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Abstract  The power flow between two weakly coupled pendula is calculated analytically and applied to explain the 
behavior of an optical switch. The general equations of motion are derived for different variations of the coupled pendula 
with identical and non-identical masses of the pendulum bobs. The power flow under white noise random excitation 
between the pendula in each system is calculated. The effect of the driving voltage in an optical switch is analogous to the 
changing length ratio of the pendula system. The net power flow corresponds to the system with identical pendula and for 
non-identical pendula, the phase constants are not equal and hence there will be no net power flow between the 
waveguides. 
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1. Introduction 
Many objects around us move in a specific pattern like the 

motion of a swing or a chalking chair, such objects are said to 
undergo an oscillatory or vibratory motion. A periodic 
motion is a regular motion that is repeated in equal intervals 
of time while an oscillatory motion is a periodic motion of a 
particle about a mean position or point [1]. A body that 
undergoes oscillatory motion is called an oscillator. If there 
are no causes of damping like friction, an object will oscillate 
infinitely. Oscillations are physical phenomena that occur in 
all scales starting from atoms which are the basic units of 
matter to very big galaxies [2]. Examples of oscillations 
include the motion of the earth crust during an earthquake, 
beating of the human heart [3], the motion of the lungs 
during respiration, the motion of the hands of clocks, the 
economic cycle, motion of planets around the sun, the moon 
around the earth and the motion of stars around the galactic 
center [4]. 

The knowledge of oscillations is applied in many fields 
like construction of earthquake proof buildings, construction  
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of musical instruments like violins and guitar, diving boards, 
metronomes, construction of auditory devices like 
microphones and speakers and implementation of shock 
absorbers in vehicles that stabilize and control the vehicles 
movement and minimize tire wear [5]. Coupled oscillators 
are two or more oscillators that are connected to one another 
with the aid of a coupler. The coupler may be a string, a rod 
or any medium through which the energy is transferred 
between the oscillators. Coupled oscillators are important in 
science because their motion can be used to simulate 
numerous natural phenomena [6].  

The study of coupled oscillators has become a very active 
area of research in the last few decades. Applications of 
coupled oscillators nowadays are uncountable in many 
disciplines like physics, engineering, biology, and chemistry. 
Coupled oscillators are useful paradigms used to study many 
complex physical, biological and chemical systems. For 
instance, mathematical biologist use coupled oscillators to 
mimic synchronization processes in biological systems like: 
pacemaker cells in the heart [7], while civil engineers, use it 
to study the interaction between bridges and vehicles passing 
on them to avoid the unwanted excitations that can lead to 
structural damage and to understand the periodic behavior of 
many dynamical systems [8]. 

In the last decades, systems of coupled pendula have been 
given attention to understand natural phenomena like 
clustering or chimera states and to model many physical, 
biological and mechanical systems [9]. Such systems are 
simple to analyze and easy to construct experimentally. 
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Since such systems are important because of the 
synchronization modes they demonstrate depending on the 
initial conditions [10]. Hence knowing the frequencies of 
vibrations and understanding how the energy is transferred 
between the pendula are important in all types of models. In 
this article, we calculate the power flow between two weakly 
coupled pendula and apply the results to an optical switch. 

2. Theoretical Methods 
2.1. Description of the Coupled Pendula Systems 

2.1.1. Two Coupled Identical Pendula 
The system considered consists of two identical pendula 

of mass m  and length l  coupled with a massless spring. 
There is no kinetic energy associated with the motion of the 
spring with spring constant k  (Fig. 1). The system has two 
degrees of freedom 1θ  and 2θ  which are the angles the 
rods make with the vertical [11]. 

 

Figure 1.  Two coupled identical pendula 

The kinetic energy of the system T is  
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Equation (2.2) can be written in matrix form as: 
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Also the potential energy of the system V is  
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2.1.2. Two Coupled Pendula of Different Masses 

The system considered consist of two pendula of the 
same length l  and different masses 1m  and 2m . The 
system has two degrees of freedom 1θ  and 2θ  which are 
the angles the rods make with vertical (Fig. 2). 

