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Abstract  Exact quantum mechanical calculations of the Fermi-Integral (FI) associated with the density-of states (DOS) 
function for non-degenerately doped impurities in a parabolic band semiconductor were made. Unlike the results of previous 
approximate numerical calculations, present exact calculations showed novel oscillatory behavior of FI only for the positive 
values of the reduced Fermi-energies η (= Ef/kBT), where Ef is the Fermi energy and kB is the Boltzman constant and T is the 
absolute temperature. On the other hand, for the corresponding negative values, FI exhibited no oscillation. The observed non 
periodic oscillations were due to the Confluent Hypergeometric functional behavior of the presently derived expression of FI. 
Such oscillation might have massive effect on the dynamic behavior of quantum electronic properties of semiconductors as 
shown, for example, in case of Einstein relations (diffusivity-mobility ratio, DMR). Present finding also stimulate further 
investigation of DMR and similar other physical properties using the present exact expression of FI to explore the underlying 
new physics. 
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1. Introduction 
The Fermi-integral (FI) have been vastly used for the 

study of density of states (DOS) functions in semiconductors. 
It is well known that FI is involved with the integration of the 
product of DOS function and Fermi-Dirac (FD) distribution 
function for all possible values of the electron energy, E. The 
FI, generally defined by Fj(η) [1-4], can be written as  

Fj(η)= 1
𝛤(𝑗+1)

. ∫ 𝑥𝑗.𝑑𝑥
1+exp (𝑥−𝜂)

∞
𝑥=0            (1) 

where j is an integer or a fraction and η =
𝐸𝑓
𝑘𝐵𝑇

 with 𝐸𝑓 being 
the Fermi-energy. For the DOS function of a parabolic band, 
the value of j is ½. Accordingly, the corresponding FI, 
𝐹1/2(η) can be represented (using Eq(1) of [1-4]) in the form 

𝐹1/2(η) = 2
√𝜋

. ∫ 𝑥1/2.𝑑𝑥
1+exp (𝑥−𝜂)

∞
𝑥=0             (2) 

η is usually known as reduced Fermi-energy. 
Conventionally, 𝐹1/2(η) was evaluated numerically [1-6] for 
all practical  purposes and  the corresponding  numerical  
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values were found to be comprised of only positive real 
values of the integrands. The numerical values are also 
available in a tabular form [1, 2] for both positive and 
negative values of η.  

However, as the numerical integration is an approximate 
method, one cannot accurately find the exact values of 
reduced energy parameter, η =

𝐸𝑓
𝑘𝐵𝑇

 related to many physical 
parameters of metals and semiconductors. Therefore, an 
exact solution of Eqs (1) and (2) are demanding to 
demonstrate the new electronic properties like Fermi-energy 
which in turn associated with the transport phenomena in 
doped semiconductors [6] as well as in nano-technology 
devices [5]. 

Therefore, an attempt has been made for an exact quantum 
mechanical calculation of the FIs (𝐹��(η) and 𝐹�1

2
(η) applying a 

correct integration methods. Such calculations might reveal 
some interesting properties of 𝐹�1

2
(η) which could not be 

visualized from the earlier numerical method of calculations 
discussed in this paper.  

2. Theoretical Analysis 
For an intrinsic semiconductor of parabolic band with 

lightly doped impurities, the band equation is given by: 

E=ℏ²𝑘²
2mc

                     (3) 
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where ℏ is the reduced Planck’s constant, 𝑘�  is the wave 
vector, mc is the un-perturbed conduction band edge 
effective electrons mass and E is the electron energy. The 
normal DOS function, N (E), can be written as  

 N (E) = 1
2𝜋2

. (2m𝑐
ℏ2

)
3
2. E1/2            (4) 

(energy range E→ 0 to +∞). 
For a non-degenerately doped semiconductor of carrier 

concentration, Ni, one can write the carrier statistical relation 
[4] as 

Ni = 1
2𝜋2

. (2m𝑐
ℏ2

)
3
2 ∫ E½dE

1+exp
𝐸−𝐸𝑓
𝑘𝐵𝑇

∞
𝐸=0        (5) 

