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The Schrödinger Equation and Asymptotic Strings 
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Abstract  One can represent quantum mechanics with real wave functions. The use of real wave functions leads to the 

interpretation of a single particle as consisting of two entities represented as coupled wave functions. Probability distributions 

are shown to be preserved for coupled wave functions just as for a single complex function. Assuming a string model [12-17], 

a double coupled string description is suggested, whereby the Schrödinger equation emerges naturally. This double-string 

description assumes a time-dependent tension [18] in the strings, together with a time-dependent interaction between the two 

strings. If the time pattern is similar for both tension and interaction, their ratio is shown to be ℏ/2. This leads to the derivation 

of Planck's constant as a result of strings interactions and characteristics. 
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1. Introduction 

The Schrödinger equation is a mathematical equation that 

describes changes over time of a physical system in which 

quantum effects, such as wave–particle duality, are 

significant. These systems are referred to as quantum 

(mechanical) systems. The equation is considered a central 

result in the study of quantum systems, and its derivation was 

a significant landmark in the development of the theory of 

quantum mechanics. It was named after Erwin Schrödinger, 

who derived the equation in 1925 and published it in 1926 

[1]. 

In 1952, Bohm [2] attempted to justify the Schrödinger 

equation with the existence of hidden variables. In 1966, 

Nelson [3] suggested a classical formulation of the equation, 

based on the hypothesis that every particle of mass m is 

subject to a Brownian motion with a diffusion coefficient 

ℏ/2m and no friction.  

Ever since, many solutions have been given to the 

Schrödinger equation, for various physical systems [4-10].  

In this work, a formulation of quantum mechanics without 

use of complex numbers is described and is shown to be 

equivalent to the complex formulation. Moreover, dealing 

with the real and imaginary parts separately, a single particle 

shows a 2-entities behavior. As a result, a double-string 

description is suggested, whereby the Schrödinger equation 

emerges naturally. This double-string description assumes a 

time-dependent decaying tension in the strings, together with  
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a time-dependent interaction between the two strings. If the 

decay pattern is similar for both tension and interaction, their 

ratio is shown to be ℏ/2. 

2. A Non-relativistic Schrödinger 
Equation 

In non-relativistic quantum mechanics, a particle (such  

as an electron or proton) is described by a complex 

wave-function, ψ(x, t), whose time evolution is governed by 

the Schrödinger equation [9]: 

−𝒊ℏ
𝝏

𝝏𝒕
 𝝍 𝒙, 𝒕 =  𝓗𝝍 𝒙, 𝒕  

=  −
ℏ

𝟐𝒎
 
𝝏𝟐𝝍 𝒙,𝒕 

𝝏𝒙𝟐
+ 𝑽 𝒙 𝝍 𝒙, 𝒕         (1) 

Here, m is the particle's mass and V(x) is the applied 

potential. Physical information about the behavior of the 

particle is extracted from the wave function by constructing 

expected values for various quantities; for example, the 

expected value of the particle's position is given by 

integrating ψ*(x) x ψ(x) over all of space, and the expected 

value of the particle's momentum is found by integrating −iħ 

ψ*(x) ψ/x. The quantity ψ*(x)ψ(x) is itself interpreted as a 

probability density function. This treatment of quantum 

mechanics, where a particle's wave function evolves against 

a classical background potential V(x), is sometimes called 

first quantization. 

𝜓 𝑥, 𝑡  may be written as a linear combination of the 

functions 𝜑𝑖 𝑥, 𝑡 , which are solutions of ℋ𝜑𝑖 𝑥, 𝑡 =

 iℏ
𝜕𝜑𝑖 𝑥,𝑡 

𝜕𝑡
. 

𝜑𝑖 𝑥, 𝑡 dx may be interpreted as the probability density 

of a single particle in the ith energy state, to be found at an 

interval dx around position x. 

https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Wave%E2%80%93particle_duality
https://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Wavefunction
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Potential
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Probability_density_function
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3. Real Wave Functions 

The introduction of imaginary and complex numbers is 

nothing but a mathematical convenience for shortening and 

unifying our equations. Physical problems cannot rely on 

imaginary numbers, except for the purpose of mathematical 

comfort. Obviously, since complex entities can always be 

decomposed into real and imaginary parts and vice versa, 

using natural (real-entities only) approach does not 

contribute anything and makes things unjustifiably more 

complex. But, by using complex presentation we might be 

overlooking some hidden qualities. 