 

Figure 2.  Two coupled pendula of different masses 

The kinetic energy of the system T is  
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1 1 2 2 1 2

1 1
2 2

T m x x m y y= + + +         (2.9) 
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Assuming that 2m  can be written in terms of 1m  such 
that  

2 1m nm nm= =              (2.11) 

where n is any positive real number, then from (2.10) and 
(2.11) 
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also the potential energy of the system V is  
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and in matrix form  
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2.1.3. Two Coupled Pendula of Different Lengths 
The system consist of two pendula of the same mass m  

and of different lengths 1l  and 2l . The system has two 
degrees of freedom 1θ  and 2θ  which are the angles the 
rods make with vertical. 

 

Figure 3.  Two coupled pendula of different lengths 

The kinetic energy of the system T is  
2 2 2 2

1 1 2 22T ml mlθ θ= +            (2.19) 

Assuming that 2l  can be written in terms of 1l  such 
that  
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where h is any positive real number 
then  
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Equation (2.21) can be written in matrix form as 
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Also the potential energy of the system V is  
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2.1.4. Two Coupled Pendula of Different Masses and 
Different Lengths 

The system considered consists of two pendula of masses 
and lengths coupled with a massless spring. The system has 
two degrees of freedom which are the angle the pendulum 
rods make with the vertical. This system is a generalization 
of the previous three systems and can be reduced to any of 
them by choosing the suitable values of h and n. 

 

Figure 4.  Two coupled of different masses and lengths 

The kinetic energy of the system T is  
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Also the potential energy of the system V is 
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2.2. Calculation of Power Flow of the System 

The potential and kinetic energies are used to obtain the 
normal frequencies of the system using the secular equation  

2 0ij ijV Tω− =            (2.32) 

where ω  is the natural frequency. Since all the four 
systems have two degrees of freedom, two values of ω  are 
obtained in each case [11]. 

The normal modes of each system are obtained using the 
equation  

2 0k k kη ω η+ =              (2.33) 

where η  is the normal co-ordinates and 1,2k =  [11]. 
To convert the equations of motion from normal to 

generalized coordinates we use the equation  

j jk k
k
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Since for all the four systems 1,2k = , we can write 
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11a  and 21a  are components of the eigenvector 1a
which are computed by setting 1ω ω=  and using [12]  

112
1

21
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V T

a
ω
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         (2.37) 

The same procedure applies for 12a and 22a which are 
components of eigenvector 2a  

The values of the 11a , 21a , 12a  and 22a  are obtained 
in terms of m  and l  using  

†
ija T a I=                 (2.38) 

where †a  is the Hermitian transpose of a  and I  is the 
identity matrix. After obtaining the equations of motion in 
terms of generalized coordinates for each system, the effects 

of damping and external forces is taken into consideration 
and the equations of motion are written in the form [13]: 

( )22i i i i i i j
i i

F t
m m

εγθ β θ θ θ+ Ω + Ω = +       (2.39) 

where k εγ= , γ  and ε  are called the coupling 
parameters, iΩ  is the blocked frequency of the ith 

oscillator and iβ  is the damping ratio of the ith oscillator. 
The parameters from equation (2.39) are used to calculate 

the power flow. The first order approximation to the power 
flow between weakly coupled oscillators under white noise 
random excitations is given as  
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=
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Π

(2.40) 

where 21i i ip β= Ω −  and 21j j jp β= Ω −  
White noise is a random signal that is a combination of  

all audible frequencies (20Hz-20KHz) with constant power 
spectral density. 

