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Abstract  Schrodinger harmonic oscillator equation in the momentum space in friction medium (Harmonic Oscillator 
Soliton model) was used to describe properties of two types of solitons, permanent and time dependent. First one a bell 
soliton has a permanent profile, while other one is breathers have an internal dynamic, even So, their shape oscillates in time. 
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1. Introduction 
Solitons were first described by N.J. Zabusky and M.D. 

Kruskal [1] in 1965 and they form now a paradigm in 
mathematical physics (see also [2, 3, 4]). Soliton is a solitary 
wave with finite energy and the necessary conditions of its 
existence include nonlinearity and dispersion. Soliton 
dynamics is one of the hot topics due to wide applications  
in hydrodynamics, electronics, solid mechanics, biophysics 
and other disciplines, [5] They dealt with the dynamics    
of one-dimensional (1D) anharmonic lattices and their  
(quasi) continuum approximation [5] provided by the 
Boussinesq–Korteweg- de-Vries equation [6, 7, 8]. That 
work followed research done by Schrödinger, gives the 
Nonlinear Schrödinger Equation (NLSE) [9, 10]. It appears 
in various physical contexts to describe the propagation of 
nonlinear waves [11]. 

The nonlinear models [12-16] well-known nowadays are 
such as the KdV equation and the nonlinear Schrödinger 
equation (NSE). There are explained by the fact that they 
describe a wide spectrum of phenomena in various nonlinear 
media; their fundamentality consists in a latent symmetry in 
the one-dimensional case which results in the integrability of 
the given equations by the inverse scattering transform. The 
methods of soliton stability studies are also within the 
framework of these models. The KdV equation arises when 
describing weakly nonlinear waves in media with a 
dispersion law w(k) which is close to the linear one. 

The nonlinear Schrödinger equation is usually used for the   
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description of the propagation of wave packets with a small 
amplitude, i.e., when the field differs weakly from a 
harmonic one and nonlinear effects are small. This gives an 
opportunity to take into account dispersion and nonlinear 
effects separately for the derivation of the equation which 
describe the wave packet envelope, where a slowly varying 
function of space and time [16]. 

We confirm that quantum friction is inevitably related to 
material dispersion, and that such friction vanishes in 
nondispersive media. Very interestingly, the harmonic 
oscillator comprises one of the most important examples of 
elementary Quantum Mechanics. There are several reasons 
for its pivotal role. The linear harmonic oscillator describes 
vibrations in molecules and their counterparts in solids,   
the phonons. Many more physical systems can, at least 
approximately, be described in terms of linear harmonic 
oscillator models. However, the most eminent role of this 
oscillator is its linkage to the electron, one of the conceptual 
building blocks of microscopic physics. For example, 
electron describe the modes of the radiation field, providing 
the basis for its quantization [17]. 

While trying to understand soliton creation, we used the 
mathematical aspects of the quantum friction instabilities are 
manifested in the fact that the system may support natural 
modes of oscillation that grow exponentially with time   
[18, 19, 20], even in presence of system loss [21]. 

There are a few ways to classify solitons [22]. All solitons 
can be divided into two groups by taking into account their 
profiles: permanent and time dependent. For example, kink 
solitons have a permanent profile (in ideal systems), while all 
breathers have an internal dynamic, even, if they are static. 
So, their shape oscillates in time. 

The aim of this work, we discuss common properties of 
solitons on the basis of the Harmonic Oscillator Soliton 
model that was discussed in the paper [23] ''Quantization of 
Harmonic Oscillator Soliton by Friction Term Method'' 
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where we were established definite link between the classical 
effect and quantum friction for harmonic oscillator soliton. 