The basic equation of quantum mechanics is the famous 

one-particle time-dependent Schrödinger equation: 

−𝒊ℏ
𝝏

𝝏𝒕
 𝝍 𝒙, 𝒕 =  𝓗𝝍 𝒙, 𝒕            (2) 

where 𝑖 is the imaginary number  −1, ħ is the reduced 

Planck constant which is hthe symbol ∂/∂t indicates a 

partial derivative with respect to time t, 𝜓 𝑥, 𝑡  (the Greek 

letter psi) is the wave function of the quantum system, x    

is the position in a one-dimensional coordinate system,  

and t the time. ℋ  is the Hamiltonian operator (which 

characterizes the total energy of the system under 

consideration). 

Where 

𝓗 =  −
𝒑𝟐

𝟐𝒎
 + 𝒗 𝒙               (3) 

with 𝑝 = −𝑖ℏ
𝜕

𝜕𝑥
 and where 𝑣(x)  =  𝑣1(x) +  i𝑣2(x)  is 

the potential energy, which may also have real and imaginary 

parts 𝑣1 and 𝑣2, respectively. 

As described by Hatfield [16], One may separate the 

complex wave function into its real and imaginary 

components. 

𝝍 𝒙, 𝒕 =  𝝋𝟏 + 𝒊 𝝋𝟐            (4) 

Using a vector notation may be useful: 

|𝜳 > =  
𝝋𝟏

𝒊𝝋𝟐
                (5) 

and the Schrödinger equation may be written: 

−𝒊ℏ
𝝏

𝝏𝒕
 |𝜳 > =  𝐻|𝛹 >             (6) 

or 

−𝑖ℏ
𝜕

𝜕𝑡
  
𝜑1

𝑖𝜑2
  =  ℋ  

𝜑1

𝑖𝜑2
  

When separated into real and imaginary components, it is 

equivalent to: 

𝝏𝝋𝟏

𝝏𝒕
= + 

ℏ

𝟐𝒎
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
− 𝒗𝟐 𝒙 𝝋𝟏 − 𝒗𝟏 𝒙 𝝋𝟐    (7) 

𝝏𝝋𝟐

𝝏𝒕
=  −

ℏ

𝟐𝒎
 
𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
+ 𝒗𝟏 𝒙 𝝋𝟏 − 𝒗𝟐 𝒙 𝝋𝟐    (8) 

This form indicates the coupling that exists between the 

two constituent entities, which comprise the "single" 

particle. 

We remember that 𝜓 𝑥, 𝑡 𝑑𝑥  is interpreted as the 

probability density of finding a single particle at an interval 

dx around position x. 

Likewise, since 𝜓 𝑥, 𝑡 =  𝜑1 + 𝑖 𝜑2  

and  𝜓∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡 𝑑𝑥 = 1 

then 

  (𝝋𝟏 − 𝒊 𝝋𝟐) ∗  (𝝋𝟏 + 𝒊 𝝋𝟐) 𝒅𝒙  

=    (𝝋𝟏
𝟐 + 𝝋𝟐

𝟐)  𝒅𝒙 = 1            (9) 

Here, all integrals over f(x) are definite integrals over an 

interval of length L  ∞: 

 𝒅𝒙 𝒇 𝒙 ≡  
𝟏

𝑳
 𝒇 𝒙 𝒅𝒙

+𝑳/𝟐

−𝑳/𝟐
        (10) 

Therefore, one may interpret this as two particles 

interacting with each other, whose probability densities 𝜑1
2 

and 𝜑2
2 are affected by each other, and yet, they sum up to 

1. However, we cannot tell their probabilities apart. 

The Schrödinger equation is now interpreted as two 

probability density functions coupled according to eqs. [7] 

and [8]. 
The complex wave equation of a single particle, as 

described by the Schrödinger equation, is actually a 

mathematical description of two real wave functions. A 

single particle may be interpreted as a coupled two-waves 

entity (particles?). 

Surprising Results 

Presentation of quantum mechanics with real 

wave-functions does not produce contradicting results to the 

complex presentation. This is obvious, as complex 

presentation is nothing but a mathematical manipulation of 

real variables. 

However, when using real wave functions, some hidden 

characteristics emerge. 

We shall see in the following, that the two real entities of 

which the particle comprises of, behave in an unexpected 

manner. 

