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Abstract  This study shows that Einstein’s Special Theory of Relativity is not a complete theory of reality. The theory 
used non-uniform experiments; thus, its final conclusions are inconsistent with each other. The most obvious of these is the 
prediction of a positive correlation between mass and speed (mass increment). This allows the possibility for both the kinetic 
and potential energies of a system in motion to increase simultaneously (since the system gains mass and hence potential 
energy). On this grand, the study proposed a new theory (or provides corrections in Einstein’s theory). Then, these corrections 
were used to show that (1): Entangle particles exist in nature as a result of relative motion; (2): matter and wave are dual 
entity of each other, and (3): because of the law of conservation, space dilation is a valid consequence of relative motion just 
as time dilation is a valid consequence of relativity.  
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1. Introduction 
In attempting to judge the completeness of a physical 

theory, the following questions are necessary to be answered: 
“(1) are the predictions of the theory consistent with each 
other and with the objective reality?” and “(2) is the theory 
compactable with other existing theory(s)?”. Statement (1) is 
sufficient enough to prove that a theory is complete in its 
unique way (that is, such theory is compatible with itself or 
has a uniform conclusion). However, if (1) holds and (2) 
does not hold, it can be proven by theory or by experiment or 
measurement that at most one (but not both) of these theories 
is right. Although this may not be regarded as a 
comprehensive prove to decide the fate of a theory, but I 
regard it as a sufficient condition for completeness and this is 
in agreement with classical and quantum mechanics as well 
as with the Special and General Theory of Relativity. 

In examining Einstein’s relativistic mechanics, we see that 
the speed of a particle is directly related to its mass; however, 
this prediction contradicts our traditional thinking of matter 
and speed. Quantum and classical mechanics tell us     
that given particular energy content, systems at high   
speed will have less mass then those at rest. Thus, both 
theories (classical mechanics  and quantum mechanics) are  
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incompatible with special relativity. Then, either quantum 
and classical mechanics or special relativity can be 
considered an incomplete theory. 

By this observation, the objective of this study therefore is 
to prove that Einstein’s special theory of relativity (not 
quantum mechanics or classical mechanics) cannot be 
considered a complete theory of reality or at least the theory 
must be considered incomplete when applied to matter. To 
illustrate this idea, two of the most fundamental predictions 
of special relativity will be used to show that Einstein’s 
Theory leads to a non uniform conclusion and hence such 
theory, by statement (1) of our condition of completeness, is 
considered incomplete. 

The major concepts of this theory are frames of references 
and the description of some physical event by these frames in 
relative motion. Base on the descriptions of some physical 
event by these frames, an event can possibly be described in 
two different spacetime coordinate systems that are more or 
less symmetric (except the prediction of the so-called “twin 
paradox”). For the purpose of this study, the two obvious and 
simplest predictions for focus are: the predictions of length 
contraction and mass increment. 

Einstein’s theory of relativity describes the behaviors of 
particle of mass 𝒎𝒎 and length 𝑳𝑳 in spacetime with respect 
to two reference frames in relative motion. According to this 
theory, if an object of proper length 𝑳𝑳𝑳𝑳 moves with velocity 
𝒗𝒗 parallel to its length, the object’s length relative to the 
stationary observer will appear to reduce in the moving 
frame by the equation 

𝑳𝑳 = 𝑳𝑳𝒑𝒑�𝟏𝟏 −
𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
                 (1) 
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where 𝑳𝑳𝑳𝑳 is the recorded length in the rest frame, 𝑳𝑳 is the 
length in the moving frame and 𝒗𝒗 is the speed of the object. 

According to Eq. (1), if the speed of the object increases, 
its length decreases; thus, there is an inverse relationship 
between the length and speed of the object. This decrease in 
length is limited by the velocity of light (that is, at 𝑣𝑣 = 𝑐𝑐, 𝐿𝐿 =
0). Therefore, if the speed of the particle reaches that of light, 
its length in the moving frame becomes zero with respect to 
the stationary observer. 

On the other hand, to a stationary frame of reference, if an 
object of mass 𝒎𝒎𝒐𝒐  moves with speed 𝒗𝒗, the mass of the 
object increases with increased speed by the equation 

𝒎𝒎 = 𝒎𝒎𝒐𝒐

�𝟏𝟏−𝒗𝒗
𝟐𝟐

𝒄𝒄𝟐𝟐

                  (2) 

Where we consider 𝒎𝒎𝒐𝒐 to be the mass of the object at rest 
and 𝒎𝒎 is the mass of the same object at a speed 𝒗𝒗, the speed 
of the particle. By this equation, as the object moves through 
space with a speed near that of light, its mass increases (at the 
speed of light, the system has an infinite mass and energy). 
Equations (1) and (2) can best be understood from the works 
of (Tiple P. A and Llewellyn, 2008 [1], Resnick. R, 1968 [2], 
Bohm D, 1965 [3], Katz. R, 2008 [4], Cutnell J. D and 
Johnson K. W, 2009 [5], Serway R. A and Beichner, 2000 
[6], Miller Jr. F, 1999 [7], Einstein A (1905) [8,9] Hamdan 
and Hariri, 2007 [10] and Peliti L, 2016 [11] and Sears, 
Zemansky and Young, 1985 [12]. 

It shall now be proven; however, that Equations (1) and (2) 
together lead to an inconsistent conclusion. Thus, both 
equations cannot be accurate simultaneously when applied to 
matter as concluded by Einstein’s Relativity (the conclusion 
of the theory is thus non-uniform). 

2. Method and Date 
For this purpose, let us perform an experiment that must 

be viewed by two observers, one assumed to be at rest and 
the other in motion with a speed 𝒗𝒗. Suppose we consider an 
ordinary rectangular metal rod of mass 𝒎𝒎 and length 𝑳𝑳, then, 
by the help of Einstein’s relativistic mechanics, we can 
calculate the length and mass of such rod with respect to a 
stationary observer by equations (1) and (2) and hence its 
mass-density. Then if both equations are correct as it is 
expected, they must lead to a conclusion consistent both with 
the objective reality and the theory itself. 

Einstein’s Relativity allows us to measure the density of 
the object at any speed, since we are able to determine the 
mass and volume of the object even if the object is 
accelerating. Thus, for our experiment, suppose we seek to 
find the mass-density (or the relativistic mass-density) of the 
metal rod moving with a velocity 𝑣𝑣 with respect to the 
stationary observer; then, we can write 

𝝆𝝆 = 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

                     (3) 

Where 𝝆𝝆 is the density of the object at the speed 𝒗𝒗 with 
its mass given by equation (2). To get a clearer picture of the 
relationship between mass and volume, we can rearrange 

equation (3) as 
𝒅𝒅𝒅𝒅 = 𝝆𝝆 ∙ 𝒅𝒅𝒅𝒅                (4) 

Thus, by equation (4), the mass of the rod depends directly 
on its volume. Now, suppose that the volume of this rod 
depends on the length element as 

𝒅𝒅𝒅𝒅 = 𝑨𝑨 ∙ 𝒅𝒅𝒅𝒅                     (5) 
Where 𝑨𝑨  is the surface area of the rod and 𝒅𝒅𝒅𝒅 is the 

length element. 
Now, suppose the length, according to Einstein’s relativity 

is given by equation (1); then, by equation (5), the volume of 
the rod must decrease as its length decreases. But the mass of 
the metal rod depends on the volume by equation (4); thus as 
the length of the rod decreases, its mass also decreases. Then, 
equation (1) and (2) cannot both be true simultaneously. If 
equation (4) holds, then equations (1) and (2) are said to be 
incompatible (the conclusion of special relativity is therefore 
inconsistent). By the above analysis, Einstein’s special 
relativity cannot simply be a precise description of reality or 
at least the theory is considered incomplete. 

To further support the conclusion of the above experiment, 
let us consider another inconsistency of this theory with itself. 
Einstein’s special theory of relativity- with its prediction of 
time dilation- tells us that the motion of particles through 
space affects the passage of time, thus allowing a more refine 
description of physical events by the merging of space and 
time into a single entity called spacetime. 

However, in a universe where the law of conservation 
holds, if space and time must be merged together; then, any 
complete theory under this constraint must be able to account 
for the effect of time dilation of certain physical event in one 
reference frame on the space-like description of the same 
physical event in the other frame of reference with which it is 
compare (that is, we define time in terms of space and 
assume that the law of conservation holds for them in the 
universe). Then, if we must accept time dilation as a valid 
effect on one frame in relative motion, a more objective 
description that reserves the laws of conservation should be 
that such effect as time dilation in one frame leads to either 
space dilation or increment in one of the other frame. 
Einstein’s theory of relativity provides no explanation for 
such prediction; thus, if the universe must obey the physical 
laws of conservation, one is justified to reject the prediction 
of time dilation or the theory be regarded as an incomplete 
description of reality. 

Let us now consider the incompatibility of special 
relativity with other theories, precisely classical and 
quantum mechanics. Quantum mechanics tells us that 
heating an atom causes the electron to absorb energy (kinetic 
energy in the form of heat energy) and jump to higher energy 
level. Then, by the laws of electrodynamics and gravitation, 
as the electron moves to higher energy level, the electrostatic 
and gravitational forces must be reduced. However, 
Einstein’s special theory of relativity tells us that as the 
electron obtains more kinetic energy and move with higher 
speed, it should become more massive over time by eq (2). 
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Thus, the gravitational and electrostatic forces will get 
stronger as the mass of the agitated electrons increase (the 
charge and mass of the electron are directly related); at high 
speed, one would then expect the electron to move to lower 
energy level rather than higher energy level, since the forces 
depend directly on the mass and charge of the electrons. By 
the later requirement, all matter will seize to exist at high 
kinetic energy. 