3. Results and Discussion 
3.1. Identical Pendula System  

Substituting equations (2.4) and (2.8) in equation (2.32) 
the natural frequencies of the system 1ω  and 2ω  are 
obtained as  

1 2
2,g g k

l l m
ω ω=   = +           (3.1) 

Substituting (3.1) in (2.33) gives  

1 1 0g
l
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 
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 
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Using equation (2.37) it can be shown that 
2 2
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and hence 
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Similarly,  
2 2
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and 
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Thus  



 International Journal of Theoretical and Mathematical Physics 2019, 9(2): 25-35 29 
 

 

a
α β
α β

 
=  − 

                (3.6) 

and using equation (2.38) we have 
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or  
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and we obtain 
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and 
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1
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a a
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and hence equation (3.25) for this system is 

1 1
2 2

2 2
2 2

1 1

2 2
1 1

2 2

ml ml

ml ml

θ η

θ η

    
    
    =     

−         

      (3.10) 

From (3.10) we obtain the relationship between the 
normal coordinates and generalized coordinates for this 
system as  

( )1 1 22l mη θ θ= +         (3.11) 

and 

( )2 1 22l mη θ θ= −         (3.12) 

If 2 0η =  then 1 2θ θ=  and the two pendula oscillate 

in phase with an angular frequency 2 ( / ) (2 / )g l k mω = +  
and this is the first natural mode of the system. Also, if 

1 0η = then 1 2θ θ= −  and the two pendula oscillate in an 

out of phase mode with an angular frequency 1 /g lω =  
and this is the second natural mode of the system [11]. 

The explicit equations of motion for this system are 
obtained by substituting (3.11) and (3.12) in (3.2) and (3.3) 
to give 

( ) ( )1 2 1 2 0g
l

θ θ θ θ+ + + =         (3.13) 

( ) ( )1 2 1 2
2 0g k

l m
θ θ θ θ − + + − = 

 
      (3.14) 

By respectively adding and subtracting equations (3.13) 
and (3.14) and re-arranging we obtain  

1 1 2
g k k
l m m

θ θ θ + + = 
 

         (3.15) 

2 2 1
g k k
l m m

θ θ θ + + = 
 

         (3.16) 

Multiplying equations (3.15) and (3.16) by the mass, m 
and adding the effects of damping and external forces we 
obtain 

( )11
1 1 1 2
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m l m m m

θ θ θ θ + + + = + 
 
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( )22
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m l m m m

θ θ θ θ + + + = + 
 
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and comparing with (2.39) we can write (3.17) and (3.18) as  

( )12
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2 2 2 2 12

F t kB
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where 1
1 2

cB
m

=
Ω

, 2
2 2

cB
m

=
Ω

, 1( )F t and 2 ( )F t are two 

independent sources of stationary Gaussian white noise 
random excitation. 

If 2 ( ) 0F t = , then equation (3.20) can be written as  

2
2 2 2 2 12 kB

m
θ θ θ θ+ Ω + Ω =         (3.21) 

and hence from equation (2.40), the rate of power flow from 
the first to the second pendulum can be written as  
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Π

(3.22) 
The power input is dissipated by the damping of the 

second pendulum and hence the mean rate of power 
dissipation is  

2 2
2 2 2 2[ ] 2 [ ]c E m Eθ β θ= Ω           (3.23) 

Thus, equating equations (3.22) and (3.23) gives 
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2
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The blocked kinetic energy of the first pendulum is 
defined as the energy when the first oscillator is clamped so 
we can write  

2 2
1 1 1

1 1[ ]
2 2B o oml E UT θ= =

         (3.25) 
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Substituting equation (3.25) in (3.24) we obtain  

2

1
2 2 2

1 2
2 2 2 2 2

2 1 2 1 2 1 2 1 2

( )
{( ) ( ) }{( ) ( )

B

T
T

l
m p p p p

β βε γ
β β β β β

=

 Ω + Ω
 

Ω Ω + Ω + − Ω + Ω + +  
(3.26) 

Equation (3.26) shows that the rate of power flow from 
the first pendulum to the second (when the latter is under 
white noise random excitations) is dependent on the 
blocked frequencies 1Ω , 2Ω and the damping coefficients

1β , 2β . Since the blocked frequencies 1Ω and 2Ω are 
equal for this case, the rate of power flow will be maximum 
[13]. 