4. Linear Momentum 

In terms of quantum mechanics, we have for the particle's 

momentum: 

𝒑 𝒙|𝜳 >= 𝒑 𝒙  
𝝋𝟏

𝒊𝝋𝟐
 = −𝒊ℏ

𝝏

𝝏𝒙
  
𝝋𝟏

𝒊𝝋𝟐
      (11) 

Looking at the real and imaginary parts separately, we see 

that this is equivalent to: 

𝒑 𝒙𝝋𝟏 = 𝑹𝒆𝒂𝒍  −𝒊ℏ
𝝏

𝝏𝒙
  
𝝋𝟏

𝒊𝝋𝟐
   =  + ℏ

𝝏

𝝏𝒙
𝝋𝟐  (12) 

𝒑 𝒙𝝋𝟐 = 𝑰𝒎  −𝒊ℏ
𝝏

𝝏𝒙
  
𝝋𝟏

𝒊𝝋𝟐
   =  −ℏ

𝝏

𝝏𝒙
𝝋𝟏    (13) 

Using equations [7, 8], the Schrödinger equation for a free 

particle (v(x) =0) is 

𝝏

𝝏𝒕
𝝋𝟏  = + 

ℏ

𝟐𝒎

𝝏𝟐

𝝏𝒙𝟐
𝝋𝟐           (14) 

𝝏

𝝏𝒕
𝝋𝟐  =  −

ℏ

𝟐𝒎

𝝏𝟐

𝝏𝒙𝟐
𝝋𝟏           (15) 

Multiply eq [14] and [15] by 𝜑1  and 𝜑2  respectively, 

one obtains: 

https://en.wikipedia.org/wiki/Imaginary_unit
https://en.wikipedia.org/wiki/Planck_constant
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Psi_(letter)
https://en.wikipedia.org/wiki/Wave_function
https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
https://en.wikipedia.org/wiki/Operator_(physics)
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𝟏

𝟐

𝝏 𝝋𝟏
𝟐+𝝋𝟐

𝟐  

𝝏𝒕
 =  

ℏ

𝟐𝒎
 𝝋𝟏

𝝏𝟐𝝋𝟐

𝝏𝒙𝟐 
− 𝝋𝟐

𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
    (16) 

Integrate over x, on the l.h.s 

 
𝟏

𝟐

𝝏 𝝋𝟏
𝟐+𝝋𝟐

𝟐  

𝝏𝒕
 𝒅𝒙 =  

𝟏

𝟐

𝝏

𝝏𝒕
  𝝋𝟏

𝟐 + 𝝋𝟐
𝟐 𝒅𝒙 = 𝟎  (17) 

Therefore 

  𝝋𝟏
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐 
− 𝝋𝟐

𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
 𝒅𝒙 = 𝟎        (18) 

Also, 

𝝋𝟏
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐 
− 𝝋𝟐

𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
=  

𝝏

𝝏𝒙
 𝝋𝟏

𝝏𝝋𝟐

𝝏𝒙
− 𝝋𝟐

𝝏𝝋𝟏

𝝏𝒙
 −  

𝝏𝝋𝟏

𝝏𝒙
,
𝝏𝝋𝟐

𝝏𝒙
  

(19) 

and since  
𝜕𝜑1

𝜕𝑥
,
𝜕𝜑2

𝜕𝑥
 = 0 we obtain: 

  𝝋𝟏
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐 
− 𝝋𝟐

𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
 𝒅𝒙 =  

 
𝝏

𝝏𝒙
 𝝋𝟏

𝝏𝝋𝟐

𝝏𝒙
− 𝝋𝟐

𝝏𝝋𝟏

𝝏𝒙
  𝒅𝒙 = 𝝋𝟏

𝝏𝝋𝟐

𝝏𝒙
− 𝝋𝟐

𝝏𝝋𝟏

𝝏𝒙
+ 𝑪𝟎(20) 

Hence, combining this with the result in [18] gives: 

𝝋𝟏
𝝏𝝋𝟐

𝝏𝒙
− 𝝋𝟐

𝝏𝝋𝟏

𝝏𝒙
+ 𝑪𝟎 =   𝝋𝟏

𝝏𝟐𝝋𝟐

𝝏𝒙𝟐 
− 𝝋𝟐

𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
 𝒅𝒙 = 𝟎 

(21) 

and therefore 

𝝋𝟏
𝝏𝝋𝟐

𝝏𝒙
= 𝝋𝟐

𝝏𝝋𝟏

𝝏𝒙
− 𝑪𝟎           (22) 

(unless we put the integration limits at ±L/2, we cannot omit 

the integration constant). 