Furthermore, consider the relativistic form of the 
Schrödinger wave equation (the Klein-Gordon form of the 
Schrödinger equation) for a single electron inside a box of 
infinite potential wall (Srednicki. M (2016) [13]) 

−ћ𝟐𝟐 𝝏𝝏𝟐𝟐

𝝏𝝏𝒕𝒕𝟐𝟐
𝝍𝝍(𝑿𝑿, 𝒕𝒕) = (−ћ𝟐𝟐𝒄𝒄𝟐𝟐𝛁𝛁𝟐𝟐 + 𝒎𝒎𝟐𝟐𝒄𝒄𝟒𝟒)𝝍𝝍(𝑿𝑿, 𝒕𝒕)  (6) 

Where 𝜓𝜓(𝑋𝑋, 𝑡𝑡) is the wave function that describes the 
state of the system. 

Now, suppose the mass (𝒎𝒎) of the particle depends on its 
speed in the box; then, relativistically, 𝒎𝒎 can be given by eq 
(2). But quantum mechanics tells us that as the speed of the 
particle increases, its potential energy is consider zero; thus, 
at 𝑣𝑣 = 𝑐𝑐, eq. (6) reduces to 

−ћ𝟐𝟐 𝝏𝝏𝟐𝟐

𝝏𝝏𝒕𝒕𝟐𝟐
𝝍𝝍(𝑿𝑿, 𝒕𝒕) = −ћ𝟐𝟐𝒄𝒄𝟐𝟐𝛁𝛁𝟐𝟐𝝍𝝍(𝑿𝑿, 𝒕𝒕)         (7) 

Returning again to the prediction of Special relativity, we 
see that the potential energy term of the system will be 
non-zero as the speed approaches the speed of light 

𝑉𝑉(𝑥𝑥, 𝑡𝑡) = 𝒎𝒎𝟐𝟐𝒄𝒄𝟒𝟒 ≠ 𝟎𝟎               (8) 
Since the potential energy (which in special relativity, it 

is considered the system’s rest energy) depends on the mass 
of the particle and the wave function describes the position 
of the particle. The quantum mechanical prediction for the 
particle’s mass is consistent with classical mechanics; thus, 
special relativity is incompatible with quantum and classical 
mechanics- both theories (quantum mechanics and special 
relativity) cannot simultaneously be valid. 

However, by first sight, one is not certain which theory is 
right or wrong unless we find a way to prove that either 
special relativity or quantum mechanics is incomplete. But 
every complete theory must have a uniform conclusion 
(condition for completeness); special relativity lacks this 
property thus, Einstein’s theory (rather than quantum 
mechanics) is incomplete. 

3. Result 
It has been established by the arguments above that special 

relativity is an incomplete theory due to the fact that it is 
inconsistent with classical and quantum mechanical 
arguments and with itself for the non-uniform conclusion 
about particle of matter as seen from the conflicting 
predictions of length contraction and mass increment. One 
may think that the classical definition of density as being 
used is not sufficient evidence to validate the predictions of 
special relativity; indeed one may think that classical 
mechanics cannot be used to validate special relativity due to 

the fact that they are two separate theories. 
However, physics must be uniform and special relativity is 

only a description of classical mechanics at high speed 
(relativistic speed) not a mare contradiction; thus, they must 
lead to a consistent conclusion (the density of the object must 
be defined by eq. (4) whether classically or relativistically). 
Again, one may reject this conclusion on grand that the 
criterion for completeness as used by the study is insufficient. 
On this grand, it must be necessary to consider nature itself to 
substantiate the claim that special relativity is an incomplete 
theory or an inferior description of reality. The following 
reality of nature is presented below to justify the claim that 
Einstein’s theory of special relativity is not a valid theory of 
reality as it has been accepted. 

In order to prove that Special relativity is an inferior 
description of reality (using nature itself), consider what 
happens in the creation of black holes. Star light is 
produced by nuclear fusion reactions that begin with a 
proton –neutron bound state producing deuterium (Ryder. L 
(2009) [14] and Gron. O & Hervik. S) [15]. These reactions 
are exothermic and at each state there is a mass defect at the 
right of the thermonuclear equation which appears as an 
electromagnetic radiation to produce the star light. This 
means that the star always appears lighter at the end of 
every fusion reaction since electromagnetic radiation is 
mass-less. The radiation pressure exerted by the photon’s 
energy serves as a balance to keep the star in an equilibrium 
position from the inward pull of gravity on its spacetime 
fabric. 

However, as the chain reaction continues, it gives rise to 
iron nuclei which on average have high binding energy per 
mass, Ryder. L (2009) [14]. This causes the fusion reaction 
to become endothermic. Then, as the star cools, the 
additional mass stored as electromagnetic energy-due to 
high speed (or high kinetic energy) of the particles- slows 
down and becomes converted to mass. 

As a result, the star becomes heavier with decrease in 
temperature (the speed of the particles making up the star is 
a function of temperature). This causes the gravitational 
equilibrium to break down at the Chandrasekhar mass limit 
resulting to a gravitational collapse “a black hole”. 
However, according to Einstein’s mass increment 
prediction of special relativity, a reverse situation is 
expected to occur; gravitational collapse should occur at 
high kinetic energy (exothermic state), since the particles 
making up the star must be more massive at high 
temperature than at low temperature or low kinetic energy. 
Einstein’s relativity thus provides an invalid argument. 

The conclusion then is that Einstein’s Special Theory of 
Relativity is an incomplete theory of reality. There must be 
a better theory that must fully explain reality and unite 
physics. This can be done by replacing Einstein’s inferior 
description of reality by a more general and objective 
theory. The second goal of this work is therefore to provide 
alternative predictions to replace Einstein’s special theory 
of relativity which is now presented in the rest of the work. 



70 Nelson Blackie:  Can Einstein’s Special Theory of Relativity be Considered an Accurate Description of Reality?  
 

 

4. Discussion 
To establish a new theory or explanation of special 

relativity, it is sufficiently necessary to first show that the 
fundamental analysis on which Einstein’s Special Relativity 
is built is not uniform. This can also be supported further by 
looking at the work of Denci (2016) [16]. Then, the result 
of this exercise will be used to re-explain the principle of 
relativity. I will now show this non-uniformity by 
considering two though experiments from Einstein’s 
relativity which are assumed to be equivalent by Einstein’s 
Theory: 

In experiment 1 (E1), there are two frames S and S’. 
Suppose a segment of wire is at rest in S and carries a 
current in the positive x direction, Serway and Beichner 
(2000) [6]. An observer in this frame concludes that the 
negative test charges are moving to the right with a speed v 
that causes the current to flow in this direction. This 
observer sees an electrostatic field in which positive test 
charges are at rest and a corresponding magnetic field in 
which the negative test charges are moving to the right. 

Suppose that another frame S’ is moving relative to S and 
of course with the current wire at a speed “v” in the 
negative x direction. By Einstein’s relativity, the observer in 
S’ will see that a current is produce not due to the motion of 
a negative test charges but rather due to the motion of the 
positive charges to the left (in the negative x direction). 
Thus, what was considered an electrostatic field and a 
corresponding magnetic field in S will now be considered a 
magnetic field and a corresponding electrostatic field in S’. 
The Lorentz transformation then allows us to give an 
equivalent form of this analysis in both frames. 

Now, suppose we seek to describe this event with respect 
to a single frame, say S; we know from above that this 
observer only sees a moving negative charges to the right 
(that is, this observer believes that the positive test charges 
are at rest). Now, what is the speed of these negative test 
charges in the moving frame S’ as judged by S? That is, 
since only negative test charges are moving with respect to 
S, how does this observer (S) finds the speed of these 
charges in the moving frame (since S does not see a positive 
test charge in motion)? We see that the Lorentz 
transformation does not answer this question and Einstein’s 
special relativity provides no explanation in this case. 

Now, consider the second experiment (E2) called 
Einstein’s length contraction Experiment. Suppose two 
observers, S at rest on the earth and S’ in a spaceship moving 
with a velocity 𝒗𝒗 relative to the earth and therefore to S. 
Now, consider an unknown particle traveling in space from a 
point 𝑷𝑷𝟏𝟏  to another point  𝑷𝑷𝟐𝟐 ; Miller Jr. F (1999) [7], 
Serway & Beichner (2000) [6], Tippler and Llewellyn (2008) 
[1], Cutnell & Johnson (2009) [5] and Sears, Zemansky and 
Young, 1985 [12]. What is the distance between the two 
points? To answer this question, observer S sees that he is 
stationary with respect to the moving frame and the particle; 
thus, if the particle is moving with the speed of light, he finds 
that the distance between the points (or the distance covered 

by the particle) is 
𝑳𝑳𝒑𝒑 = 𝒄𝒄𝒕𝒕𝒐𝒐,                  (9) 

Where 𝒕𝒕𝒐𝒐 is the time with respect to S and 𝑳𝑳𝒑𝒑 is the 
distance/ length recorded by S called the proper length. 
Then, by symmetry, we see that S’ believes that he is at rest 
with respect to the particle; thus, the distance between the 
two points in S’ frame is given by eq (9) (both observer 
believe that they are stationary so their length is unaffected 
by relative motion). 

Now, suppose again that we seek to describe this event 
with respect to one of the frames, say S, what will be the 
length between the two points in the moving frame S’ as 
judged by S? This question is then equivalent to the 
unanswered question in experiment 1. However, to answer 
this question, we see that observer S assumes to be at rest 
while S’ is in motion (Resnick. R (1968) [2], Bohm. D 
(1965) [3], Miller Jr. (1999) [7], Serway & Beichner (2000) 
[6], Cutnell & Johnson (2009) [5], Tipler & Llewellyn 
(2008) [1] and Sears, Zemansky and Young, 1985 [12]; this 
observer S will then see that relative motion with affect the 
distance between the two points in S’. That is, S sees that S’ 
is moving with a speed v; thus, he finds that relative motion 
causes a time dilation in S’ frame given by 

𝒕𝒕 = 𝒕𝒕𝒐𝒐�𝟏𝟏 −
𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
                (10) 

Thus, using the same valid law of physics, S finds that 
the distance between the two points in S’ is reduced given 
by eq. (1) as judged by observer S. 