2. Theoretical Model 
In ordinary quantum mechanics Schrodinger equation can 

be written in momentum representation in the following 
form [24]: 

𝐻𝐻Ψ(p, t) = iћ 𝜕𝜕Ψ(p,t)
𝜕𝜕𝜕𝜕

             (1) 

where 𝑖𝑖 is the imaginary number √𝑖𝑖, ħ is the reduced Planck 
constant which is h/2π, 𝜓𝜓(p, 𝑡𝑡) is the wave function of the 
quantum system, p is the momentum in a one-dimensional 
coordinate system, and t the time. 𝐻𝐻  is the Hamiltonian 
operator (which characterizes the total energy of the system 
under consideration). 

The use of the harmonic oscillator model is that almost 
any potential can be approximated as a harmonic oscillator. 
When the oscillating string is embedded in a resistive 
matter or crystal, having crystal field of potential 𝑉𝑉𝑜𝑜 , the 
total Hamiltonian operator is given by 

𝐻𝐻 = 𝐻𝐻𝑜𝑜 + 𝑉𝑉𝑜𝑜 + 𝐸𝐸𝑓𝑓 = 𝐻𝐻𝑜𝑜 + 𝑉𝑉𝑜𝑜𝑜𝑜          (2) 

Where, 𝐻𝐻𝑜𝑜  is the Hamiltonian operator for an undamped 
harmonic oscillator, 𝐸𝐸𝑓𝑓  is frictional energy for the 
harmonic oscillator affected by a resistive force of friction, 
while the friction force is inversely proportional to the 
relaxation time τ  [25, 26], thus the potential takes the 
following form [23]:  

𝑉𝑉𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜 + 𝐸𝐸𝑓𝑓 = ±𝑉𝑉𝑜𝑜 ± i ћ 
τ

             (3) 

Hence the total Hamiltonian oscillator in equation (2) 
assumes the form:   

𝐻𝐻 = 𝐻𝐻𝑜𝑜 + 𝑉𝑉𝑜𝑜𝑜𝑜 + 𝐸𝐸𝑡𝑡 = 𝐻𝐻𝑜𝑜 + 𝑉𝑉1           (4) 

Where, 𝐸𝐸𝑡𝑡 = ±𝛾𝛾𝑜𝑜𝑘𝑘𝑘𝑘  standing for thermal energy and 
𝑉𝑉1 = 𝑉𝑉𝑜𝑜𝑜𝑜 ± 𝛾𝛾𝑜𝑜𝑘𝑘𝑘𝑘. 

The classical harmonic oscillator is most frequently 
introduced as a mass on an undamped spring, The 
Hamiltonian is thus given by: 

𝐻𝐻𝑜𝑜 = P2

2m
+ 1

2
 kx2                 (5) 

𝐻𝐻𝑜𝑜  is the Hamiltonian operator acting on a complex 
wave-function, ψ(x, t), whose time evolution is governed by 
the Schrödinger equation [24]:  

𝐻𝐻𝑜𝑜𝜓𝜓(𝑥𝑥, 𝑡𝑡) = iћ 𝜕𝜕𝜓𝜓(𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝜕𝜕

               (6) 

Quantization of this system is done by replacing the 
classical variables p and x by the operators p�  and x�, In the 
view of equations (1,3,4,5) and using the fact that in 
momentum space: 

𝑝̂𝑝 = 𝑝𝑝 ,         𝑥𝑥� = −ℎ
𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕

              (7) 

One gets, the Schrodinger equation in momentum 
representation as the following equation:  

�P2

2m
− 1

2
 kℎ2 𝜕𝜕2

𝜕𝜕𝑝𝑝2�Ψ(p, t) + 𝑉𝑉1Ψ(p, t) = iћ 𝜕𝜕Ψ(p,t)
𝜕𝜕𝜕𝜕

    (8) 

One can easily find solutions of the Schrödinger equation 
by separating the variables, i.e. 

