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Abstract  Komendantov and Kononenko proposed a mathematical model of snail RPa1 neurons, which was described by 
a system of nonlinear ordinary differential equations based on the Hodgkin–Huxley formalism. This model shows bistability 
between regular bursting and chaotic spiking. A transient current pulse can switch the dynamical state of the model from 
regular bursting to chaotic spiking and vice versa. This study performed a numerical simulation analysis of the model to show 
the dependence of the switching from regular bursting to chaotic spiking on the amplitude, duration, and phase of the current 
pulse. 
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1. Introduction 
Chaos is an important research topic in the fields of 

applied mathematics (page 118 in [1]) and mathematical and 
theoretical physics (page 382 in [2] and page 85 in [3]). 
Aihara [4] reports that the Hodgkin–Huxley model, one of 
the most widely accepted mathematical models that describe 
electrical excitability of neurons, can generate chaotic 
oscillations. The Hodgkin–Huxley model is a system of 
highly nonlinear ordinary differential equations (ODEs) and 
is an important mathematical model of nonlinear dynamics 
([5] and page 160 in [6]). In addition, chaotic oscillations are 
observed in various mathematical models of neurons, which 
are described by a system of nonlinear ODEs based on the 
Hodgkin–Huxley formalism. Examples include models of 
onchidium neurons (Figure 12 in [7]), leech interneurons 
(Figure 3 in [8] and Figure 10 in [9]), and snail RPa1 neurons 
(Figures 2, 8, and 9 in [10]). 

Chaotic activity observed in a mathematical model of 
RPa1 neurons possesses a unique feature: chaotic spiking 
coexists with regular bursting under certain conditions 
(bistability). This concept is illustrated in Figure 9 in [10], 
which shows that a transient depolarizing current pulse 
switches the activity mode of the model from chaotic spiking 
to regular bursting. The paper also describes that a transient 
hyperpolarizing current pulse switches the activity mode in 
the other direction, i.e., from regular bursting to chaotic   
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spiking (see the last sentence of the results section in page 
227 in [10]). However, the paper did not investigate how 
variations in stimulus characteristics such as amplitude, 
duration, and timing (i.e., phase) of the current pulse affect 
the switching from regular bursting to chaotic spiking. 

Bistability is also observed in a leech interneuron model 
[11]. Barnett et al. showed that the switching of the 
dynamical states depends on the amplitude and timing of the 
current pulse (Figure 2 in [11]), indicating that investigating 
pulse characteristics is important to assess the multistability 
of a neuron model. Therefore, the present study performed 
numerical studies of a snail RPa1 neuron model to 
characterize the amplitude, duration, and timing of the 
current pulse necessary for the switching from regular 
bursting to chaotic spiking. 

2. Materials and Methods 
A mathematical model of the snail RPa1 neurons used 

here was developed by Komendantov and Kononenko [10] 
and is described by a system of nonlinear ODEs based on the 
Hodgkin–Huxley formalism. The model consists of eight 
state variables: the membrane potential of RPa1 neurons   
[V (mV)], six gating variables of ionic currents (mB, hB, m, h, 
n, and mCa), and the intracellular calcium concentration {[Ca] 
(mM)}. The time evolution of these state variables is 
described by the following equation.  
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Here, Cm is the membrane capacitance (0.02 µF), Iapp is the 
current pulse with constant amplitude (Iapp values are varied 
in this study), INa(V) (V) is the sodium current with a 
voltage-dependent conductance, INa (V) is the sodium current 
with a voltage-independent conductance, IK (V) is the 
potassium current with voltage-independent conductance, 
IB(V, mB, hB) is the chemosensitive B current, INa(TTX)(V, m, h) 
is the tetrodotoxin (TTX)-sensitive sodium current, IK(TEA)(V, 
n) is the tetraethylammonium (TEA)-sensitive potassium 
current, ICa(V, mCa) is the inward calcium current, and 
ICa-Ca(V, [Ca]) is the calcium-inhibited calcium current. 
These currents are defined in Equations (9)−(16) below. Rho 
is an endogenous calcium buffer capacity (0.002), F is the 
Faraday constant (96485 C/mol), R is the cell radius (0.1 
mm), ks is the rate constant of intracellular calcium uptake by 
intracellular calcium stores (50 s−1). 
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Here, gNa(V) (= 0.11 µS), gNa (= 0.0231 µS), gK (= 0.25 µS), 
gB (= 0.1372 µS), gNa(TTX) (= 400 µS), gK(TEA) (= 10 µS), gCa (= 
1.5 µS), and gCa-Ca (= 0.02 µS) are maximal conductances of 
INa(V) (V), INa (V), IK (V), IB(V, mB, hB), INa(TTX)(V, m, h), 
IK(TEA)(V, n), ICa(V, mCa), and ICa-Ca(V, [Ca]), respectively. VNa 
(= 40 mV), VK (= −70 mV), VB (= −58 mV), and VCa (= 150 
mV) are reversal potentials of sodium currents (INa(V) (V), INa 
(V), and INa(TTX)(V, m, h)); potassium currents (IK (V) and 
IK(TEA)(V, n)); IB(V, mB, hB); and calcium currents (ICa(V, mCa) 
and ICa-Ca(V, [Ca])), respectively. Detailed explanations of 
the model are provided in [10]. The free and open source 
software Scilab (http://www.scilab.org/) was used to 
numerically solve the model. 