= No× ND 

where N0= 1
2𝜋2

. (2m𝑐
ℏ2

)³/² in Eq.5 
and  

 𝑁𝐷  =  N𝑖
 N0

 = ∫ E½dE

1+exp
𝐸−𝐸𝑓
𝑘𝐵𝑇

∞
𝐸=0             (6) 

Eq. 6 can also be re-written as 
𝑁𝐷 

(𝑘𝐵𝑇)3/2 =√𝜋
2

.𝐹1/2(η)            (7) 

where 𝑥 = 𝐸
𝑘𝐵𝑇

 , η =
𝐸𝑓
𝑘𝐵𝑇

 and  

𝐹1/2(η) = 2
√𝜋

. ∫ 𝑥1/2.𝑑𝑥
1+exp (𝑥−𝜂)

∞
𝑥=0            (8) 

Eq. (8) is identical with Eq. (2). The closed form of an 
exact solutions of Fj(η) with special attention to j=1/2 for 
𝐹1/2 (η) can now be provided. We represent the exact 
solutions of Eq.(1) and Eq.(8) by 𝐹�� (η) and 𝐹�1

2
(η), 

respectively. Performing some algebraic manipulations to 
the integrands in Eq.(1), an exactly form 𝐹��(η) comes out to 
be  

𝐹��(η) = −𝛽
𝛤𝛾

. ∫ exp(−𝑥).𝑥𝛾−1.𝑑𝑥
1−𝛽.exp (−𝑥)

∞
𝑥=0         (9) 

where β =-exp (η) and γ= (j+1). 
The new exact solution of Eq.(9) can be expressed [7] as 

𝐹��(η) = exp(η).Ф{-exp(η), (j+1); 1} (for j≥0.)   (10) 

where the special function, Ф(a,b;z) is the Confluent 
Hypergeometric function with a = – exp(η), b=(j+1) and z=1 
[7, 8]. For a given value of η =

𝐸𝑓
𝑘𝐵𝑇

 and j, one can find the 
values of Ф (a,b; z) from the Table in [8]. However, for 
simple calculations for 𝐹�� (η), one can also use the series 
expansion of Ф (a,b; z) [7, 8]. For the series expansion of Ф 
(a,b; z) , one can use the following relation [8] 

Ф (a,b; z) = 1+𝑎
𝑏
.𝑧
1!

+(𝑎)2
(𝑏)2

.𝑧
2

2!
 + (𝑎)3

(𝑏)3
. 𝑧

3

3!
+…………+(𝑎)𝑛

(𝑏)𝑛
.𝑧
𝑛

𝑛!
   

 (11) 
(a)0 =1 and (a)n =a(a+1)(a+2)……………..(a+n-1)   (12) 

Substituting a=-exp (η); b= (j+1) and z=1, in Eqs.(11) and 
(12), the final exact solution of 𝐹��(η) comes out to be  

 

𝐹𝚥�(η) = exp (η). [1-exp(η)
(𝑗+1)

. 1
1!

 - exp(η).((1−exp(η))
(𝑗+1)(𝑗+2)

. 1²
2!

 

- exp(η).((1−exp(η)).(2−exp(η))
(𝑗+1)(𝑗+2)(𝑗+3)

. 1³
3!

 - .to ∞]    (13) 

Eq. (13) represents the series solution to 𝐹𝚥� (η) for any 
values of j and η. Thus, one can find the value of 𝐹𝚥�(η) more 
accurately and conveniently than the conventional numerical 
approaches for Fj (η) put forwarded earlier [1, 2]. For j=1/2, 
as a special case to the Fermi-integral, 𝐹𝚥� (η), the series 
representation of the same can be given from Eq.(13) as  

𝐹�1
2
(η) = exp (η). [1-2

3
. exp (η)-exp(η).((1−exp(η))

3.5
. 2²
2!

 

-exp(η).((1−exp(η)).(2−exp(η))
3.5.7

.2³
3!

 -…..to ∞] (14a) 

Now, for a given value of η =
𝐸𝑓
𝑘𝐵𝑇

, we can compute 𝐹�1
2
(η) 

from Eq.(14). 𝐹�−1/2(η) can also be easily computed from 
Eq.(13) with j=-1/2. 

