead of 

interpreting the special relativity tests as proof-of-errors in 

ignoring the elasticity of relative space-time coordinates,  

it interprets prior tests as showing the error in dropping the 

nonlinear cross-derivatives from the convected wave 

equation that uses an absolute space and time coordinate 

system. 

It might seem to be argumentative to reject the classical 

understanding on why speed affects the measurement of 

distance but it actual goes to the heart of science: progress is 

made by challenging theories that one takes for granted and 

replacing it with an improved version, with each iteration 

bringing humanity closer to the truth. The unmasking of  

the cubic NLS and special relativity relationships within the 

compressible, convected wave equation for laminar flow 

offers proof in the value of challenging what one thought was 

totally understood for more than a century. 

6. Conclusions 

For the first time, an exact derivation of the (0+2) cubic 

NLS equation is obtained after combining the 3D 

Navier-Stokes equation, the Hasimoto transform, and an 

aerodynamic body force for induced velocity. Authors have 

previously derived a special logarithmic density version of 

the NLS using the Madelung transform and quantum 

hydrodynamics. However, the derivation given here results 

in an exact expression for the steady form of the (0+2) cubic 

NLS that matches the curvature and torsion constraints 

derived from Riemann geometry for curved surfaces. In 

addition, it is shown how special relativity expressions are 

obtainable within the steady-rotating source problem of the 

convected wave equation when written in cylindrical-polar 

coordinates and a non-inertial fixed-to-body reference frame. 

Nomenclature 

BF  Proportionality constant of body-force; 21 L  

  Circumferential Mach coefficient, 2
1 M     

z  Longitudinal Mach coefficient, 2
1z zM    

  Transformed coordinate time,  0t t V    ; L  

  Curvature of vortex centerline; 1 L  

0  Reference curvature for vortex centerline; 1 L  

0  Separation-of-variables integration constant 

BF  Potential of body force acting on fluid; 2 2L T  

v  Order of Bessel function of the first kind 

  Disturbed velocity potential  , , ,s z   for Case 1; 

2 aL T  

H  Steady-disturbed velocity potential  , , z   for 

Case 2; 2L T  

̂  Disturbed velocity potential  , , ,z t  ; 2L T  

  Velocity potential of undisturbed (freestream) fluid; 

2L T  

f  Total velocity potential of perturbed fluid, 

ff grad V ; 2L T  

  Wave function  ,bs  solution for Case 2 

  Complex conjugate of wave function 

  Angular rate of harmonic-oscillating source; 

radians T  

  Coordinate polar radius measured from central axis; 

L  

  Torsion of vortex centerline; 1 L  

0  Reference torsion for vortex centerline; 1 L  
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a  Polar-radius exponent coefficient 

b  Transverse arclength from vortex centerline; L  

c  Characteristic speed of undisturbed (freestream) fluid; 

L T  

0B  Integration constant used in PDE of cubic NLS; 21 L  

3B  Integration constant used in PDE of cubic NLS 

nvC  Integration coefficients for separation-of-variables 

term  R   

compC  Compressibility coefficient used in Case 2 

1C  Kida’s [27] sliding speed coefficient 

2C  Coefficient expressed in terms of coefficients 1C , 

1
D , 1

H  

1D  A constant of integration for elevation of the resultant 

vortex filament 

1H  Kida’s [27] translation speed coefficient 

F  Auxiliary function  ,bs  for NLS solution 

jF  Cubic roots to the auxiliary function F  

BFF  Body force per unit mass acting on fluid; 2L T  

BFH  Bernoulli function of disturbed fluid; 2 2L T  

LIAG  Coefficient of local induction; 2L T  

 vJ   Bessel function of the first kind, order v 

ek  Jacobi modulus 

fM  Total Mach number of a compressible fluid 

M  Circumferential Mach number component of fluid 

zM  Longitudinal Mach number component of fluid 

fp  Total pressure of disturbed fluid;  2M LT  

R  Separation-of-variable term    

S  Separation-of-variable term  s  used in Case 1 

s  Circumferential arclength about vortex centerline used 

in Case 1,  0s     ; L  

s  Circumferential arclength about vortex centerline used 

in Case 2; L  

T  Separation-of-variable term    used in Case 1 

0t  Reference coordinate time; T  

t  Coordinate time elapsed since reference time 0t ; T  

eu  Jacobian elliptic angles 

u  Steady-perturbation velocity  , , z   due to presence 

of a source; L T  

LIAu  Steady-induced velocity  , , z   generated by 

curved vortex; L T  

0U  Pseudo-speed coefficient used in Case 2 

v  Perturbation velocity  , , ,z t   due to presence of a 

source; L T  

LIAv  Induced velocity  , , ,z t   generated by curved 

vortex; L T  

fV  Relative velocity between source and fluid initially at 

rest; L T  

fV   Circumferential velocity component of 

compressible fluid; L T  

f zV  Longitudinal velocity component of compressible 

fluid; L T  

X  Separation-of-variable term  , ,s z   used in Case 1 

Z  Separation-of-variable term  z  used in Case 1 
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