If < 𝑝𝑥1 > ≡   𝜑1𝑝 𝑥𝜑1 𝑑𝑥  represents the observable 

momentum px1 and < 𝑝𝑥2 > ≡  𝜑2𝑝 𝑥𝜑2 𝑑𝑥 represents the 

observable momentum px2, we obtain: 

 𝒑𝒙𝟏  ≡  𝝋𝟏𝒑 𝒙𝝋𝟏 𝒅𝒙 = −ℏ 𝝋𝟏
𝝏

𝝏𝒙
𝝋𝟐 𝒅𝒙    (23) 

 𝒑𝒙𝟐  ≡  𝝋𝟐𝒑 𝒙𝝋𝟐 𝒅𝒙 = +ℏ  𝝋𝟐
𝝏

𝝏𝒙
𝝋𝟏  𝒅𝒙   (24) 

Summing equations [23] and [24], and using [22] results 

in: 

 𝒑𝒙𝟏 =  −  𝒑𝒙𝟐 + 𝑪𝟎/ℏ          (25) 

The total momentum is: 

 𝒑𝒙  =  𝒑𝒙𝟏 +  𝒑𝒙𝟐  = 𝑪𝟎/ℏ      (26) 

And if we designate the total momentum by p, then 

 𝑝 =  𝐶0/ℏ. 

For zero total momentum, 𝑝 = 0, we see that 

 𝒑𝒙𝟏 = −  𝒑𝒙𝟐               (27) 

Meaning that the two entities have opposite linear 

momentum. 

 

Figure 1.  A combined particle of two opposite momenta, with either linear 

or circular motion 

This can be resolved if the two constituents are spinning in 

opposite directions around a common center, or if the two 

components are entangled and moving linearly away in 

opposite directions. But the latter solution will not allow us 

to observe them in one place simultaneously. 

5. Angular Momentum 

Assuming spherical symmetry, with polar angle 𝜃 ,    

the z-component of its angular momentum in spherical 

coordinates is 𝐿 𝑧 =  −𝑖ℏ
𝜕

𝜕𝜃
. 

To find the eigenvalues we write: 

𝑳 𝒛  
𝝋𝟏

𝒊𝝋𝟐
 = −𝒊ℏ

𝝏

𝝏𝜽
  
𝝋𝟏

𝒊𝝋𝟐
       (28) 

𝑳 𝒛 𝝋𝟏 =  ℏ
𝝏𝝋𝟐

𝝏𝜽
               (29) 

𝑳 𝒛 𝝋𝟐 =  −ℏ
𝝏𝝋𝟏

𝝏𝜽
             (30) 

Suppose m1, m2, are the angular momentum eigenvalues 

for each entity of the particle: 

𝑳 𝒛 𝝋𝟏 =  𝒎𝟏𝝋𝟏             (31) 

𝑳 𝒛 𝝋𝟐 =  𝒎𝟐𝝋𝟐             (32) 

𝝏𝝋𝟏

𝝏𝜽
 = −

𝒎𝟐

ℏ
𝝋𝟐             (33) 

𝝏𝝋𝟐

𝝏𝜽
 = +

𝒎𝟏

ℏ
𝝋𝟏             (34) 

Equations [34] and [35] can be immediately solved to 

give: 

𝝋𝟏 𝜽 = 𝒂𝟏 𝒄𝒐𝒔  
𝒎𝟏𝒎𝟐

ℏ𝟐
𝜽 + 𝒃𝟏 𝒔𝒊𝒏  

𝒎𝟏𝒎𝟐

ℏ𝟐
𝜽   (35) 

𝝋𝟐 𝜽 = 𝒂𝟐 𝒄𝒐𝒔  
𝒎𝟏𝒎𝟐

ℏ𝟐
𝜽 + 𝒃𝟐 𝒔𝒊𝒏  

𝒎𝟏𝒎𝟐

ℏ𝟐
𝜽   (36) 

Assuming a boundary condition 𝜑1 0 =  𝜑1 0 = 0 

We find  

𝝋𝟏 𝜽 

𝝋𝟐 𝜽 
=  

𝒃𝟏

𝒃𝟐
               (37) 

And therefore 

𝝏 
𝝋𝟏
𝝋𝟏

 

𝝏𝜽
= 𝟎               (38) 

And therefore  

𝝋𝟏
𝝏𝝋𝟐

𝝏𝜽
=  𝝋𝟐

𝝏𝝋𝟏

𝝏𝜽
            (39) 

 𝑳𝒛𝟏  ≡  𝝋𝟏𝑳 𝒛𝝋𝟏 𝒅𝜽 = ℏ 𝝋𝟏
𝝏𝝋𝟐

𝝏𝜽
 𝒅𝜽     (40) 

 𝑳𝒛𝟐  ≡  𝝋𝟐𝑳 𝒛𝝋𝟐 𝒅𝜽 = −ℏ  𝝋𝟐
𝝏𝝋𝟏

𝝏𝜽
 𝒅𝜽   (41) 

We conclude 

 𝑳𝒛𝟏  = -  𝑳𝒛𝟏              (42) 

Thus, independently of the composite spin for this particle, 

its two components (entities) will have an opposite spin. 