Experiments 1 and 2 are not equivalently analyze because, 
in Experiment 1 the description of the event is done 
independently (no observer describes the event for his 
friend), while in E2, the description in one frame is done 
relative to the other (that is, a single observer describes the 
event in both frames of reference with respect to himself). 

Now, suppose we determine the speed of the negative test 
charges in S’ relative to S using similar analysis in E2, we 
see that S’ will have a time dilation effect in his frame 
which will change his speed; Lorentz transformation 
equations will not be valid under such analysis. It is then 
proven that the fundamental analysis and hence the 
conclusion of special relativity is not uniform by the 
argument above. 

4.1. Review of the Michelson-Morley Experiment and 
the Classical Relativity Theory 

To build a new theory or give a correct explanation for 
Einstein’s special relativity, we provide a more uniform 
analysis to describe all events in spacetime by observers in 
relative motion. But describing an event in one frame for 
the other implies a paradox; therefore, this paper will 
establish a new theory of relativity from a paradoxical 
perspective to replace Einstein’s semi-paradoxical theory of 
special relativity. To do this, a Galilean interpretation for 
the Michelson-Morley experiment will be given and the 
result will be used to establish that even light can obey a 
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modified Galilean speed transformation. This will be done 
by considering though physical experiments from the 
viewpoint of classical relativity and later be extended to 
Einstein’s relativity as follow: 

According to Galilean Relativity, if two initial frames of 
references (S and S’) are in relative motion; then, for a frame 
𝑺𝑺′ moving relative to another frame 𝑺𝑺 with speed 𝒖𝒖, the 
Galilean transformation of velocity that reserves Newton’s 
laws of mechanics in both frames is 𝒗𝒗 = 𝒖𝒖 ± 𝒘𝒘 relative to 
the stationary frame. But suppose an observer in a frame 
(𝑺𝑺’  for example) wants to record the velocity of an object 
by his own specetime coordinate, what is the speed of the 
particle in this frame? In other words, does the Galilean 
transformation equation holds for an experiment conducted 
by an observer in his own frame? 

To answer this question, let us imagine some physical 
experiment in which there are two observers, one being 
stationary and the other on a moving train. Let us assume 
that the train is moving westward with a speed 𝒖𝒖 past a 
stationary observer. Now, suppose that a wind is blowing 
eastward with a speed 𝒘𝒘 relative to the stationary observer. 
By Galilean Relativity, the stationary observer will measure 
the train’s speed to be 

𝒗𝒗 = 𝒖𝒖 −𝒘𝒘                 (11) 
in the west direction, since it travels against the wind. For 
an eastward travel and assuming constant velocity, a reverse 
situation 

𝒗𝒗 = 𝒖𝒖 + 𝒘𝒘                (12) 
is obtained. 

By Galilean relativity, there is a decrease in speed in the 
west direction and a corresponding increase in the eastward 
direction due to the blowing wind in one direction (to the 
east in this case). But again, what is the speed of the moving 
train with respect to itself in either directions, or what is the 
speed of the train with respect to the observer who is on 
board in the train? By Galilean relativity, this observer will 
not be able to notice a change in his train’s speed in both 
directions (he will not be able to feel the effect of the wind 
on his speed). In other words, the object’s speed will not be 
affected by relative motion since this observer is considered 
to be stationary with respect to the object in his own frame; 
thus, he will record the speed of the train in both directions 
to be  𝒖𝒖 . Galilean Relativity therefore implies that no 
transformation equation can be valid for an observer 
measuring his own speed because there is no influence of 
relative motion with respect to this observer. Thus, it can be 
postulated that no mechanical event or experiment is 
affected by relative motion if the event is described by an 
observer in his own frame. Galilean transformation 
equations are then applicable only when comparing physics 
in one reference frame relative to another. 

Now, consider the same experiment above performed in a 
uniform still wind (by the phrase “uniform still wind”, It 
means a region in which the wind blows in all directions 
with equal speed or appears to not blow at all). For the same 
train moving again in the west and east directions, it will 

experience the same magnitude of inertia force in either of 
these directions as judged by the stationary observer. Thus, 
this stationary observer will measure equal speed for the 
train’s motion in both directions. Galilean Relativity then 
produces a null result for the case of the uniform still wind, 
since any stationary observer will not be able to notice a 
change of velocity of the train in both directions at least if 
the experiment were performed in a still wind. We now 
compare this result to the Michelson- Morley experiment to 
consider the relativistic speed limit (the speed of light). 

Consider the Michelson- Morley experiment- (Miller Jr. 
F, 1999 [7]; Tipler and Llewellyn, 2008 [1]; Serway and 
Beichner, 2000 [6]; Resnick. R, 1968 [2], Bohm 1965 [3]; 
Cutnell & Johnson, 2009 [5] and Sears, Zemansky and 
Young, 1985 [12] - in which the earth moves through space 
(the ether) with speed 𝒗𝒗. An ether wind is expected to blow 
past the earth in an opposite direction at the same speed 
with which the earth moves relative to space (the ether). 
This speed can be considered “the inertia force” at least in 
the case of this experiment. Then, if 𝒗𝒗 is the speed of the 
Ether wind relative to earth, a light beam is expected to 
have a maximum and a minimum velocities of 𝒄𝒄 ± 𝒗𝒗  in 
view of the Galilean Relativity ( if we assume that the ether 
is not uniformly still). However, if we assume that space (or 
the ether) is uniformly still in all directions, then an object 
moving through it will experience an equal inertia force in 
any direction of its motion. Then, for a beam of light as in 
the case of the experiment above, the light will have equal 
speed in both directions relative to a stationary observer on 
earth; the speed of the light with respect to the ether is 
therefore the same as that relative to the earth; a null result 
is then produced for still ether. 

Thus, the null result of the Michelson-Morley experiment 
is fundamentally not because light violates the Galilean 
speed transformation, but rather as a result of the fact that 
space (or the ether wind) itself is still or uniform in all 
directions; thus, the only absolute velocity of the earth 
relative to space (the ether) is the one observed. For an 
experimenter wanting to detect a small change in the light’s 
speed, the result will always be null (the beam will 
experience equal opposing force in any direction). If we 
consider space as the ether itself and assume a homogenous 
universe, then we can conclude that the expansion of the 
universe must be homogenous. A general proof that the 
speed of light is affected by relative motion (it is not 
absolute when comparing two frames in relative motion) 
can be given by the experiment below. 

Consider the physical experiment with two frames of 
references: 𝑨𝑨 being stationary while 𝑩𝑩 is moving in the 
positive 𝒙𝒙 direction with a speed 𝒗𝒗 (Miller Jr. F; 1999 [7] 
and Sears, Zemansky and Young 1985 [12]). The two 
observers have a solar-light and the goal of the experiment 
is to measure the distance traveled by a light pulse after 
emission at some finite time (t) by both observers. But first, 
let us assume that the two observers are at the same point in 
space. Now, after 1 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, the pulse of light emitted 
from 𝑨𝑨 travels a distance of about 0.3𝑚𝑚 and has reached 
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a point 𝒙𝒙 as shown in figure 1(a) below. 

 

Figure 1a 

 

Figure 1b 

However, after  1 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑩𝑩  has moved 
𝑣𝑣𝑣𝑣 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 to the right (figure 1b) and his position is now B’; 
so the light reaches some point 𝒚𝒚′instead of 𝒚𝒚. From 𝑩𝑩′𝒔𝒔 
point of view, the light has a speed of 𝟑𝟑 × 𝟏𝟏𝟏𝟏𝟖𝟖𝒎𝒎/𝒔𝒔 and 
has traveled a distance of about 0.3𝑚𝑚 in one nanosecond 
which is just point 𝒚𝒚’. Thus, both observers will measure 
the actual speed of the light if they view the event in their 
own frame (there will be no effect of relative motion on 
both frame in an independent conclusion). 

However, if we describe the event only in A’s spacetime 
coordinate, we see a contradiction. This observer sees the 
position of the light pulse in B’s frame at the point y’ 
instead of y, thus, he concludes that the motion of B gives 
the light an extra push, thus the speed of the light must be 
greater than 𝒄𝒄  in B relative to A. This is however 
symmetric because, as 𝑩𝑩 look at the light position at the 
point x which is just y instead of y’, he concludes that A is 
moving to the left thus his motion is giving an extra push to 
the light speed. 

Analyzing separately, we see that independently both 
observer will agree with the measured speed of light in their 
own frames. However, if we describe the event with respect 
to a single observer, we see that if this observer looks at the 
light pulse in his friend’s frame, he sees a small push of 
velocity 𝒄𝒄 + 𝒗𝒗  relative to this observer. In Galilean 
Relativity, there is no preferred frame, so the speed of light 
can be measured in any frame and produce the same value 
independently of the other. We then find that the two 
observers can independently agree with the right speed of 
their light pulse to be 𝒄𝒄 in their own frames (Lorentz 
transformation), but when comparing their measurements 
with each other in relative motion, they do not agree with 
the observed speed of the light pulse (they see that the 
speed of the light is affected by the relative motion of each 
observer). The Galilean transformation of velocity therefore 
produces a “consistent” argument in the case of the light’s 
speed relative to both observers; the Lorentz transformation 
equations are therefore inapplicable if we view the event in 
one coordinate system. 

4.2. Review of Einstein’s Relativity and the Consequence 
of Simultaneity 

What is the source of the difference in the light speed as 
observed by observer A for observer B in the experiment 
above? Observer A sees that the distance travel by the light 

in B’s frame is greater than his. Now, suppose A uses his 
light speed (which is c with respect to him) and the distance 
travel in B’s frame, he finds that B’s time is greater than his. 
A then conclude that the events where not simultaneous. 
Galilean relativity is then incorrect on its time-like 
coordinate (𝑡𝑡 ≠ 𝑡𝑡′). Then, if we impose the concept of 
simultaneity at the beginning and the end of the event (that 
the two events begin and end at the same time), then, we 
can conclude that the reference clock in A reads faster than 
the reference clock in B (time goes faster with respect to A 
then with respect to B); Einstein’s time dilation effect is 
then valid. 