From Eq (14a) we find the exact form of the DOS, S(η), as 
a function of reduced Fermi energy η as  

S(η)=[ exp(-η). 𝐹�1
2
(η)]= {1-2

3
. exp (η)-exp(η).((1−exp(η))

3.5
. 2²
2!

 

-exp(η).((1−exp(η)).(2−exp(η))
3.5.7

.2³
3!

 -…………..to ∞} (14b) 

The computed values of 𝐹�1
2

(η) could be plotted as a 

function of η, for both positive and negative values which 
have been discussed below.  

3. Results and Discussion 
We demonstrate the variation of the calculated exact FI for 

the DOS as function of η (=
𝐸𝑓
𝑘𝐵𝑇

) in the case of 
non-degenerately doped semiconductor. The values of FIs of 
half-integer order estimated by earlier classical calculation  
[1, 2] and those obtained from the present exact calculation 
are shown in Table 1 for comparison. The exact values of the 
function 𝐹�1

2
(η) calculated from the present series expansions 

of Eq. (14) is plotted in Figure 1. It is seen from the figure 
that the results of our present exact calculations for FI 
exhibits oscillations only for the positive values of η. On the 
other hand, for the negative values of η, no oscillation is 
exhibited. Earlier approximate numerical calculations of FI 
[1-6] did not, however, show any such oscillations. The 
nature of the said oscillations is not periodic like sinusoidal 
functions. That is, all the positive crest and the negative 
trough amplitudes are not uniform, rather successive 
amplitudes of the peaks and those of the valleys are 
decreasing in their magnitudes. Moreover, the distances 
(representing period of oscillation) between two successive 
peaks and valleys gradually decrease. 

An attempt has been made to calculate the 
diffusivity-mobility ratio (DMR) also known as Einstein 
relation [4]. The DMR for various semiconductor device 
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performances [9-11] calculated from the conventional 
approach for FIs (i.e., the numerical integrations) comes out 
to be always positive (dotted line in Figure 2). Using the 
present exact calculations of the Fermi-Integrals 𝐹1

2
 (η) and 

𝐹−1
2

 (η), DMR can be defined as  

DMR= (kBT/e)[ 𝐹�1
2
(η) / 𝐹�−1

2
(η) ]        (15) 

 
Figure 1.  Variations of the Fermi-Integral and DOS function, S (η) = [exp (-η). 𝐹�1

2
(η)] (Eq.14b) for non-degenerately doped semiconductor as a function 

of reduced Fermi energy η (= 𝐸𝑓
𝑘𝐵𝑇

) using the data of Table 1 

 

Figure 2.  Comparison of room temperature (300K) DMR values obtained from the present exact calculation (Eq.15) and that obtained from the previous 
numerical calculation by Blackmore [2] (dotted curve) 
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Table 1.  Comparison of FIs of Half Integer order estimated from the previous Classical Calculations [1, 2] with phase obtained from the Present exact 
quantum mechanical calculations (Eqn.13) 

Models of Computations of Fermi-Integrals of Half-Integer order 

 J. Mc Dougall and E.C. stoner & J.S. Blakemore P.K. Chakraborty and B.N. Mondal 

η 𝐹−3
2

 (η) 𝐹−1
2

 (η) 𝐹1
2
 (η) 𝐹3

2
 (η) 𝐹�−3

2
(η) 𝐹�−1

2
(η) 𝐹�1

2
(η) 𝐹�3

2
(η) 