6. A 2-string Analog to the Schrödinger 
Equation 

Assume a one-dimensional description in x, and time t. 
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Let a single particle of mass m be described as consisting 

of two classical real strings, 𝜑1(𝑥, 𝑡) and 𝜑2(𝑥, 𝑡). Here, 

the functions, 𝜑1(𝑥, 𝑡)  and 𝜑2(𝑥, 𝑡)  represent the 

amplitudes of the perturbation of the strings from the x-axis 

as a function of time and position. 

Let the coupling between these two strings be given a 

constant Ks and described by the following coupled, 

differential equations: 

𝝏𝝋𝟏

𝝏𝒕
 =  +𝒌𝒔

𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
           (43) 

𝝏𝝋𝟐

𝝏𝒕
 =  −𝒌𝒔

𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
           (44) 

Let us present a physical consideration of these two 

equations. 

 

Figure 2.  Closed-loop double-strings. Attraction, or repulsion and tension, 

will change directions according to the deviation from the steady-state 

 

Figure 3.  A double-string analog, as described in Eqs. [43, 44]. The 

angle describes the tangent, in the approximation of tan  sin for     

 << 1 

Consider two strings 𝜑1 and 𝜑2.  

Let 𝜑1(𝑥, 𝑡) represent the displacement in the string at 

time t and position x. Let 𝜏 be the tension in the string. 

Though we start in a classical model, this can be directed to 

modern string models too [18]. It is well known that the 

force exerted by this tension on a string element X (see figure 

3) is described by: 

𝝉
𝝏𝟐𝝋𝟏(𝒙,𝒕)

𝝏𝒙𝟐
                (45) 

Suppose now that this string is connected by an endless 

number of springs to a second string, which is described by 

𝜑2(𝑥, 𝑡) . Let the individual springs each have a spring 

constant Ks. Assume further that this spring constant is not 

fixed in time. Rather, it changes with time, starting at time t0, 

the moment in which the two strings interact. Suppose the 

two strings are bound together at their ends, thus creating a 

closed loop. Suppose further that the closed loop of strings  

is at an equilibrium state. The tension in both strings is 

assumed to be changing in time. There is an interaction force 

exerted between the strings, pushing them apart or towards 

each other, against the tendency to collapse or to expand due 

to tension forces. This will happen when, for some reason, 

the two strings are perturbed from their steady-state 

equilibrium of tension and distance.  

As the force tends to weaken or strengthen the interaction 

as it stretches apart or contracts from its steady state, it is 

therefore reasonable to assume that the sprig constant 

changes as: 

𝒌𝒔 =  𝒌𝒔(𝒕)  =
 𝑲𝒔𝟎

𝒕𝟎+𝒕
            (46) 

We may then assume that the tension force in string 1 

creates a disturbance from equilibrium −
𝜕𝜑2

𝜕𝑡
  in string 2, 

proportional to the spring constant Ks and to the string mass 

𝑚2. 

Since 𝜑 describes a displacement amplitude, it has the 

dimensions of [m]. 

The force in Eq [45] has dimensions [kg][m]/[sec2]. 

We may then write 

𝝉𝟏
𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
= −𝒌𝒔 𝒕 𝒎𝟐

𝝏𝝋𝟐

𝝏𝒕
= −

 𝑲𝒔𝟎

𝒕𝟎+𝒕
 𝒎𝟐

𝝏𝝋𝟐

𝝏𝒕
  (47) 

Notice, that Ks0 is dimensionless (or, has dimensions set 

according to the dimension of 𝜑). 

Rearranging [4] we obtain: 

𝝏𝝋𝟐

𝝏𝒕
=  −

𝝉𝟏

𝑲𝒔𝒎𝟐
 
𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
 = −

(𝒕𝟎+𝒕)𝝉𝟏

𝑲𝒔𝟎𝒎𝟐
 
𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
   (48) 

By the same argument, 

𝝏𝝋𝟏

𝝏𝒕
= + 

𝝉𝟐

𝑲𝒔𝒎𝟏
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
= +

(𝒕𝟎+𝒕)𝝉𝟐

𝑲𝒔𝟎𝒎𝟏
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
   (49) 

For reasons of symmetry we assume 𝜏1 =  𝜏1 , 𝑚1 =  𝑚2 

Furthermore, we will assume also that the string tension 𝜏, 

decays with time in the same manner as the interaction spring 

force 𝑘𝑠. 