Now, accepting Einstein’s time dilation as valid, we see 
that observer A measures a shorter time (time dilation) and 
a longer distance (length increment) for observer B. Then, if 
A measures a longer distance in B’s frame, he concludes 
that there is space dilation in his own frame (his distance is 
shorter than B’s) and a corresponding time increment (he 
measures a longer time interval in his own frame than B). 
Thus, if the event is described only with respect to a single 
observer, we find a paradox (either the space or time 
coordinate of each observer experiences a reduction or 
dilation). 

Then, since there is no absolute frame of reference and 
each observer can measure the speed of his light to be 𝒄𝒄 
independently, the following postulates can be stated: (1), 
there is no absolute reference frame in relativity (both 
classical and special relativity) and all the laws of physics 
including those of electrodynamics and mechanics must be 
valid in each frame INDEPENDENTLY and (2), time 
duration between events is not absolute in any reference 
frame in relative motion with some other initial frames and 
no single frame can have an effect of dilation (or reduction) 
in both its time-like and space-like coordinates 
simultaneously. In order words, length contraction (length or 
space dilation) must lead to time stretch (time increment) and 
vice versa. 

4.3. Galilean-Lorentz Transformation Equations    
(The Classical and Relativistic Transformation) 

In the experiment above, we see that the concept of 
simultaneity breaks down resulting to space dilation in one 
frame of reference and a corresponding time dilation in the 
other frame in relative motion. The laws of conservation of 
space and time then hold in the above analysis. Einstein’s 
relativity provides no explanation for such prediction. We 
now investigate the consequence of the stated postulates on 
the Lorentz transformation equations and use the result to 
derive a new transformation laws. 

The first postulate remains consistent with the postulate of 
Einstein’s theory of special relativity except for the strong 
use of the word “independently” which means that in a 
separate analysis of any spacetime event, both observers will 
agree with their results in their own frame (there will be no 
effect of relative motion on each analysis); Lorentz 
transformation would be valid. The second postulate implies 
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that the only valid spacetime transformation equation of an 
event in any frame (if described by a single observer) is one 
that allows a dilation of a single coordinate (either space 
dilation or time dilation but not both effects simultaneously). 

The second postulate then demands that the Lorentz 
spacetime transformation be modified in the case of 
dependent (or paradoxical) analysis, since it allows a single 
frame of reference to have a dilation or increment in both its 
space and time coordinate simultaneously (as seeing by a 
plus sign in both space and time axis in one frame and a 
corresponding minus sign for the other frame). Then, for an 
arbitrary event in a Minkowski spacetime, these 
transformations will then reduce to a modified Galilean 
speed transformation equation for the event. 

Consider a spacetime experiment in which there are two 
reference frames called S and S’. Now, let 𝑺𝑺 be some 
stationary frame and 𝑺𝑺’  be moving relative to S in the 
positive x-direction with a relative velocity (v) as shown in 
figure 2 below: 

 

Figure 2 

We assume that the prime and unprimed y and z 
coordinates of both observers are parallel to each other; thus, 
there is no relative motion on these axes. Therefore, these 
coordinates are reserve: y = y’ and z = z’. 

However, because the relative velocity of the frames is on 
the x-axis with respect to time, the time and x coordinates of 
both observers changed. Also, it was proven that the concept 
of simultaneity brakes done for observers in relative motion 
as opposed to the Galilean analysis; thus time dilation is 
valid; thus, it is obvious to show that the time coordinate can 
be represented by its Lorentz form, Denci. V, 2016 [16]. Our 
goal is therefore to correct the space like coordinates to 
include Space dilation in the transformation; these 
transformations will then be named the Galilean-Lorentz 
transformation, since it reduces to a modified Galilean 
velocity transformation equations. 

To establish these transformation laws we reinforce the 
first postulate of relativity, which states that everyone is right 
in his own frame independently. Thus, in describing the 
spacetime event above, we must analyze the situation so that 
no frame interferes with his friend’s analysis (every frame is 
free to speak). Therefore, by employing this method, we see 
that an observation made by A for example, must be viewed 
and described as it appears in A’s frame of reference. This is 
thus the reinforcement of postulate (1) which shall be named 
the “principle of correspondence: the space-time description 

of an event is independent for every observer. This means 
that if an event occurs at some point in space, it should be 
viewed or described as it appears to the observer describing it 
with no interference (or predictions) of any external observer 
out of that frame. 

Applying this principle, we see that B has a time dilation 
effect with respect to observer A because according to A, B’s 
clock is running slower; thus, A concludes that B’s time is 
reduced given by the Lorentz time transformation equation 

𝒕𝒕’ = 𝒚𝒚(𝒕𝒕 − 𝒗𝒗𝒗𝒗
𝒄𝒄𝟐𝟐

)                (13) 

With inverse 

𝒕𝒕 = 𝒚𝒚(𝒕𝒕′ + 𝒗𝒗𝒙𝒙′

𝒄𝒄𝟐𝟐
)                (14) 

Also, A sees that the event has occur, B has move a 
distance 𝒗𝒗𝒗𝒗-units away from his initial position. If the two 
coordinates system coincide at t = t’= 0; then, B’s final 
position after t seconds (with respect to A) is just the position 
of A (which is consider to be fixed at the origin) plus the 
additional 𝒗𝒗𝒗𝒗 units travelled by B after t seconds; that is, 

𝒙𝒙’ = 𝒚𝒚(𝒙𝒙 + 𝒗𝒗𝒗𝒗)                (15) 
With inverse 

𝒙𝒙 = 𝒚𝒚(𝒙𝒙′ − 𝒗𝒗𝒗𝒗′)             (16) 
Therefore, A’s set of transformation equations and their 

inverses are given as 
𝑺𝑺 → 𝑺𝑺′                       𝑺𝑺′ → 𝑺𝑺 
𝒚𝒚′ = 𝒚𝒚                      𝒚𝒚 = 𝒚𝒚′ 
𝒛𝒛′ = 𝒛𝒛                      𝒛𝒛′ = 𝒛𝒛 
𝒕𝒕′ = 𝒚𝒚(𝒕𝒕 − 𝒗𝒗𝒗𝒗/𝒄𝒄𝟐𝟐)         𝒕𝒕 = 𝒚𝒚(𝒕𝒕′ + 𝒗𝒗𝒙𝒙′/𝒄𝒄𝟐𝟐) 
𝒙𝒙′ = 𝒚𝒚(𝒙𝒙 + 𝒗𝒗𝒗𝒗)              𝒙𝒙 = 𝒚𝒚(𝒙𝒙′ − 𝒗𝒗𝒗𝒗′) 
Symmetrically, the same result can be produce with 

respect to B’s. In this case, B believes that he is stationary 
and A is moving westward; hence, A has a time dilation 
effect in his frame; thus, B concludes that A’s time interval is 
given as 

𝒕𝒕 = 𝒚𝒚(𝒕𝒕’ −  𝒗𝒗𝒗𝒗’/𝒄𝒄𝟐𝟐)               (17) 
B also argues that A has move 𝒗𝒗𝒗𝒗’ units away so, A is now 

at the point  𝒗𝒗𝒗𝒗’ units away from him (B) given as 
𝒙𝒙 = 𝒚𝒚(𝒙𝒙’ +  𝒗𝒗𝒗𝒗’).              (18) 

And consistently, the transformation equations with 
respect to B’s analysis becomes 
𝑺𝑺′ → 𝑺𝑺                       𝑺𝑺 → 𝑺𝑺′ 
𝒚𝒚 = 𝒚𝒚′                      𝒚𝒚′ = 𝒚𝒚 
𝒛𝒛 = 𝒛𝒛′                        𝒛𝒛′ = 𝒛𝒛 
𝒕𝒕 = 𝒚𝒚(𝒕𝒕′ − 𝒗𝒗𝒙𝒙′/𝒄𝒄𝟐𝟐)             𝒕𝒕′ = 𝒚𝒚(𝒕𝒕 + 𝒗𝒗𝒗𝒗/𝒄𝒄𝟐𝟐) 
𝒙𝒙 = 𝒚𝒚(𝒙𝒙′ + 𝒗𝒗𝒗𝒗′)            𝒙𝒙′ = 𝒚𝒚(𝒙𝒙 − 𝒗𝒗𝒗𝒗) 
These are thus the modified Lorentz transformation (the 

Galilean-Lorentz transformation). The valid Galilean speed 
transformation equation can then be derived using the results 
above. For the purpose of this study, this will be done with 
respect to a single observer (A); it can be shown that B’s 
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frame yields the same result. 
With respect to A, the velocity of any moving particle in 

his frame (along the positive  𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  for simplicity) is 
given as 

𝒖𝒖𝒙𝒙 = 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

                 (19) 

We now express eqns. (14) and (16), in differential forms 
as 

𝒅𝒅𝒅𝒅 = 𝒚𝒚(𝒅𝒅𝒙𝒙′ − 𝒗𝒗𝒗𝒗𝒕𝒕′)           (20) 
And 

𝒅𝒅𝒅𝒅 = 𝒚𝒚(𝒅𝒅𝒕𝒕′ + 𝒗𝒗𝒗𝒗𝒗𝒗′
𝒄𝒄𝟐𝟐

)            (21) 

Substituting (20) and (21) into (19) yields 

𝒖𝒖𝒙𝒙 = 𝒚𝒚(𝒅𝒅𝒙𝒙′−𝒗𝒗𝒗𝒗𝒗𝒗′)

𝒚𝒚(𝒅𝒅𝒕𝒕′+𝒗𝒗𝒗𝒗𝒗𝒗′
𝒄𝒄𝟐𝟐

)
 