3.2. Two Coupled Pendula of Different Masses 

Substituting equations (2.14) and (2.18) in (2.32) we 
obtain  

( )

( )

2 4 4 2 2 3 4

2 2 2 3

2 1

1 0

nm l nm gl n mkl

nm g l n mgkl

ω ω  − + + 

+ + + =
    (3.27) 

Solving equation (3.27) and retaining only positive 
frequencies (physically sound) we obtain the natural 
frequencies of the system 1ω and 2ω as 

( )
1 2

1
,

ng g k
l l n m

ω ω
+

=   = +         (3.28) 

The system has two natural frequencies; the first is 
independent of the mass ratio and identical to that in section 
3.1. The second natural frequency 2ω  is dependent on n 
and for large values of n, 2ω  tends to a constant value as

1n n+ → . 
The equations of motion are  

1 1 0g
l

η η + = 
 



            (3.29) 
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1
0
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l n m

η η
 + 
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 



       (3.30) 

Since 1ω is the same as that of identical pendula, we can 
conclude that 

11 21a a α= =           (3.31) 

Similarly, for 2ω  we obtain: 

22 12
1a a
n

β= − =          (3.32) 

Thus  

1a
n

α β

α β

 
 =  − 
 

            (3.33) 

and using (2.38) gives 

2

2

0 0 0

1 1
0 00

ml

n nnml

α α α β

β β α β

             =      − −            

  (3.34) 

Solving equation (3.34), the values of α  and β  are 
obtained as 

( )
1

1l n m
α =

+
            (3.35) 

and  

( )
1

1 /l m n n
β =

+
          (3.36) 

Thus  

( ) ( )

( ) ( )

11

2 2

1 1
1 1 /

1
1 1 /

l n m l m n n

n
l n m l m n n

ηθ

θ η

   
    + +    =     −      + +    

   (3.37) 

Equation (3.37) gives 

( ) ( )1 1 2
1 1

1 1 /l n m l m n n
θ η η= +

+ +
    (3.38) 

and  

( ) ( )2 1 2
1 1

1 1 /l n m l m n n
θ η η= −

+ +
 (3.39) 

Using (3.38) and (3.39) the equations of motion are 
obtained as 

( ) ( )1 2 1 2 0gn n
l

θ θ θ θ+ + + =        (3.40) 

( ) ( ) ( )1 2 1 2
1

0
ng k

l n m
θ θ θ θ

 + 
− + + − = 

 
 

 
 (3.41) 

Adding equations (3.40) and (3.41) and re-arranging we 
obtain  

( )

1 2 1

2

( 1) ( 1)
2 2

1 ( 1)
2 2

n g n k
l n m

n g n k
l n m

θ θ θ

θ

− + + + + 
 

 − +
= + 

 

 

     (3.42) 

Assuming that 2θ  can be written in terms of 1θ  as 

2 1sθ θ=  , where s is any positive real number and taking 
mgd
kl

= , then (3.42) becomes 

1 1 1 2
1 ( 1) 1 (1 ) ( 1)

2 2
g n k n n d n kc

p l n m p n m
θ θ θ θ+ − + +   + + + =   

   
  (3.43) 

where 2
2

sn sp − +
=  

Subtracting equation (3.40) from (3.41) and re-arranging 
we obtain 
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2 2 1
1 1g k k

l n m n m
θ θ θ + + = 

 
         (3.44) 

Multiplying equation (3.43) and (3.44) by the respective 
masses, adding the damping and the external force terms 
gives 

1
1 1 1

1

1
2

1 2

1 ( 1)
2

( ) 1 (1 ) ( 1)
2

c g n k
m p l n m

F t n n d n k
m p n m

θ θ θ

θ

+ + + + 
 

− + + = +  
 

 

     (3.45) 

( )22
2 2 2 1

2 2 1

1 F tc g k k
m l n m m m

θ θ θ θ + + + = + 
 

   (3.46) 

Equations (3.45) and (3.46) can be re-written as   

( )12
1 1 1 1 1 1 2

1 1

(1 ) ( 1)2
2

F t n n d nB
m n m

εγθ θ θ θ− + + + Ω + Ω = +  
 

 

(3.47) 

( )22
2 2 2 2 2 2 1

2 1
2

F t
B

m m
εγθ θ θ θ+ Ω + Ω = +           (3.48) 

where 1
1

1 12
cB

m
=

Ω
, 2

2
2 22
cB

m
=

Ω
, 2

1
1 ( 1)