Thus, 𝜏 =  𝜏(𝑡)  =
 𝜏0

𝑡+𝑡0
 

The resulting two equations for the interacting strings are 

now: 

𝝏𝝋𝟏

𝝏𝒕
= + 

𝝉 𝒕  (𝒕𝟎+𝒕)

𝑲𝒔𝟎𝒎
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
 = + 

𝝉𝟎

𝑲𝒔𝟎𝒎
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
   (50) 

𝝏𝝋𝟐

𝝏𝒕
=  −𝝉 

𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
 =  − 

𝝉𝟎

𝑲𝒔𝟎𝒎
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
         (51) 

The resulting two equations 

𝝏𝝋𝟏

𝝏𝒕
 = + 

𝝉𝟎

𝑲𝒔𝟎𝒎
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
           (52) 

𝝏𝝋𝟐

𝝏𝒕
=  − 

𝝉𝟎

𝑲𝒔𝟎𝒎
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
           (53) 

are similar to the coupled wave functions equations: 

𝝏𝝋𝟏

𝝏𝒕
= + 

ℏ

𝟐𝒎
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
            (54) 

𝝏𝝋𝟐

𝝏𝒕
=  −

ℏ

𝟐𝒎
 
𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
            (55) 

provided that 

ℏ =  
𝟐𝝉𝟎

𝑲𝒔𝟎
                  (56) 

This relates the initial tension 𝜏0 in the strings to the initial 
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coupling 𝑘𝑠0  between the two strings. As 𝜏 s and Ks are 

inversely proportional to time, the ratio 𝜏s/Ks = 
1

2
ℏ is fixed 

in time. This interpretation of a particle as consisting of two 

coupled strings whose tensions and interaction are inversely 

proportional to time gives us a classic interpretation of the 

Schrödinger equation. 

This relates the initial tension 𝜏0 in the strings to the initial 

coupling 𝑘𝑠0 between the two strings.  

As 𝜏s and Ks are inversely proportional to time, the ratio 

𝜏s/Ks is constant in time. 

We will assume now, without loss of generality 

𝝉𝒔

𝑲𝒔
=

𝟏

𝟐
ℏ                 (57) 

7. Asymptotic Correction 

Since the denominators’ ratio cancels out, the 
𝜏s

Ks
 ratio 

remains constant in time, however each of them decays to 0 

as t  ∞. 

In order to avoid the vanishing of tension and the mutual 

spring interaction, we may introduce a different time 

dependency: 

𝒌𝒔 =  𝒌𝒔(𝒕)  =
 𝑲𝒔𝟎

𝑨+𝑩𝒕𝒆−𝑪𝒕
         (58) 

𝝉 =  𝝉 𝒕 =
 𝝉𝟎

𝑨+𝑩𝒕𝒆−𝑪𝒕
           (59) 

With A, a constant of dimension [sec]. 

The time behavior is now different, but the ratio 
𝜏s

Ks
 =  

1

2
ℏ 

remains constant in time as before. But now, the vanishing of 

the constants as t  ∞ is avoided. We also notice that for 

both 𝜏 and K the parameters A, B, and C must be the same, 

otherwise the ratio will become time dependent. 

Characteristics of the interaction 

Define the function f(t): 

𝒇 𝒕 =
𝟏

𝑨+𝑩𝒕 𝒆−𝑪𝒕
            (60) 

By investigating its behavior, we see that f(t) is bounded 

and has a minimum at some tmin. After this minimum, it 

returns asymptotically to its initial value. 

The upper bound on f(t) is given by 

𝒍𝒊𝒎𝒕→ ∞ 𝒇(𝒕)  =  
𝟏

𝑨
          (61) 

The minimum is obtained at 𝑡𝑚𝑖𝑛 =  
1

𝐶
, and at minimum  

𝒇 𝒕𝒎𝒊𝒏 =
𝟏

𝑨+
𝑩

𝒆𝑪

             (62) 

And the following is also true: 

𝒇 ∞ = 𝟏/𝑨              (63) 

𝒇′ 𝟎 = 𝑩/𝑨𝟐             (64) 

and 

𝑩 = 𝒇′ 𝟎 /𝒇 ∞ 𝟐            (65) 

This may be interpreted as a double string initially at a 

steady state, with a constant tension 𝜏 . Then, for some 

reason, an interaction (disturbance) occurs and the tension 

drops to minimum at time tmin = 1/c and then gradually 

returns to its initial steady-state tension 𝜏  (0). A similar 

argument is true for the interaction constant K. 

 

Figure 4.  Time behavior of tension τ in a string and interaction constant 

K between two strings. Behavior is governed by the function f(t) given in Eq 

[60]. Parameter A controls the level of stable-state equilibrium given by 1/A. 