Ψ(p, t) = Ψ(p)𝑓𝑓(𝑡𝑡)               (9) 
such that one can write the harmonic oscillator equation in 
the momentum space. This can be obtain by equations (1) 
and (2): 

1
Ψ(𝑝𝑝)

� 𝑝𝑝
2

2𝑚𝑚
− 1

2
𝑘𝑘ћ2 𝜕𝜕2

𝜕𝜕𝑝𝑝2�Ψ(𝑝𝑝) + 𝑉𝑉1  =  𝑖𝑖ћ
𝑓𝑓(𝑡𝑡)

𝜕𝜕𝜕𝜕 (𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝐸𝐸    (10) 

Then the momentum part is given by  
𝑝𝑝2

2𝑚𝑚
Ψ(𝑝𝑝) − 1

2
𝑘𝑘ћ2 𝜕𝜕2

𝜕𝜕𝑝𝑝2 Ψ(𝑝𝑝) = (𝐸𝐸𝑜𝑜  ) Ψ(𝑝𝑝)  = (𝐸𝐸 − 𝑉𝑉1) Ψ(𝑝𝑝)   
(11) 

Carrying out the rearranging  
𝜕𝜕2Ψ(𝑝𝑝) 
𝜕𝜕𝑝𝑝2 −   𝑝𝑝2

 𝑚𝑚𝑚𝑚ћ2 Ψ(𝑝𝑝) = �− 2𝐸𝐸𝑜𝑜
𝑘𝑘ћ2 �  Ψ(𝑝𝑝)       (12) 

This A differential equation for wave function in 
momentum tells us that we want to find a function whose 
second derivative is proportional to the negative of itself. But 
we already know some functions with this property, namely 
sines, cosines, and exponentials. So, let’s be fairly general 
and try a solution of the form the integral of a derivative of a 
function is the function plus an arbitrary constant. The 
arbitrary constant represents the lost information resulting 
from when the derivative is calculated. 

The wave function in momentum space is given according 
equation (12) by 

  𝑝𝑝
2

 2𝑚𝑚
Ψ − 𝐶𝐶𝑜𝑜Ψ𝐼𝐼𝐼𝐼  = 𝐸𝐸 𝑜𝑜Ψ            (13) 

With  

𝐶𝐶𝑜𝑜 = 1
2
𝑘𝑘ћ2 −  1

2
𝑚𝑚ћ2𝜔𝜔0

2            (14) 

Consider now the solution  

Ψ = 𝐴𝐴𝑒𝑒−𝛼𝛼𝑝𝑝2               (15) 
Thus, 

Ψ𝐼𝐼𝐼𝐼 = −2𝛼𝛼Ψ − 2𝛼𝛼𝑝𝑝Ψ𝐼𝐼 = −2𝛼𝛼Ψ + 4𝛼𝛼2𝑝𝑝2Ψ   (16) 
Inserting eq (16) in eq (13) gives 

� 𝑝𝑝
2

 2𝑚𝑚
− 𝐶𝐶𝑜𝑜(−2𝛼𝛼 + 4𝛼𝛼2𝑝𝑝2)�  Ψ = 𝐸𝐸 𝑜𝑜Ψ      (17) 

Equating the coefficient of 𝑝𝑝2 and free term, one gets 
2𝛼𝛼𝐶𝐶𝑜𝑜 = 𝐸𝐸 𝑜𝑜                   (18) 

Thus, from eq (14) and eq (17) 

𝛼𝛼 = ± 1
 2�2𝑚𝑚𝐶𝐶𝑜𝑜

= ± 1
 2𝑚𝑚ћ𝜔𝜔𝑜𝑜

             (19) 

Thus, from eq. (18) 

𝛼𝛼 = 𝐸𝐸 𝑜𝑜
2𝐶𝐶𝑜𝑜

= 𝐸𝐸 𝑜𝑜
𝑚𝑚ћ2𝜔𝜔𝑜𝑜2

              (20) 

In view of eq (20) and equation (19) 

 𝐸𝐸 𝑜𝑜 = ± 1
2
ћ𝜔𝜔𝑜𝑜                 (21) 

This predict zero-point energy which may be positive or 
negative. 
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The negative zero-point energy is rejected due to the fact 
that restoring force resembles an attractive force since it 
tends to attract the particle towards the origin against the 
direction of coordinate x, in view of equation (15) and 
equation (19) by choosing positive sign  