2
g a k

p l a m
+ Ω = +  

, 

2
2

1g k
l a m

Ω = +  

Setting 2 ( ) 0F t = , then the rate of power flow from the 
first to the second pendulum can be written as  

{ }{ }

12

2 2
1 1 1 2 2

2 2 2 2
1 2 1 1 2 2 1 2 1 1 2 2 1 2

2( )
( ) ( ) ( ) ( )

oU f
m m p p p p

ε γ β β
β β β β

=

 Ω + Ω 
 Ω + Ω + − Ω + Ω + + 

Π

(3.49) 

where (1 ) ( 1)
2

n n d nf
n

− + + =  
 

 

Thus, since the power input is dissipated by the damping 
of the second pendulum, the mean rate of power dissipation 
can be equated to (3.49) giving  

{ }{ }

2

2 2 2
1 1 1 2 2

2 2 2 2
1 2 2 1 1 2 2 1 2 1 1 2 2 1 2

( )
2 ( ) ( ) ( ) ( )

o

T

l U f
m m p p p p

ε γ β β
β β β β β

=

 Ω + Ω 
 Ω Ω + Ω + − Ω + Ω + + 

(3.50) 

The blocked kinetic energy of the first pendulum 1BT  is 
related to (3.50) as 

2

1
2

1 1 2
2

2 2 1
2 2 2 2

2 2 1 2 2 2 1 2
1 1

1 1 1 1

1

B

T
T

C

p p p p

β
β

β ββ β

=

  Ω Ω
+    Ω Ω  

         Ω − Ω −  + + + +         Ω Ω Ω Ω           

(3.51) 

where 
2 2 2

2 2
1 2 1 2

l fC
m m

ε γ
=

Ω Ω
 is the coupling parameter and the 

greater the value of C the stronger the coupling. For weak 
coupling, 410C −=  and 1 2 0.01β β= = . Thus equation 
(3.60) can be plotted using the calculated parameters in 
Table 3.1 as in Fig. 3.1.  

Table 1.  Relationship between ratios of kinetic energy 2 1/ BT T  and 

frequencies 2 1/Ω Ω  

H 1Ω (Hz) 2Ω (Hz) 2 1/Ω Ω  2 1/ BT T  

6.00 119.63 64.06 0.535000 0.000159 
4.00 123.82 78.39 0.633000 0.000282 
3.00 127.88 90.48 0.708000 0.000780 

2.00 135.63 110.77 0.817000 0.001156 
1.00 156.59 156.59 1.000000 0.125000 
0.75 169.13 180.79 1.070000 0.002522 

0.50 191.76 221.40 1.150000 0.001295 
0.25 247.53 313.08 1.260000 0.000574 

0.125 332.10 442.74 1.330000 0.000394 

0.06 465.23 639.03 1.370000 0.000327 

 
Figure 5.  Relationship between ratios of kinetic energy 2 1/ BT T  and 

frequencies 2 1/Ω Ω  

Equation (3.51) shows the rate of power flow from the 
first to the second pendulum. Fig. 5 is a plot of the kinetic 
energy of the second pendulum T2 to the blocked energy of 
the first T1B against the ratios of blocked frequency 

2 1/Ω Ω . Fig.3.1 shows that T2/ T1B is maximum when 

2 1/Ω Ω  equals one and is minimum when it tends to zero 
or infinity [13].  

3.3. Two Coupled Pendula of Different Lengths 

Equation (2.32) for this system gives 

( )

( )

2 2 4 4 2 2 4 2 3

2 2 2 3

2 1

1 0

h m l h mkl h h m gl

hm g l h h mgkl

ω ω  − + + 

+ + + =
 (3.52) 

If we let 4 2xω =  then  

( ) ( )2 2

2 2 2
1 1

1
2 4

h h gk g kx
m h l m h k l

+ −
= + ± +       (3.53) 
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Expanding the term inside the square root sign 
binomially and neglecting higher terms, gives 

( ) ( )2 2

1 2 2 2
1 1

2 4
h h ggx

h l h k l
+ −

= −           (3.54) 

( ) ( )2 2

2 2 2 2
1 12

2 4
h h gg kx

h l m h k l
+ −

= + +         (3.55) 

Considering only linear terms in l  and k  gives the 
normal frequencies of the system as  

( )
1

1
2

h g
h l

ω
+

=              (3.56) 

and  

( )
2

1 2
2

h g k
h l m

ω
+

= +            (3.57) 

The system has two natural frequencies both dependent on 
the length ratio l. 