Canceling the common 𝒚𝒚 term, we have 

𝒖𝒖𝒙𝒙 =
𝒅𝒅𝒙𝒙′ − 𝒗𝒗𝒗𝒗𝒗𝒗′

𝒅𝒅𝒕𝒕′ + 𝒗𝒗𝒗𝒗𝒗𝒗′
𝒄𝒄𝟐𝟐

 

Dividing through by  𝒅𝒅𝒅𝒅′, we have 

𝒖𝒖𝒙𝒙 =
𝒅𝒅𝒅𝒅′
𝒅𝒅𝒅𝒅′ − 𝒗𝒗𝒅𝒅𝒅𝒅′𝒅𝒅𝒅𝒅′

𝒅𝒅𝒅𝒅′
𝒅𝒅𝒅𝒅′ +

𝒗𝒗𝒅𝒅𝒅𝒅′𝒅𝒅𝒅𝒅′
𝒄𝒄𝟐𝟐

; 

Recognizing 𝒅𝒅𝒅𝒅′
𝒅𝒅𝒅𝒅′

= 𝒖𝒖𝒙𝒙′, we have 

𝒖𝒖𝒙𝒙 = 𝒖𝒖𝒙𝒙′ −𝒗𝒗

𝟏𝟏+𝒗𝒗𝒖𝒖𝒙𝒙′
𝒄𝒄𝟐𝟐

                (22) 

And solving finally for 𝒖𝒖′ in (22), we have 

𝒖𝒖𝒙𝒙′ = 𝒖𝒖𝒙𝒙+𝒗𝒗
𝟏𝟏−𝒗𝒗𝒖𝒖𝒙𝒙

𝒄𝒄𝟐𝟐
               (23) 

If the motion is done on the y and z axes, we see that there 
is no relative motion on these axes; thus, v = 0. Then, the 
speed of the particle on these axes becomes 

𝒖𝒖𝒚𝒚′ = 𝒖𝒖𝒚𝒚
𝟏𝟏−𝒗𝒗𝒖𝒖𝒙𝒙

𝒄𝒄𝟐𝟐
               (24) 

And 

𝒖𝒖𝒛𝒛′ = 𝒖𝒖𝒛𝒛
𝟏𝟏−𝒗𝒗𝒖𝒖𝒙𝒙

𝒄𝒄𝟐𝟐
                (25) 

Then, by eq. (22) and (23), the particle has a greater 
velocity in B’s frame when compare to A. This is therefore 
the case because, observer A experiences length dilation and 
length (by classical mechanics) is directly proportional to the 
velocity of the object in space. The classical meaning of the 
relativistic statement “the faster one goes through space, the 
slower he moves in time” is thus confirm by eqns (22) and 
(23) because, according to the laws of classical mechanics, 
dilation in space and increment in time implies a decrease in 
velocity (eq -22), since the velocity of particle in each frame 
is directly proportional to space (distance or length) and 
inversely to time. The speed of the particle in B’s frame eq. 
(23) is greater because he experiences dilation in time and a 
simultaneous increase in space in his frame which implies 

increase in velocity. The transformation equations for the 
particle’s speed are therefore consistent with the classical 
definition of velocity as desire. 

Now, suppose the speed of a particle in B is recorded by 
this observer to be 𝒖𝒖𝒙𝒙′ = 𝒄𝒄; then, eq. (22) becomes 

𝒖𝒖𝒙𝒙 = 𝒄𝒄−𝒗𝒗
𝟏𝟏+𝒄𝒄𝒄𝒄

𝒄𝒄𝟐𝟐
= 𝒄𝒄 �

𝟏𝟏−𝒗𝒗𝒄𝒄
𝟏𝟏+𝒗𝒗

𝒄𝒄
�          (26) 

The velocity of such particle is therefore less then 𝒄𝒄 in 
A’s frame and also decreases as 𝒗𝒗 increases as judged by 
A. This means that if observer B moves with the speed of 
light, a particle moving in his frame at the speed of light 
will appear to be stationary with respect to a stationary 
observer. 

On the other hand, suppose the particle’s speed is 
recorded to be 𝒖𝒖𝒙𝒙 = 𝒄𝒄 in the stationary frame (A); then, eq. 
(23) becomes 

𝒖𝒖𝒙𝒙′ = 𝒄𝒄+𝒗𝒗
𝟏𝟏−𝒄𝒄𝒄𝒄

𝒄𝒄𝟐𝟐
= 𝒄𝒄 �

𝟏𝟏+𝒗𝒗
𝒄𝒄

𝟏𝟏−𝒗𝒗𝒄𝒄
�           (27) 

Then, if observer A measures the speed of a particle to be 
c in his frame, he concludes that this particle will have a 
speed greater then c in B’s frame and increases as 𝒗𝒗 
increases because, observer A sees that B’s motion will give 
an extra push to the particle in this frame. There is a 
physical consequence of eq. (26) which is provided by the 
following physical experiment. 

Consider an experiment in which a spaceship moves in 
the positive x direction with a speed 𝒗𝒗. Now, imagine that a 
missile is attached to a fixed point midway between the 
front and rear of the ship. The goal of the experiment is for 
the pilot to release this missile at a target point which is 
some distance at head of the pilot (in the some positive x 
direction). Now, suppose the pilot releases this missile at 
the target with a speed  𝒄𝒄  in the same direction of his 
spaceship; then, because his ship is moving with a much 
less velocity then the shooting missile, a stationary observer 
on earth will see that at a later time, the missile will 
overtake and arrive at the target point before the spaceship. 

Now, suppose this pilot raises the speed of his ship to 
𝒗𝒗 = 𝒄𝒄 just the same time he had released the missile at the 
target point with the same speed 𝒄𝒄; an observer in the 
earth’s frame (or stationary frame) will not be able to detect 
any motion of the missile with respect to him, since it will 
not be able to overtake the spaceship. He will then conclude 
that the missile has not yet been released by this pilot, since 
it (the missile) maintains its same position on the spaceship 
at any later time. The speed of the missile is then zero with 
respect to a stationary observer on earth. By equation eq. 
(24), this should be the case because, as the pilot raises his 
speed to the speed of light, he moves with the same speed 
of his shooting missile towards the target point. Then, if 
both velocities are maintained, they will arrive at the target 
point in exactly the same time. Thus, the speed of the 
missile reduces as the pilot increases his speed with respect 
to the stationary observer. 
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4.4. Possibility for the Existence of Relativistic 
Entanglement and Non-Locality 

Consider a particle moving with a speed c. then, as the 
relative velocity between the two observers approaches the 
speed of light (𝑣𝑣 → 𝑐𝑐), we see that eqns (26) and (27) 
become: 

𝒖𝒖𝒙𝒙 = 𝒄𝒄�
𝟏𝟏 − 𝒗𝒗

𝒄𝒄
𝟏𝟏 + 𝒗𝒗

𝒄𝒄
� → 𝟎𝟎 

in S and 

𝒖𝒖𝒙𝒙′ = 𝒄𝒄�
𝟏𝟏 + 𝒗𝒗

𝒄𝒄
𝟏𝟏 − 𝒗𝒗

𝒄𝒄
� → ∞ 

in S’. 
However, Maxwell’s unified theory of electrodynamics 

tells us that no speed can be greater than the speed of light 
in empty space. The relativistic consequence of this 
statement would be that the speed of every event in the 
universe must satisfy the inequality  𝒗𝒗 ≤ 𝒄𝒄 . The 
transformation equations thus appear to have a problem, 
since it violates the Maxwell’s speed inequality in one of 
the frames. 

However, the particle (by reality) is moving with a speed 
𝒄𝒄 independent of any observation (or if view in each frame 
independently); thus, the zero and infinite speeds recorded 
by the stationary observer is only a paradox deriving from 
the space-time description of the event with respect to this 
observer. Therefore, since special relativity allows a 
symmetric argument in both frames (that is, if each observer 
thinks that he is at rest), the two systems must behave as 
counter-part in order to keep the speed of light constant (by 
the law of conservation of space and time, both systems 
must be considered unity); that means that they must exist 
as though they are a single system (an entangled system).  
Now, suppose we consider the two frames of references as 
entangle pair, then, by Bohr’s argument, the frames must 
then have one velocity that must satisfy the Maxwell’s speed 
constraint. 

Now, suppose we let the speed of the individual system to 
be 𝜻𝜻; then, by the law of conservation of speed, the product 
of the speeds of the entangled systems is 

𝜻𝜻𝟐𝟐 = 𝒖𝒖 ∙ 𝒖𝒖′ 

𝜻𝜻𝟐𝟐 = 𝒄𝒄�
𝟏𝟏 − 𝒗𝒗

𝒄𝒄
𝟏𝟏 + 𝒗𝒗

𝒄𝒄
� ∙ 𝒄𝒄�

𝟏𝟏 + 𝒗𝒗
𝒄𝒄

𝟏𝟏 − 𝒗𝒗
𝒄𝒄
� 

𝜻𝜻𝟐𝟐 = 𝒄𝒄𝟐𝟐                   (28) 
Then, the velocity of the unified system will not exceed 

the speed of light. This means that even if the two frames 
have an infinite space-like separation, they will remain 
connected to each other as a single unit so that when 
measurement is made; the speed of light will be conserved. 
Entanglement is therefore a consequence of the 
inhomogeneous space and time dilations of frames in 
relative motion (inhomogeneous in the sense that as space 

dilation occurs in one frame, time dilation must occur in the 
other frame and vice versa). Thus, in any well entangled 
system, one of the systems behaves as though its speed 
exceeds that of the speed of light (Aspect’s Experiment); 
therefore, even if the distance between the two systems is 
infinite, they will stay be connected to each other. The 
failure of the Einstein-Lorentz velocity transformation is 
then due to the fact that it only predicts time dilation as a 
consequence of relative motion with no consequence of this 
effect on the other frame, thus violating the laws of 
conservation. 

4.5. Special Relativity of the Twin Paradox 

The twin paradox is a non-symmetric situation in 
Einstein’s special relativity in which twin brothers are in the 
same frame of reference and of course of the same age; 
however, one of the twin brothers travels to a distance star 
and comes back. According to Einstein’s relativity, the 
traveler twin is younger than his brother who stays on earth. 