The amplitude drops for a while and rises back to equilibrium, with 

minimum obtained at time tmin = 1/C. (This figure used A=1, B=100, c= 20) 

This describes a single particle of mass m, whose 

interaction parameters at time t < t0 are null: B= C=0. 

At time t0 an interaction occurs, whose intensity energy Ei 

may be estimated by f(tmin)
2 or in other words: 

𝑬𝒊 ~ 𝒇 𝒕𝒎𝒊𝒏 
𝟐 =

𝟏

 𝑨+
𝑩

𝒆𝑪
 
𝟐         (66) 

We see that the particle has a fixed amplitude for its 

component strings until the time of perturbation (collision?). 

The perturbation energy Ei creates a temporary displacement 

of amplitudes in the strings, which asymptotically return to 

their original equilibrium steady-state. 

Complex wave-functions 

Equations [54], [55] then give: 

𝝏𝝋𝟏

𝝏𝒕
= + 

ℏ

𝟐𝒎
 
𝝏𝟐𝝋𝟐

𝝏𝒙𝟐
            (67) 

𝝏𝝋𝟐

𝝏𝒕
=  −

ℏ

𝟐𝒎
 
𝝏𝟐𝝋𝟏

𝝏𝒙𝟐
            (68) 

Defining the complex function 𝜓 𝑥, 𝑡 =  𝜑1 + 𝑖 𝜑2  

Eqs [67] and [68] may be combined together: 

𝒊ℏ
𝝏𝝍

𝝏𝒕
= − 

ℏ𝟐

𝟐𝒎
 
𝝏𝟐𝝍

𝝏𝒙𝟐
           (69) 

By multiplying [67] and [68] by 𝜑2 and 𝜑1 respectively, 

integrating over x, and imposing the mixed boundary 

conditions /x,  = 0 on both functions at L  ± ∞, it is 

immediately shown that (up to a normalization factor): 

  𝝋𝟏
𝟐 + 𝝋𝟐

𝟐 𝒅𝒙 = 𝟏          (70) 

Hence,  

 𝝍∗ 𝒙, 𝒕 𝝍 𝒙, 𝒕 𝒅𝒙 = 𝟏         (71) 

Thus, the classic coupled string system may be interpreted 

as a quantum mechanical single particle, described by a wave 

function 𝜓 𝑥, 𝑡  which is a probability distribution function. 

This function describes a free particle of momentum 



76 Doron Kwiat:  The Schrödinger Equation and Asymptotic Strings  

 

 

𝒑 = −𝒊ℏ
𝝏

𝝏𝒙
                (72) 

When substituted in  

𝑖ℏ
𝜕𝜓

𝜕𝑡
= − 

ℏ2

2𝑚
 
𝜕2𝜓

𝜕𝑥2
 

The result is 

𝒊ℏ
𝝏𝝍

𝝏𝒕
=  

𝒑𝟐

𝟐𝒎
 
𝝏𝟐𝝍

𝝏𝒙𝟐
= 𝓗𝝍,           (73) 

A free particle Hamiltonian. 

8. Interpretation 

This interpretation of a particle as made up of two real 

coupled strings whose tensions and interaction are inversely 

proportional to time is equivalent to the single-particle 

complex wave function described by the Schrödinger 

equation. When the original Schrödinger equation is used 

with a complex wave function, this internal string-like 

characteristic is not apparent because we treat the real and 

imaginary parts as a single entity. However, when the 

equation is separated into two parts, these two parts can be 

treated as independent strings interacting with each other, 

where both tension and interaction fall off abruptly and 

inversely proportional to time. This may be a result of 

weakening due to increased distance between the two strings, 

together with a drop in tension inside the strings. 

Since each of the wave functions is now a real function of 

time and position, and since the sum of the squares of the two 

wave functions equals 1 (Eq [70]), these wave functions can 

describe the actual strings on one hand and be interpreted as 

probability distribution functions on the other hand. This 

unifies the two interpretations into one: A single-particle 

quantum mechanical description with a single complex wave 

function, which is equivalent to a classic description of two 

interacting strings. The quantum quality emerges when we 

understand that the ratio between the string tension and the 

interaction constant are time dependent and the ratio is 

constant in time, namely the Planck universal constant, ℏ. 

When the original Schrödinger equation is used with     

a complex wave function, this internal string-like 

characteristic is not apparent because we treat the real and 

imaginary parts as a single entity. However, when the 

equation is separated into two parts, these two parts can be 

treated as independent strings interacting with each other 

where both tension and interaction fall off abruptly inversely 

proportional to time. This may be a result of weakening due 

to increased distance between the two strings, together with 

tension drop inside the strings. 

The result is the familiar Schrödinger equation. 