The normal equations of motion of a system of two 
pendula of the same mass and different lengths is obtained 
as 

( )
1 1

1
0

2
h g

h l
η η

 + 
+ = 

 


          (3.58) 

( )
2 2

1 2 0
2

h g k
h l m

η η
 + 

+ + = 
 



        (3.59) 

Components of (2.36) are derived as  
1

21 11 2 11
(1 )

2
d ha h a aτ

−− = + =  
     (3.60) 

where mgd
kl

=  and 

1

22 12 2 12
(1 )

2
d ha h a aξ

−− = − + =  
   (3.61) 

Thus 

1 2
a

α β
τ α ξ β

 
=  

 
             (3.62) 

The relations between coordinates are  

( ) ( )
1 1

2 2 2 22 2
1 1 2

1 11 1i ih m h m
l l

θ τ η ξ η
− −

   = + + +      
(3.63) 

and  

( ) ( )
1 1

2 2 2 22 2
2 1 21 1i i

i ih m h m
l l

τ ξ
θ τ η ξ η

− −
   = + + +      

(3.64) 

The equations of motion are obtained after adding the 
effects of damping and external forces as  

( )11
1 1 1 2

( 1)
2

F tc h g k k
m h l m m m

θ θ θ θ+ + + + = + 
 

     (3.65) 

( )22
2 2 2 12

( 1)
2

F tc h g k k
m l m m mh

θ θ θ θ+ + + + = + 
 

    (3.66) 

or  
( )12

1 1 1 1 1 22
F t kB

m m
θ θ θ θ+ Ω + Ω = +        (3.67) 

( )22
2 2 2 2 2 12

F t kB
m m

θ θ θ θ+ Ω + Ω = +       (3.68) 

where 1
1 2

cB
m

=
Ω

, 2
2 2

cB
m

=
Ω

. 

The rate of power flow from the first to the second 
pendulum is obtained as  

2
2 2 2

2 1 1 2
2 2 2 2 2

2 1 2 1 2 1 2 1 2

( )
2 {( ) ( ) }{( ) ( )

o

T

l U
m p p p p

ε γ β β
β β β β β

=

 Ω + Ω
 

Ω Ω + Ω + − Ω + Ω + +  
(3.69) 

It can be showed that 
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1
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1 1 2
2

2 2 1
2 2 2 2

2 2 1 2 2 2 1 2
1 1

1 1 1 1

1

B

T
T

C

p p p p

β
β

β ββ β

=

  Ω Ω
+    Ω Ω  

         Ω − Ω −  + + + +         Ω Ω Ω Ω           

(3.70) 

where 
2 2 2

2
2 2 2

1 2

lC
m
ε γ

=
Ω Ω

 which is the coupling coefficient An 

illustration of (3.70) is shown in Table 2 and Fig. 6.  

Table 2.  Relationship between ratios of kinetic energy 2 1/ BT T
 
and 

frequencies 2 1/Ω Ω  

h 
1Ω (Hz) 2Ω (Hz) 2 1/Ω Ω  2 1/ BT T  

50.00 21.55 20.20 0.937 0.01117 
3.00 21.95 20.80 0.948 0.01596 
2.00 22.16 21.20 0.960 0.00979 

1.00 22.78 22.78 1.000 0.12500 
0.50 23.97 27.22 1.140 0.00727 
0.30 25.47 34.78 1.370 0.00026 

0.25 26.18 38.96 1.490 0.00017 

 
Figure 6.  Relationship between ratios of kinetic energy 2 1/ BT T  and 

frequencies 2 1/Ω Ω  
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It is observed from Fig. 6 that the power flow is maximum 
when the ratio of blocked frequencies is 1. 