However, the first postulate of special relativity, which 
also claims to be consistent with Einstein’s Relativity, tells 
us that there is no absolute frame of reference; this means 
that each observer is right in his own frame. Then, 
concluding that the earth-born twin is right that his brother is 
actually younger implies a violation to this postulate because 
it allows the earth frame to be an absolute frame in the 
experiment. 

To resolve this problem, we consider the consequence of 
transformation. To transform from one coordinate to another 
implies that every valid equation for such transformation 
should take an event from one frame of reference to another 
in exactly the same way; that is, the origin of all observers 
spacetime coordinates will coincide and have the same 
position in space and time when transformed. In other words, 
time and space for everybody will coincide at this point. 
Now, leaving from the distance star back to his brother in the 
earth’s frame implies that the traveler twin’s coordinate 
system should coincide with his brother’s spacetime 
coordinate system since they are both in the same frame at 
the end. This therefore implies transformation of coordinates; 
that means that both their time and space coordinates must be 
the same at the end of the round trip. Therefore, at the time of 
arrival, the space and time of both brothers will be the same 
since transformation of coordinate has occur (from the 
distance star back to earth) and they will simply be equal 
after the trip. 

It seems accurate to reason from the perspective of 
Einstein’s relativity that the traveler twin experiences 
acceleration at a point of reversing his trip to earth as claimed 
by special relativity. However, there is no preferred frame in 
relativity as demanded by postulate (1) of Einstein’s theory; 
therefore, the traveler twin equally thinks that he is at rest 
and both his brother and the earth are moving away from him 
with a high speed; to come back to the same point, the 
travelers twin believes that his brother must experience some 
sort of acceleration when reversing his trip- just as 
earth-born twin previously views the situation -which will 
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equally decrease his time and upon his arrival, he is younger 
than his traveler’s brother. The situation is therefore 
symmetric and at the end, it is impossible to conclude that 
one brother is right over the other. However, during their 
period of separation, each twin is right independently to 
think that his friend is younger according to the first 
postulate. 

Investigating this further, consider an equivalent statement 
in General Relativity called the Gravitational clock effect. 
Suppose we have a synchronized clocks system somewhere 
in space, then each clock in the system will read the same 
time interval for every event. Supposing that one of the 
clocks is taken to a journey near a black hole where there is a 
strong gravitational field, the clock slows down and no 
longer agrees with those in the synchronized system. General 
relativity then predicts that upon return, the gravitating clock 
is younger. 

Now, let’s take a reversed case. Suppose a synchronized 
clock system is located at the surface of a black hole, they 
will read the same time interval between events occurring on 
the black hole. What if one of the clocks in this synchronized 
system were taken to some point far away from the black 
hole? The clock in question will read a longer time interval 
for events because it has less gravitational effect compared to 
the others. Now, consider us carrying the clock back to its 
initial position in the synchronized clock system; is there a 
time difference between the clock reading and those in the 
synchronized system after return? Does the space clock still 
read more time than the gravitating clocks that stay at the 
black hole after return? 

It is obviously wrong to conclude that there is a time 
discrepancy between the clocks after returning to its previous 
position because, as the space clock approaches the surface 
of the black hole on its returned trip, gravity gets stronger 
and slows down the clock’s rate of time and at the 
synchronized system at the black hole’s surface, the space 
clock takes the time of the black hole and the entire clock 
system resynchronized. Taking the clock from the 
gravitational field to space requires acceleration which tends 
to increase the potential difference of the clock. However, in 
an attempt to bring the clock back, its potential difference 
decreases (the clock appears to decelerate in spacetime). This 
case is no different from taking a clock from some point in 
space to a black hole and back again to its initial position; 
thus, the time interval is reserved and no one is right or 
wrong. The twins are then equal after the round trip; but at 
the period of separation, each thinks that his brother is 
younger. 

4.6. Relativity of Matter and Wave (Relativistic Duality) 

I shall now prove that no mechanical experiment can 
result to the Einstein’s rest mass equation. This means   
that the mass of the system does not fit into the      
Lorentz transformation but rather the (Galilean-Lorentz) 
transformation equations derived above. The inconsistency 
of the Lorentz transformation employed by Einstein can be 
sufficiently understood from the work of Denci., 2016 [16]. 

However, this will be shown here by considering the elastic 
collision experiment considered by Miller Jr. F, 1999 [7] and 
Tipler & Llewellyn, 2008 [1]. It will be shown with the help 
of this leaner momentum experiment that it is mechanically 
impossible for any experiment to yield the Einstein’s rest 
mass equation. 

In the experiment, there are two observers A&B with A 
stationary along a side-walk and B in a train moving past A 
with velocity 𝒗𝒗. Both observers are armed with identical 
balls of masses 𝒎𝒎𝒐𝒐(its rest mass) and 𝒎𝒎 (it’s mass in the 
moving frame). Both observers then decide to throw their 
balls with equal velocities so that they collide just when they 
are midway between the side-walk and the train as illustrated 
by figure (3) below: 

 

Figure 3 

Before impact, the y-coordinate of the velocity of A’s ball 
is +𝒖𝒖 and that of B is –𝒖𝒖′. After impact, the y-coordinates 
of the two observers are reversed, −𝒖𝒖 for A and +𝒖𝒖′ for B. 
Applying the well known law of conservation of momentum 
to the elastic collision, A concludes that 

𝒎𝒎(−𝒖𝒖′) + 𝒎𝒎𝒐𝒐(𝒖𝒖) = 𝒎𝒎(𝒖𝒖′) + 𝒎𝒎𝒐𝒐(−𝒖𝒖); 
𝟐𝟐𝒎𝒎𝒎𝒎′ = 𝟐𝟐𝒎𝒎𝒐𝒐𝒖𝒖; 
 𝒎𝒎𝒐𝒐𝒖𝒖 = 𝒎𝒎𝒖𝒖′                  (29) 

According to the experiment, the elastic collision should 
occur at the midpoint, thus, the balls are to be thrown with 
equal speed since the point of collision (the midpoint) is 
equal-distance between the two observers. 

We can now apply the principle of relativity to analyze the 
experiment with respect to the stationary observer (observer 
A). With respect to A, observer B is in relative motion; thus, 
there is a time dilation effect in his (B) frame. The Einstein’s 
conclusion is that due to time dilation, A’s velocity is greater 
than B. Using the Lorentz transformation of velocity, one 
obtains a relationship between the two speeds to be 

 𝒖𝒖′ = 𝒖𝒖�𝟏𝟏 − 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
.                   (30) 

which when substituted into eq. (29), yields eqn. (2), the 
Einstein’s rest mass equation. 

However, mechanically this analysis is not consistent with 
physical observation because the Lorentz transformation, as 
used is an independent analysis, breaks down if the event is 
described by a single observer. To see this, the following 
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arguments can be proposed: 
From the analysis above, A claims that he sets his ball into 

motion before B (that is, there is a time dilation effect in B’s 
frame with respect to observer A). This means that there is a 
time discrepancy between the two events in each frame. Thus, 
if A’s velocity is greater than B (by the Lorentz 
transformation equations); then, in any correct mechanical 
interpretation, observer A will not expect the collision to be 
at midway, since according to this observer, his ball has 
covered some distance before B sets his ball in motion (by 
time dilation in B). Instead, observer A will expect the 
collision to occur at some point  𝑷𝑷 = 𝒂𝒂

𝟐𝟐
+ 𝒂𝒂′, because, B’s 

ball is released later then A and hence will arrive just after 
A’s ball has passed the center and now at the point 𝒂𝒂′ which 
depends on the time elapse before B sets his ball into 
motion with respect to A or precisely due to the relative 
velocity of both observers. 

In fact, the distance 𝒂𝒂′ would almost be more than half 
way between the center and observer B because, according 
to the Lorentz velocity equation, ball A has a far greater 
velocity than that of B. Moreover, time dilation in B’s 
frame will also allow A’s ball to cover more distance before 
B release his ball with even lower velocity then A’s ball 
that has covered some distance during the time discrepancy. 
By the Einstein’s analysis, there will be no possibility for 
the balls to collide at the center. 

However, suppose we insist that the collision is done at 
the midpoint, then this by mechanics, can only be possible if 
B gives his ball a greater velocity so that even though his ball 
is released later (that is, there is a time dilation in his frame 
thus he seems to release his ball at a later time) as claimed by 
A, but collision is still made at the midpoint as A concludes. 
This means that B’s velocity must be greater than A’s as 
judged by this stationary observer. The analysis is then 
consistent with eqs. (22) and (23). 

It can then be concluded that the speed of the ball cannot 
be given by the Lorentz transformation equation but rather 
the modified Galilean equation derived above: eqns. (22) and 
(23). Then, applying the modified Galilean transformation 
(in this case eq. (24) for the motion of the balls alone their y 
coordinate) and some algebraic manipulations we have the 
velocity of the ball in B’s frame with respect to A to be:  

𝒖𝒖′ = 𝒖𝒖

�𝟏𝟏−𝒗𝒗
𝟐𝟐

𝒄𝒄𝟐𝟐

                  (31) 

Substituting this result into eq. (29) above gives 
 𝒎𝒎𝒐𝒐𝒖𝒖 = 𝒎𝒎 𝒖𝒖

�𝟏𝟏−𝒗𝒗
𝟐𝟐

𝒄𝒄𝟐𝟐

 , 

rearranging this result, we have 

𝒎𝒎𝒐𝒐𝒖𝒖�𝟏𝟏 −
𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
= 𝒎𝒎𝒎𝒎; 

and finally, dividing through by 𝒖𝒖 yields 

𝒎𝒎𝒐𝒐�𝟏𝟏 − 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
= 𝒎𝒎              (32) 

Equation (32) shows a negative correlation between speed 
and mass which is thus consistent with classical and quantum 
mechanics as expected. 