𝛼𝛼 = 1
 2𝑚𝑚ћ𝜔𝜔𝑜𝑜

                  (22) 

Using the fact that, according to Special Relativity  
𝑚𝑚𝑐𝑐2 = ћ𝜔𝜔𝑜𝑜                  (23) 

𝛼𝛼 = 𝑐𝑐2

 2(ћ𝜔𝜔𝑜𝑜 )2                  (24) 

But equation (15) tells that, the probability for having 
momentum p is 

|Ψ|2 = 𝐴𝐴2𝑒𝑒−2𝛼𝛼𝑝𝑝2               (25) 
The probability is maximum for 

2𝛼𝛼𝑝𝑝2 < 1                   (26) 
i.e. 

𝑝𝑝2 < 1
2𝛼𝛼

                    (27) 

Using equation (24) the momentum becomes satisfied:  

𝑝𝑝 < ћ𝜔𝜔𝑜𝑜
𝑐𝑐

                    (28) 

But the Wave-particle duality as expressed by the de 
Broglie wave equation requires 

𝑝𝑝 = ℎ
𝜆𝜆

= ℎ
2𝜋𝜋

2𝜋𝜋𝜋𝜋
𝑐𝑐

= ћ𝜔𝜔
𝑐𝑐

               (29) 

Therefore, by substituting eq (29) in eq (28) one gets:   
𝜔𝜔 ≤ 𝜔𝜔𝑜𝑜                     (30) 

This means that the most probable momentum state is that 
for the frequency of oscillation near the natural frequency. 

In view of eq (29) and equation (15) the equation of a bell 
soliton given by: 

Ψ = 𝐴𝐴𝑒𝑒−�
ћ𝜔𝜔
𝑐𝑐 �𝑝𝑝

2
              (31) 

 
Figure (1).  The shape of A bell soliton 

The soliton solution has a bell shape and a low frequency.   
Another soliton solution corresponds to the negative value 

of 𝛼𝛼 in equation (19), i.e. 

𝛼𝛼 = − 1
 2𝑚𝑚ћ𝜔𝜔𝑜𝑜

= −𝛽𝛽               (32) 

In view of equation (15) 

Ψ = 𝐴𝐴𝑒𝑒𝛽𝛽𝑝𝑝2                    (33) 
This momentum soliton requires p to be very small, to 

secure finite probability, which again conform with the fact 
that the most probable momentum should be very small. The 
soliton shape in the momentum space visualized by taking in 
to account equations (4, 12, 13) and (17) beside equation (20) 
to get  

𝛼𝛼 = 𝐸𝐸 𝑜𝑜
2𝐶𝐶𝑜𝑜

=
𝐸𝐸 𝑜𝑜ћ𝜔𝜔+𝑉𝑉𝑜𝑜+𝛾𝛾𝑜𝑜𝑘𝑘𝑘𝑘− iћ 

τ
2𝐶𝐶𝑜𝑜

= β𝑜𝑜 −
 iћ

τ𝑚𝑚ћ2𝜔𝜔𝑜𝑜2
     (34) 

𝛼𝛼 = β𝑜𝑜 −
 iћ

τ𝑚𝑚2𝑐𝑐2ћ𝜔𝜔𝑜𝑜
= β𝑜𝑜 −

 iλ𝑜𝑜
τ𝑚𝑚2𝑐𝑐2(2𝜋𝜋𝑓𝑓𝑜𝑜λ𝑜𝑜 )

       (35) 

𝛼𝛼 = β𝑜𝑜 −
 ix𝑜𝑜

πτ𝑚𝑚2𝑐𝑐2𝑣𝑣𝑜𝑜
= β𝑜𝑜 − iγx𝑜𝑜           (36) 