3.4. Compound Pendula with Different Masses and 
Lengths  

Here, equation (2.32) gives  

( )

( )

2 2 4 4 2 2 4 2 3

2 2 2 3

( 1) 1

0

nh m l n h mkl nh h m gl

nhm g l h h n mgkl

ω ω  − + + + 

+ + + =
 (3.71) 

Considering only terms that are linear in l we can write 
the natural frequencies 1ω  and 2ω  of the system as 

1
( )
( 1)
n h g

h n l
ω +

=
+

             (3.72) 

( )
2

1 ( 1)
( 1)
nh g n k

h n l nm
ω

+ +
= +

+
        (3.73) 

Thus, the normal equations of motion are  

( )
1 1 0

( 1)
h n g

h n l
η η

+
+ =

+


         (3.74) 

( )
2 2

1 ( 1) 0
( 1)
nh g n k

h n l nm
η η

 + +
+ + = + 


    (3.75) 

Also, 
12

21 11 2 11
( )

( 1)
dn h aa h a a

n
τ

−
 −

= + = + 
      (3.76) 

1

22 12 2 12
( 1)

( 1)
dn ha nh a a
h n

ξ
−

 −
= − + = +   

    (3.77) 

and 

a
α β
τα ξβ

 
=  

 
             (3.78) 

Hence 

( ) ( )

( ) ( )

1 1
2 2 2 22 2
1

1 1
2 2 2 22 2
1

1 11 1

1 1

h m h m
l la

h m h m
l l

τ ξ

τ ξτ ξ

− −

− −

 
    + +    =  

    + +     

  (3.79) 

and 

( )

( )

1
2 2 2

1 2 1 1

1
2 2 2

2

(1 ) 1

(1 ) 1

h m
l

h m
l

τθ θ τ η

ξ ξ η

−

−

+  + = + 

+  + + 

      (3.80) 

( )
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1 2 1 1

1
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2

(1 ) 1
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l
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l

τθ θ τ η

ξ ξ η

−

−

−  − = + 

−  + + 

     (3.81) 

Assuming that 2 1qη η=  where q is any real number, we 
can re-write equations (3.80) and (3.81) as  

( )
1 2 1 2( ) ( ) 0

( 1)
h n g

h n l
θ θ θ θ

 + 
+ + + = + 

     (3.82) 

( )
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1 ( 1)( ) ( ) 0
( 1)
nh g n k

h n l n m
θ θ θ θ

 + +
− + + − = + 

   (3.83) 

The equations of motion are obtained as: 

( )

1
1 1 1

1 1 1

1
2

1 1

( 1) ( 1) ( 1)
2 ( 1) 2

c h n h g n k
m h n l n m

F t kf
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θ
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(3.84) 
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2 ( 1) 2

c h n h g n k
m h n l n m

F t kf
m m

θ θ θ

θ

 + + + +
+ + + + 

= +

 

(3.85) 

or  

( )12
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2

F t kB f
m m

θ θ θ θ+ Ω + Ω = +        (3.86) 

( )22
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2 2
2

F t kB f
m m

θ θ θ θ+ Ω + Ω = +       (3.87) 

Where 1
1

1 12
cB

m
=

Ω , 2
2

2 22
cB

m
=

Ω and 
( 1)( 1) ( 1)

( 1) 2
d n h nf

h n n
− − +

= +
+  

The rate of power flow from the first to the second 
pendulum is  

{ }{ }
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2 2 2
2 1 1 1 2 2

2 2 2 2 2
2 2 1 1 2 2 1 2 1 1 2 2 1 2
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=
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(3.89) 

and the blocked kinetic energy 1BT  of the first pendulum 
is related to the power flow as:  
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where 
2 2 2
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2
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ε γ

β
=
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Equation (3.90) can be illustrated as in Table 3 and Fig. 
7. 