If the speed of the particle is in a Newtonian limit (𝒗𝒗 ≪ 𝒄𝒄), 
eq. (32) reduces to  𝒎𝒎𝒐𝒐 ≈ 𝒎𝒎; its classical value is desire. 
However, as 𝒗𝒗 approaches the speed of light, the mass of the 
object approaches zero; this result will then be used to prove 
that the particle becomes wave at relativistic speed 
(wave-particle duality). Equation (32) can be used with the 
help of classical mechanics to derive the Einstein’s 
mass-energy relation and the Newtonian kinetic energy 
equation which is presented as followed: 

In classical mechanics, the “linear momentum” of a 
moving body is given (ambiguously) by the partial 
differential equation 

𝒅𝒅𝒅𝒅 = 𝒎𝒎𝒎𝒎𝒎𝒎 + 𝒗𝒗𝒗𝒗𝒗𝒗             (33) 
And the rate of change of momentum with respect to time 

is defined as 

𝑭𝑭 = 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

                  (34) 

Also, the energy required to do work on the system is 
given as 

𝒅𝒅𝒅𝒅 = 𝑭𝑭𝑭𝑭𝑭𝑭                (35) 
Substituting eqn. (34) into eqn. (35), we have 

𝒅𝒅𝒅𝒅 =
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

× 𝒅𝒅𝒅𝒅 

𝒅𝒅𝒅𝒅 = �
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅
�𝒅𝒅𝒅𝒅 

But  𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒗𝒗, thus 

𝒅𝒅𝒅𝒅 = 𝒗𝒗 ∙ 𝒅𝒅𝒅𝒅 
Substituting eq. (33) into the last expression, we have 

𝒅𝒅𝒅𝒅 = 𝒗𝒗𝟐𝟐𝝏𝝏𝝏𝝏 + 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎             (36) 
In a Newtonian limit, 𝒅𝒅𝒅𝒅 ≈ 𝟎𝟎, so 𝑬𝑬 = 𝟏𝟏

𝟐𝟐𝒎𝒎𝒗𝒗
𝟐𝟐 = 𝑲𝑲𝑲𝑲. 

Now, from classical mechanics we know that for work to 
be done on a system, a force must be applied to move the 
constituents of that system through a distance; in order words, 
the system must undergo some form of motion from an initial 
position to a final position. Work therefore cannot be 
achieved in the absence of a kinetic energy, since the system 
must undergo a form of motion with speed �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�  in the 

direction of the applied force. We can then conclude that the 
magnitude of the work done on the system is therefore the 
kinetic energy of that system. 

Also, because the system should lose mass from the 
argument above, the kinetic energy of a system has a 
negative correlation with its mass;  𝒅𝒅𝒅𝒅 < 0; therefore, as 
the mass of the system decreases, its kinetic energy must be 
increasing as well. This analysis also holds for the classical 
linear momentum of the system since it depends on the 
velocity of the system; thus, this negative correlation 
between speed and mass allows us to redefine the 
momentum and kinetic energy of the system unambiguously 
as: 
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𝒅𝒅𝒅𝒅 = 𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒗𝒗𝒗𝒗𝒗𝒗          (37) 
𝒅𝒅𝒅𝒅 = 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒗𝒗𝟐𝟐𝝏𝝏𝝏𝝏         (38) 

It will later be proven however, that eqns (37) and (38) are 
valid instead of their classical interpretations. Now, eq. (32) 
can be equivalently written as 

𝒎𝒎(𝒗𝒗) = 𝒎𝒎𝒐𝒐�𝟏𝟏 −
𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
 

Since the mass is a function of speed. Differentiating this 
result with respect to 𝒗𝒗 gives 

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

=
𝟏𝟏
𝟐𝟐

𝒎𝒎𝒐𝒐

�𝟏𝟏 − 𝒗𝒗𝟐𝟐
𝒄𝒄𝟐𝟐

�−
𝟐𝟐𝒗𝒗
𝒄𝒄𝟐𝟐
� 

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= −
𝒎𝒎𝒐𝒐𝒗𝒗

𝒄𝒄𝟐𝟐�𝟏𝟏 − 𝒗𝒗𝟐𝟐
𝒄𝒄𝟐𝟐

 

But  𝒎𝒎𝒐𝒐 = 𝒎𝒎

�𝟏𝟏−𝒗𝒗
𝟐𝟐

𝒄𝒄𝟐𝟐

, by eq.32; thus, 

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

=
−𝒎𝒎𝒎𝒎

𝒄𝒄𝟐𝟐 �𝟏𝟏 − 𝒗𝒗𝟐𝟐
𝒄𝒄𝟐𝟐�

 

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

=
−𝒎𝒎𝒎𝒎
𝒄𝒄𝟐𝟐 − 𝒗𝒗𝟐𝟐

 

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = −(𝒄𝒄𝟐𝟐 − 𝒗𝒗𝟐𝟐)𝒅𝒅𝒅𝒅          (39) 
Substituting eq. (39) into eq. (38), we have 

𝒅𝒅𝒅𝒅 = −(𝒄𝒄𝟐𝟐 − 𝒗𝒗𝟐𝟐)𝝏𝝏𝝏𝝏− 𝒗𝒗𝟐𝟐𝝏𝝏𝝏𝝏 
𝒅𝒅𝒅𝒅 = −𝒄𝒄𝟐𝟐𝝏𝝏𝝏𝝏 + 𝒗𝒗𝟐𝟐𝝏𝝏𝝏𝝏− 𝒗𝒗𝟐𝟐𝝏𝝏𝝏𝝏 

𝒅𝒅𝒅𝒅 = −𝒄𝒄𝟐𝟐𝒅𝒅𝒅𝒅 
And by integrating, we have 

� 𝒅𝒅𝒅𝒅

𝑬𝑬𝒇𝒇

𝑬𝑬𝒊𝒊

= −𝒄𝒄𝟐𝟐 � 𝒅𝒅𝒅𝒅
𝒎𝒎

𝒎𝒎𝒐𝒐

 

∆𝑬𝑬 = −𝒄𝒄𝟐𝟐∆𝒎𝒎 
∆𝑬𝑬 = −𝒄𝒄𝟐𝟐(𝒎𝒎−𝒎𝒎𝒐𝒐) 

And upon rearranging, we have 
∆𝑬𝑬 = 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 −𝒎𝒎𝒄𝒄𝟐𝟐             (40) 

This is therefore the Einstein’s mass-energy equation 
which is just the relativistic kinetic energy of the particle. 
We now use eq. (40) to derive the classical kinetic energy 
equation for the particle. To derive the Newtonian classical 
equation form eq (40), the following argument is proposed 
from the viewpoint of classical thermodynamics: 

According to the laws of classical thermodynamics, the 
total internal energy (denoted by 𝑬𝑬𝒕𝒕) of any real system is 
defined as the energy of all the constituent atoms and/ or 
molecules that make up that system as well as the energy of 
the bonds that bind the atoms or particles of the system 
together. This energy can be expressed mathematically as the 
sum of the system’s total potential and kinetic energies 

 𝑬𝑬𝒕𝒕 = 𝑷𝑷𝑷𝑷 + 𝑲𝑲𝑲𝑲                  (41) 

Supposing that the system is not suggested to any form of 
motion-except that its atoms are vibrating, rotating or 
translating in space- than the kinetic energy (or more 
precisely the macroscopic kinetic energy) of the system is 
zero and the potential energy of the system –by the law of 
conservation of energy- is just equal to the total internal 
energy. That is, for 𝑣𝑣 = 0, eq. (41) becomes 

𝑬𝑬𝒕𝒕 = 𝑷𝑷𝑷𝑷                 (42) 
From this, we can now suggest a proper meaning for the 

terms in eq. (40). Using eq. (32), we can express eq. (40) in 
an informal manner as 

∆𝑬𝑬 = 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 −𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 × �𝟏𝟏 − 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
          (43) 

Where 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐  is the energy of the system at rest and 

𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 × �𝟏𝟏 − 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
 is the energy of the system at some speed 𝒗𝒗 

Now, if a system of mass “𝒎𝒎”  is in motion with 
speed “𝒗𝒗”, the potential energy of such system decreases as 
its speed increases. However, the potential energy of such 
system is not necessarily zero since the system still has 
mass (𝒎𝒎) and at a particular time (𝒕𝒕) it is at some known 
position 𝒓𝒓 in space. Therefore, the system will only have 
zero potential energy if its mass is zero (like a wave) which 
can only be achieved if 𝒗𝒗 = 𝒄𝒄. Thus, the valid relativistic 
equation that describes the potential energy of any system in 
the universe either in motion or at rest is 

𝑷𝑷𝑷𝑷 = 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 × �𝟏𝟏 − 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
             (44) 

At 𝑣𝑣 = 0, the system has no kinetic energy, so eq (44) 
reduces consistently to 

𝑷𝑷𝑷𝑷 = 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐                 (45) 
Thus, by the argument above, we can recognize eq (45) as 

the total internal energy of the system. The fundamental 
problem with Einstein’s relativistic mechanics is then 
resolved by eq. (44), because as the velocity of the particle 
increases, its potential energy decreases as well which is 
then consistent with the language of both classical and 
quantum mechanics (since the potential energy of the 
system can be ignored for particles at high speed in the 
Schrödinger wave equation). 

The difference between the total internal energy and the 
potential energy of any system is then defined as the kinetic 
energy of that system (denoted by 𝑲𝑲𝑲𝑲); so ∆𝑬𝑬 is the kinetic 
energy of the system as stated above. Thus eq. (43) can be 
re-expressed as 

𝑲𝑲𝑲𝑲 = 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 −𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 × �𝟏𝟏 − 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
 

𝑲𝑲𝑲𝑲 = 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 �𝟏𝟏 − �𝟏𝟏 − 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
�        (46) 

For a non-relativistic case in which v<<c, we use the 
Maclaurin series expansion 

(𝟏𝟏 + 𝒙𝒙)𝒏𝒏 = 𝟏𝟏 +
𝒏𝒏𝒏𝒏
𝟏𝟏!