Where, one assumes 𝑚𝑚𝑐𝑐2 = ћ𝜔𝜔𝑜𝑜  
γ = (πτ𝑚𝑚2𝑐𝑐2𝑣𝑣𝑜𝑜)−1               (37) 

thus, in view of equations (7) and (15) the soliton in the 
momentum space is given by:  

Ψ(p, t) = Ψ(p)𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝2𝑥𝑥𝑜𝑜 𝑒𝑒−𝛽𝛽𝑝𝑝2    (38) 

Ψ(p, t) = A𝑒𝑒−𝛽𝛽𝑝𝑝2𝑒𝑒𝑖𝑖�𝛾𝛾𝑝𝑝2𝑥𝑥𝑜𝑜−𝜔𝜔𝜔𝜔 � 𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝2𝑥𝑥𝑜𝑜         (39) 
Under the influence of friction, the solitons slow down and 

decay rapidly, here, 𝐴𝐴 𝑒𝑒−𝛽𝛽𝑝𝑝2𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝2𝑥𝑥𝑜𝑜  is a function describing 
the wave envelope. The definition of an envelope is a 
function which varies much more slowly in momentum 
space as compared to the phase of the wave is preserving its 
shape fig. (2). Such solution is called the breather soliton  
fig. (3) and it can be considered as a complex root of soliton. 

 

Figure (2).  The shape of the enveloping curve in the momentum space (the 
dashed line) 

 
Figure (3).  The shape of the breather Soliton  
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3. Discussion 
The Equation (1) represents Schrodinger equation in the 

momentum space describes, at least in the one-dimensional 
case, the evolution of wave oscillations, by using the 
modeling of the harmonic oscillator embedded in a crystal 
having friction eqs. (3-5). Thus, the result of the perturbation 
analysis concerning the soliton growth rate. 

This equation is simplified separate variables as shown by 
equations (10, 11). 

The solution in equation (15) shows soliton wave with 
negative and positive rest mass energy, the positive one is 
strikingly typical to that of the quantum oscillator's negative 
one predicts the existence of the anti-particles, this means 
that our model is more informative than that in the coordinate 
space. 

In the eq (19) for positive alpha the wave function predicts 
Exponential soliton which describe a bell soliton, which  
that like Pulses with a certain shape and energy that can 
propagate unchanged over large distances with speed c. 

For negative alpha in the eq (19) the maximum probability 
is near to the zero-point energy, this conforms with the fact 
that the particles tend to have minimum energy. This solution 
represents decaying soliton in the momentum space. This 
means physically that particles tend to occupy lower energy 
states. 

If the wave amplitude varies periodically in this manner, 
the envelope of the wave also becomes a periodic function. 

Eq (39) show that under the influence of friction, the 
solitons only slow down and eventually stop and, at rest, they 
can live eternally in infinite system. eq (39) represent 
travelling wave in the momentum space with exponentially 
decaying amplitude as shown in fig. (2). Furthermore, we 
assume that the envelope varies slowly in time and space (as 
compared to the carrier wave). 

We recognize that waves do not necessarily have the same 
amplitude. If we observe them carefully, we note that several 
waves with relatively low amplitude are followed by one or 
two waves with large amplitude. Hence, the amplitude of the 
wave varies gradually with time and space, as is shown in  
Fig. 3. This is a phenomenon of wave amplitude modulation 
caused by modulational instability. 

The fact that the breather function is a slowly varying 
function of momentum space indicates that the frequency 
spectrum has a localized structure around the carrier 
frequency, as shown in Fig. 3. In this figure shows the width 
of the frequency spectrum of the envelope function. 

4. Conclusions 
In the present work, one considered the harmonic 

oscillator soliton equation in the momentum space, this a 
differential equation for wave function shows that, we have 
two solitons solutions, one is a bell soliton, where the most 
probable momentum state is that makes the frequency of 
oscillation near the natural frequency. This means that 

particles prefer occupying minimum zero point energy. The 
second solution describes breather solitons having tendency 
to occupy minimum enegy states. 
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