Equation (3.90) shows the rate of power flow from the 
first to the second pendulum when the first is under white 
noise random excitations and Fig. 7, is a plot of T2/ T1B 
against 2 1/Ω Ω . It can be observed that the power flow is 
maximum when the ratio of blocked frequencies is 1. 
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Table 3.  Relationship between ratios of kinetic energy 2 1/ BT T  and 

frequencies 2 1/Ω Ω  

N H 1Ω
(Hz) 

2Ω
(Hz) 

2 1/Ω Ω  2 1/ BT T  

4.00 4.00 123.79 61.90 0.500000 0.000133 
3.00 3.00 127.85 73.45 0.570000 0.000444 

2.00 2.00 135.67 95.89 0.710000 0.000588 
1.00 1.00 156.59 156.59 1.000000 0.124900 
0.90 0.90 160.84 169.74 1.055000 0.014820 

0.80 0.80 166.08 185.61 1.120000 0.003530 
0.70 0.70 172.25 206.26 1.200000 0.001347 
0.60 0.60 180.93 232.26 1.280000 0.000709 

0.50 0.50 191.78 271.22 1.410000 0.000347 

 
Figure 7.  Relationship between ratios of kinetic energy 2 1/ BT T  and 
frequencies 2 1/Ω Ω  

3.5. Application of Power Flow in Compound Pendulum 
to an Optical Switch  

Fig. 8 shows an optical switch which is a device that 
allows optical signals to be switched on and off or switched 
from one channel to another. An optical switch is made of 
two parallel waveguides coupled with a directional coupler 
[14]. A directional coupler is made of two optical 
waveguides that are brought close to each other in such a 
way that their respective optical modes can interact and 
split into even and odd symmetries that allow the transfer of 
power between them [15]. For an optical switch, the relative 
phase difference between the supermodes of the coupling 
system must be π and hence the value of the coupling length 
Lc must be chosen to satisfy this condition.  

 

Figure 8.  A schematic diagram of an optical switch [16] 

Fig. 9 explains the theory of switching in an optical 
directional coupler, in Fig. 9 (a) the optical signal is 

transferred through the upper waveguide, at 0z = , the two 
modes interact, the odd mode is shown with red while the 
even mode is blue. The region where both symmetries 
interfere (shown in green in (Fig. 9 (b))) is where is optical 
signal is transmitted to. Similarly at cz L= , the phase shift 
between the even mode and odd mode is π and the 
interaction between the two mode leads to the switching of 
the optical signal from the upper to the lower waveguide 
(Fig. 9 (c) and (d)). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9.  Theory of switching [16] 

Coupled pendulum system is analogous to coupled 
transmission lines and understanding the behavior of 
coupled pendulum system can aid in explaining the 
behavior of coupled transmission lines and other related 
devices. In 1996, the coupled mode theory was used to 
analyze both systems and it was found that a system of two 
weakly coupled identical pendula and two weakly coupled 
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pendula of different lengths can be used to model the basic 
behavior of an optical switch. In an optical switch, a 
deriving voltage is used to change the phase constants of the 
waveguides, when the phases are equal, the power is 
transferred between the waveguides and when the voltage is 
applied, the phase constants are no longer equal and there is 
no power transfer between the waveguides [17]. 

From Fig 9, it can be deduced that the effect of the 
driving voltage can be visualized as changing the length 
ratio of the pendula system and the net power flow 
corresponds to the case when h=1 i.e. when the system 
reduces to the identical pendula case. When 1h ≠ , the 
phase constants are not equal and hence there will be no net 
power flow between the waveguides. 

4. Conclusions 
The coupled pendula system has been used for decades as 

a model to simulate natural phenomena and hence knowing 
the natural and blocked frequencies, general equations of 
motion and rate of power flow between the components    
of such systems is crucial. In this research work, four cases 
of two weakly coupled pendula systems were taken into 
consideration. Analytical tools were used to derive the rate of 
power flow under white noise random excitations between 
the two oscillators. Higher order terms of the frequencies can 
be included to obtain more accurate results. Future 
researches may be done to obtain the same parameters for 
strongly coupled pendula. Computational and experimental 
components can be added to this research. 
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