+
𝒏𝒏(𝒏𝒏 − 𝟏𝟏)𝒙𝒙𝟐𝟐

𝟐𝟐!
+ ⋯ 



 International Journal of Theoretical and Mathematical Physics 2019, 9(3): 67-80 79 
 

 

Letting 𝒙𝒙 = �− 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
�, we have 

�𝟏𝟏 + �− 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
��

𝟏𝟏
𝟐𝟐

 = 𝟏𝟏 − 𝟏𝟏
𝟐𝟐
𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
+ 𝟏𝟏

𝟏𝟏𝟏𝟏
𝒗𝒗𝟒𝟒

𝒄𝒄𝟒𝟒
− ⋯, 

Thus eq. (46) becomes 

𝑲𝑲𝑲𝑲 = 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 �𝟏𝟏 − �𝟏𝟏 −
𝟏𝟏
𝟐𝟐
𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
+

𝟏𝟏
𝟏𝟏𝟏𝟏

𝒗𝒗𝟒𝟒

𝒄𝒄𝟒𝟒
− ⋯�� 

𝑲𝑲𝑲𝑲 = 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 −𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 +
𝟏𝟏
𝟐𝟐
𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐(𝒗𝒗

𝟐𝟐

𝒄𝒄𝟐𝟐
) −

𝟏𝟏
𝟏𝟏𝟏𝟏

𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐(
𝒗𝒗𝟒𝟒

𝒄𝒄𝟒𝟒
) + ⋯ 

Ignoring large powers of 𝒄𝒄 and canceling liked- terms, 
we have 

𝑲𝑲𝑲𝑲 ≈ 𝟏𝟏
𝟐𝟐
𝒎𝒎𝒐𝒐𝒗𝒗𝟐𝟐                (47) 

This is therefore the Newtonian kinetic energy equation as 
desires. 

Now, as the speed of the particle approaches the speed of 
light, (𝒗𝒗 → 𝒄𝒄) , the potential energy of the system 
approaches zero (𝑷𝑷𝑷𝑷 → 𝟎𝟎)  as well; thus, the total internal 
energy of the system, by the law of conservation of energy, 
should equal the kinetic energy of the system. But if we 
express the total internal energy by 

 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 = 𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 ��𝟏𝟏 − 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
� + 𝟏𝟏

𝟐𝟐
𝒎𝒎𝒐𝒐𝒗𝒗𝟐𝟐       (48) 

then, for a special case in which 𝒗𝒗 = 𝒄𝒄, the potential energy 
equals zero (𝑷𝑷𝑷𝑷 = 𝟎𝟎) and eq. (48) reduces to 

𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐 ≠
𝟏𝟏
𝟐𝟐
𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐                 (49) 

Newtonian kinetic energy equation thus violates the law of 
conservation of energy. Thus, for energy to be conserved, the 
kinetic energy of the particle should be expressed as the 
energy of an electromagnetic radiation by Plank’s 
relationship 

𝑲𝑲𝑲𝑲 = 𝑬𝑬𝒕𝒕 = 𝒉𝒉𝒉𝒉                 (50) 
Eq. (50) is a wave equation which is only true if the 

system can be considered a wave; the wave- particle duality 
of matter is thus proven. 

If we express the state of the system by the Klein-Gordon 
equation, eq. (4); then, using eq.(32), we will have 

−ћ𝟐𝟐 𝝏𝝏𝟐𝟐

𝝏𝝏𝒕𝒕𝟐𝟐
𝝍𝝍(𝑿𝑿, 𝒕𝒕) =

�−ћ𝟐𝟐𝒄𝒄𝟐𝟐𝛁𝛁𝟐𝟐 + �𝒎𝒎𝒐𝒐�𝟏𝟏 −
𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
�
𝟐𝟐

𝒄𝒄𝟒𝟒�𝝍𝝍(𝑿𝑿, 𝒕𝒕)      (51) 

As the particle accelerates near the speed of light, the 
potential energy term becomes zero, thus, eq. (51) reduces 
to eq (7) as desire. 

This means that at high speed near that of the speed of 
light, the particle can no longer be regarded as bits of matter 
but rather a fast moving electromagnetic radiation with 
energy equal to the energy store in the particle; energy is then 
conserved. 

A physical prove can be find to support eq (51). Consider 
the decay process of the unstable particle called the 𝝅𝝅𝟎𝟎 
meson Miller Jr., 2008 [7]. Before the disintegration 

process, the particle obtains a high enough kinetic energy 
thus, making the system’s sub-particles to move at the 
speed of light. As a result, the particle disappears and an 
electromagnetic radiation appears with its energy equal to 
the total internal energy of the particle. But at rest, the 
particle possesses no kinetic energy so its total internal 
energy is just equal to its potential energy as expected. Eq. 
(51) is therefore valid. 

4.7. Linear Momentum 

We now return to the law of conservation of linear 
momentum to validate eqns (37) and (38). By eq. (32), the 
linear momentum of a particle of mass (m) can be expressed 
relativistically as 

𝑷𝑷 = 𝒎𝒎𝒎𝒎.�𝟏𝟏 − 𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
                (52) 

Thus, the momentum of the system decreases as the speed 
of the particle increases. This should not be the case because, 
classical mechanics tells us that the linear momentum of a 
system increases as the speed of the particle increases by 

𝒑𝒑 = 𝒎𝒎𝒎𝒎                    (53) 
Therefore, eq. (52) violates the law of conservation of 

momentum by the definition of classical mechanics, since 
we see that the system lose momentum with speed. 

However, suppose we consider a system of total internal 
energy 𝑬𝑬𝒕𝒕; then, by special relativity, its linear momentum 
can be expressed as 

𝑷𝑷 = 𝑬𝑬𝒕𝒕
𝒄𝒄

                  (54) 

Then, using eq. (48), we have 

𝑷𝑷 =
𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐

𝒄𝒄
 

𝑷𝑷 =
𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐�𝟏𝟏−

𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐
+𝟏𝟏
𝟐𝟐𝒎𝒎𝒐𝒐𝒗𝒗𝟐𝟐

𝒄𝒄
           (55) 

Now, if the system is at rest, its kinetic energy is zero; thus, 
its linear momentum is given as 

𝑷𝑷 =
𝒎𝒎𝒐𝒐𝒄𝒄𝟐𝟐�𝟏𝟏−

𝒗𝒗𝟐𝟐

𝒄𝒄𝟐𝟐

𝒄𝒄
= 𝒎𝒎𝒐𝒐𝒄𝒄          (56) 

The system will then have a non-zero linear momentum 
even at rest. 

Again, suppose the velocity of the system reaches that of 
the speed of light, then, eq. (55) reduces to 

𝑷𝑷 =
𝟏𝟏
𝟐𝟐𝒎𝒎𝒐𝒐𝒗𝒗𝟐𝟐

𝒄𝒄
=  𝒉𝒉𝒉𝒉

𝝀𝝀
∙ 𝟏𝟏
𝒄𝒄

= 𝒉𝒉
𝝀𝝀
          (57) 

Therefore, no real system with a non-zero internal energy 
can have a zero linear momentum. We can then state the law 
of conservation of momentum in a more general form in 
order to agree with all the possible states of the system. By 
this, we can propose two forms of linear momentum 
corresponding to the two possible energy states in which the 
system can be described: Kinetic momentum (which depends 
on the state of motion of the system and increases with speed) 
and Potential momentum (the momentum of the body at rest 
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which depends on the position of the system and decreases 
with speed). 

Suppose the potential energy of a system depends on its 
position; then, the potential momentum by analogue must 
also depend on position. Thus, we can define the inertia 
force (which depends on the rest position of the system) as 
the rate of change of the body’s potential linear momentum 
with respect to position; therefore, if we let 𝑃𝑃𝑖𝑖  be the 
potential linear momentum, then, the initial force of the 
system can be defined as: 

𝒅𝒅𝑷𝑷𝒊𝒊
𝒅𝒅𝒅𝒅

= 𝑭𝑭𝒊𝒊                 (58) 

The inertia force of a system changes with the 
gravitational potential gradient (by classical mechanics), 
thus eq. (58) can be expressed as 

𝒅𝒅𝑷𝑷𝒊𝒊
𝒅𝒅𝒅𝒅

= 𝒎𝒎𝛁𝛁∅(𝒓𝒓)              (59) 

Where  ∅(𝒓𝒓) = 𝑴𝑴𝑴𝑴
𝒓𝒓

 and 𝛁𝛁 = 𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝜕𝜕
𝜕𝜕𝜕𝜕

. 
By the same argument above, the kinetic momentum 

(denoted by  𝑃𝑃𝑎𝑎 ) depends on the acceleration of the body; 
thus, if we consider the time rate of change of kinetic 
momentum then, we can define the force due to acceleration 
as: 

𝑭𝑭𝒂𝒂 = 𝒅𝒅𝑷𝑷𝒂𝒂
𝒅𝒅𝒅𝒅

= 𝒎𝒎𝒅𝒅𝟐𝟐𝒓𝒓
𝒅𝒅𝒕𝒕𝟐𝟐

             (60) 

Then, by the law of conservation of linear momentum, 
we can show that the acceleration and gravitation of the 
body are related by 

𝒎𝒎
𝒅𝒅𝟐𝟐𝒓𝒓
𝒅𝒅𝒕𝒕𝟐𝟐

= −𝒎𝒎𝛁𝛁∅(𝒓𝒓) 

𝒅𝒅𝟐𝟐𝒓𝒓
𝒅𝒅𝒕𝒕𝟐𝟐

= −𝛁𝛁∅(𝒓𝒓)                 (62) 

as desire. 

5. Conclusions 
To conclude, Einstein’s relativity is an incorrect 

description of reality and hence demands modification at 
least. By this conclusion, a unified theory can be established. 
However, although the work above does not give a Unified 
Theory, it shows a possibility that such theory is achievable. 
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