9. Connection of Strings Structure to 
Gravity 

Tension 𝜏𝑠 and the Planck constant  ℏ, may be connected 

with the 𝛼′  (alpha prime) parameter [19] and the 

gravitational constant G. 

Particles in a string theory are like the harmonic notes 

played on a string with a fixed tension 

𝜏𝑠 =
1

2𝜋𝛼′
 

The parameter 𝛼′  is called the string parameter and the 

square root of this number represents the approximate 

distance scale at which string effects should become 

observable. 

Since 𝜏𝑠 =
1

2𝜋𝛼 ′
 , and as the minimum observable length 

for a quantum string theory is given by 

𝑳𝒎𝒊𝒏 =  𝜶′                (74) 

then, if string theory is a theory of quantum gravity, this 

minimum length scale should be at least the size of the 

Planck length. Since it is the length scale made by the 

combination of Newton's gravitational constant 𝐺, the speed 

of light 𝑐 and Planck's constant, ℏ 

𝑳𝒎𝒊𝒏 =  𝑳𝑷𝒍𝒂𝒏𝒄𝒌 =  
ℏ𝑮

𝒄𝟑
         (75) 

Thus 

𝝉𝒔 = 𝒌𝒔  
𝟒𝒄𝟑

𝒉𝑮
               (76) 

This indicates to the connection between the structure of 

the string structure to the three known constants of nature. 

Expanding to other particles 

If we accept the claim that a single, non-relativistic 

Schrödinger equation is a description of a single massive 

particle made up of two coupled strings, then we may project 

from this to the relativistic Dirac equation: 

 𝒊ℏ𝜸𝝁𝝏𝝁 −𝒎𝒄 𝜳 = 𝟎         (77) 

Instead of a 4-spinor solution we may assume an 8-string 

solution, with each spinor made up of 2 coupled strings. To 

do this we separate the complex wave function Ψ into its 

real and imaginary parts, and by using them in the Dirac 

equation we will obtain two separate equations where the 

imaginary and real parts are separated. This same procedure 

can be applied to any quantum field Lagrangian, resulting in 

the doubling of the number of equations on one hand, but 

gaining a separation of the equations into real wave functions 

on the other. These wave functions may be interpreted as 

coupled strings. 

10. A Balloon Model 

In a 3D version, we can illustrate our concept with a 

balloon version. The spherical balloon has an internal 

pressure P that tends to inflate the balloon by exerting force 

perpendicular to the surface area. The surface area of the 

balloon has an internal tension force 𝜏 acting in the opposite 

direction, also perpendicular to the surface area, but 

opposing the force of internal pressure. 

At equilibrium, the forces of inward tension and outward 

pressure are equal. 
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If at a given instance t0, a small disturbance occurs that 

moves the surface off its equilibrium, the force of tension 

will increase along with the pressure, which will bring the 

surface back to equilibrium. If, on the other hand, the balloon 

surface is pushed outwards, the pressure will decrease and 

the tension will increase in the opposite direction. 

 

Figure 5.  A closed string with "pressure" P and tension τ (A) and a 

2-dimensional surface area of a balloon-like string, with forces acting on an 

infinitesimal area d (B). For our model, we may assume two separate, 

closely packed and interacting (coupled) balloons (C), denoted by 1 and 2 

Pressure force P and tension force 𝜏  are always 

perpendicular to the surface area and in opposite directions. 

Both P and 𝜏 will change in time due to some unsettling 

interaction. In its steady state, the balloon may be expanding 

or contracting at a steady rate but the ratio 𝜏 /P must be kept 

constant. 

Instead of a coupled strings model, we may assume double 

sphere-like surfaces, one enclosed inside the other, with a 

very small gap between the two. Both have surface tension 𝜏 

and they interact with each other with an interaction force K.  

11. Conclusions 

One can do quantum mechanics with real wave functions 

instead of complex ones. 

Using real wave functions leads to the interpretation of a 

single particle as consisting of two interacting entities. This 

coupled-strings interaction model leads to the Schrödinger 

equation for a single particle.  

Assuming Tension τ in a string and interaction force K 

between strings are time dependent, then the ratio τ  /K 

asymptotically equals Planck's constant ℏ.  This gives us    

a derivation of Planck's constant out of fundamental 

interaction physical model. Even though these interactions 

may become perturbed by some external interactions, it is 

shown here that these sudden perturbations affect the 

coupling only temporarily, and the system of coupled strings 

returns asymptotically to a steady-state equilibrium. 

A single particle may consist of coupled 2D spherical 

sheets (membranes) of a given surface tension and mutual 

interaction force; both are time dependent and 

asymptotically return to equilibrium.  
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