-1.0 0.2367 0.29402 0.32780 0.34667 0.8921047 0.024995 0.2641784 0.30818663 

-0.8 0.2667 0.34438 0.39154 0.41844 1.1763895 -0.0472093 0.2973627 0.3613927 

-0.6 0.2971 0.40077 0.46595 0.50400 1.5371718 -0.1653153 0.3270025 0.4196298 

-0.4 0.3268 0.46318 0.55224 0.60561 1.9777858 -0.3480116 0.3481471 0.4811916 

-0.2 0.3548 0.53137 0.65161 0.72577 2.4830765 -0.6179825 0.3535775 0.5429851 

0.0 0.3800 0.60490 0.76515 0.86720 3.0 -1.0 0.3333331 0.6000024 

0.2 0.4019 0.68317 0.89388 1.0328 3.4060969 -1.5158827 0.2745165 0.6447316 

0.4 0.4196 0.76510 1.0387 1.2258 3.4631249 -2.1741066 0.1617887 0.66668486 

0.6 0.4328 0.85074 1.2003 1.4494 2.7585010 -2.951250 -0.0207513 0.6522183 

0.8 0.4415 0.93826 1.3791 1.7071 0.6522377 -3.7627675 -0.2853131 0.5851824 

1.0 0.4457 1.0271 1.5756 2.0023 -3.720068 -4.423456 -0.6325986 0.4490560 

1.2 0.4459 1.1163 1.79 2.3385 -11.27854 -4.606463 -1.0395625 0.2314946 

1.4 0.4427 1.2052 2.0221 2.7194 -22.47368 -3.8279712 -1.4434958 -0.0678440 

1.6 0.4365 1.2931 2.272 3.1486 -36.16012 -1.5154806 -1.7272779 -0.4261199 

1.8 0.4281 1.3796 2.5393 3.6294 -47.76406 2.7466371 -1.7183136 -0.7849614 

2.0 0.4182 1.4643 2.8237 4.1654 -47.32019 8.6967182 -1.2241420 -1.0436269 

2.2 0.4070 1.5468 3.1249 4.76 -19.72106 14.625242 -0.1337513 -1.07-7693 

2.4 0.3954 1.6271 3.4423 5.4164 47.954132 16.776968 1.4043882 -0.0858741 

2.6 0.3833 1.7049 3.7755 6.1380 145.86356 10.089621 2.7921123 -0.858741 

2.8 0.3712 1.7804 4.1241 6.9277 211.07954 -7.9868693 2.9963998 0.7095146 

3.0 0.3595 1.8535 4.4876 7.7886 122.67401 -30.27694 1.1221185 1.1689537 

3.2 0.3481 1.9242 4.8653 8.7237 -197.715 -35.287853 -2.327161 0.8155246 

3.4 0.3370 1.9927 5.2571 9.7357 -541.8664 -0.8510669 -4.4545397 -0.2982655 

3.6 0.3267 2.0591 5.6623 10.827 -311.4929 54.739845 -1.7309298 -1.1786131 

3.8 0.3167 2.1235 6.0806 12.001 702.63403 50.684658 4.3256855 -0.5953887 

4.0 0.3075 2.1859 6.5115 13.260 -899.2412 3.3563582 6.254676 1.0597025 

 

Figure 2 shows the variation of DMR with η (Eq. 15). The 
DMR values showing both positive and negative values 
(Figure 2) appearing due to the oscillations in FIs (Figure 1). 
This results contradicts the theoretical result obtained by 
Roichman and Tessler using the Monte Carlo simulation 
technique to calculate the inverse DMR which also did not 
exhibit oscillatory behavior [10] indicating that their 
calculations were also not exact where DMR showed only 
positive ones. This controversy arises due to the drawback of 
the previous approximate numerical calculations showing  
no oscillatory behavior of the FI. The present approach of 
exact calculation of FIs for the non-degenerately doped 
semiconductor is the most appropriate one as compared to 
the previous approximate ones [1-6, 10, 12]. Using the 
present exact theoretical model, new results, like DMR, are 
also expected from the calculations of all other physical 
parameters related to the Fermi energy. 
 

4. Conclusions 
We have, for the first time, made an exact quantum 

mechanical calculation for the FI for the non-degenerately 
doped impurities in parabolic band semiconductors and the 
results are compared with those of previous approximate 
calculations. Present calculation is superior compared to be 
the existing asymptotic expansions of the same FI generating 
new result as shown in the case of DMR. This is because of 
the presence of higher order terms of exp (η) in the present 
derived expression Eq. (14). Such exact analysis provided FI 
as a real function. A comparison of the FI of Half-integer 
order estimated from the previous classical calculation and 
those of on present quantum mechanical calculation have 
also been shown which might be useful for further studies of 
different physical parameters. As the FI is involved with 
DOS and Fermi-Dirac functions, the present new theoretical 
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results would provide more accurate explanations of 
quantum transport phenomena in semiconductors along  
with new applications in magnetic susceptibility, 
magnetoresistance and specific heat at low temperature. 
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