3. Results 
The model of the snail RPa1 neurons shows several 

dynamical states by varying the value of gB (Figure 5 in [10]). 
However, throughout the simulation, we fixed gB at 0.1372 
µS, which corresponds to the chaotic mode. The ODEs that 
can show multistability demonstrate several qualitatively 
different solutions depending on the initial conditions. For 
example, since the ODEs of the current study represent a 
bistable system, two qualitatively different solutions can be 
obtained. When the initial condition is V = −42 mV, mB = 
0.95, hB = 0.77, m = 0.14, h = 0.1, n = 0.048, mCa = 0.0002, 
[Ca] = 7.0 × 10−5 mM and no transient current pulse is 
applied (Iapp = 0), the model shows chaotic spiking (Figure 
1A). However, when the initial value of [Ca] is increased to 
[Ca]init = 13.0 × 10−5 mM, the model shows regular bursting 
(Figure 1B). Figure 1C is an expansion of Figure 1B, which 
illustrates the definition of the characteristics of regular 
bursting. An active phase of regular bursting is defined as the 
period of repetitive spiking, whereas a silent phase is defined 
as the period of nonspiking. Injection of a current pulse, i.e., 
hyperpolarizing input, is started at an early, intermediate, or 
late phase of the silent phase ((1), (2), or (3), respectively) or 
an early, intermediate, or late phase of the active phase ((4), 
(5), or (6), respectively) (Figures 2 and 3). 

Next, the simulations for evaluating the effect of 
variations in the amplitude, duration, and timing of the 
current pulse (Iapp) on the model dynamics are performed 
under initial conditions: V = −42 mV, mB = 0.95, hB = 0.77,  
m = 0.14, h = 0.1, n = 0.048, mCa = 0.0002, and [Ca] = 13.0 × 
10−5 mM. The responses to the current pulse differed on the 
basis of the pulse amplitude, duration, and timing (Figure 2). 
When the current pulse with an amplitude of −0.5 nA and 
duration of 15 s is applied at an intermediate phase of an 
active phase (Figure 2A), the model shows a resetting 
behavior similar to that shown in Figure 3 in [12]. In other 
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words, the current pulse did not switch the dynamical state of 
the model from regular bursting to chaotic spiking. When the 
current pulse with an amplitude of −0.5 nA and duration of 
12 s is applied at an early phase of the active phase (Figure 
2B), the model shows a transient irregular spiking behavior, 
after which the dynamical state returned to regular bursting. 
Again, in this case, the current pulse did not switch the 
dynamical state of the model from regular bursting to chaotic 
spiking. However, when the current pulse with an amplitude 
of −0.5 nA and duration of 15 s is applied at an early phase of 
the silent phase (Figure 2C), the model shows the switching 

from regular bursting to chaotic spiking. 
The results showing the dependence of the switching from 

regular bursting to chaotic spiking on the amplitude, duration, 
and timing of the current pulse are summarized in Figure 3. 
Figure 3A shows that the switching depends on the duration 
and timing of the current pulse at a fixed pulse amplitude 
(−0.5 nA), whereas Figure 3B shows that the switching 
depends on the amplitude and timing of the current pulse at a 
fixed pulse duration (15 s). Figure 3 shows that the 
conditions in which the switching from regular bursting to 
chaotic spiking occurs are highly complex.   

 

Figure 1.  Time courses of simulated membrane potentials of the RPa1 neuron model under different initial conditions. (A) Initial conditions were V = −42 
mV, mB = 0.95, hB = 0.77, m = 0.14, h = 0.1, n = 0.048, mCa = 0.0002, and [Ca] = 7.0 × 10−5 mM. (B) Initial conditions were V = −42 mV, mB = 0.95, hB = 0.77, 
m = 0.14, h = 0.1, n = 0.048, mCa = 0.0002, and [Ca] = 13.0 × 10−5 mM. (C) The dashed square in (B) was expanded. Active and silent phases of regular 
bursting were explained. Current pulse injections in Figures 2 and 3 started at either (1) or (6) 
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Figure 2.  Simulated responses to current pulse injections under different pulse conditions. The amplitude, timing, and duration of the pulses were (A) −0.5 
nA, 17.3 s, and 15 s, (B) −0.5 nA, 16.8 s, and 12 s, and (C) −0.5 nA, 12.2 s, and 15 s, respectively. Horizontal bars indicate the period during which the pulses 
were applied 
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Figure 3.  Summary of the pulse characteristics necessary for the switching from regular bursting to chaotic spiking. (A) The pulse amplitude was fixed at 
−0.5 nA. Pulse injections started at a silent phase (A1) or an active phase (A2). (B) The pulse duration was fixed at 15 s. Pulse injections started at a silent 
phase (B1) or an active phase (B2). White circle: switching did not occur. Black circle: switching occurred 

4. Discussions  
This study investigated the effect of the current pulse on 

the dynamics of the snail RPa1 neuron model and revealed 
pulse characteristics that induced the switching from regular 
bursting to chaotic spiking. A previous study described that 
the current pulse with an amplitude of −0.5 nA and duration 
of 15 s induced the switching from regular bursting to 
chaotic spiking (page 227 in [10]). However, that study did 
not clarify whether the switching depended on the timing of 
the current pulses. The present study showed the importance 
of the timing of the current pulse as the switching is 
influenced by not only the pulse amplitude and duration but 
also the timing of the current pulse (Figure 3). 

The responses to the current pulse have been studied in 
other neuron and endocrine cell models [11-13]. In a 

pre-Bötzinger complex neuron model, the hyperpolarizing 
current pulse applied during the active phase of regular 
bursting induced the resetting behavior (Figure 3 in [12]). 
Although a similar resetting behavior was also observed in 
the present study (Figure 2A), the RPa1 neuron model was 
more complex than the pre-Bötzinger complex neuron model 
because the former can exhibit the resetting behavior (Figure 
2A) as well as the switching from regular bursting to chaotic 
spiking (Figure 2C) depending on pulse characteristics. In an 
endocrine cell model, the resetting behavior was induced by 
the depolarizing current pulse (Figure 9 in [13]); however, 
bistability corresponding to that of the RPa1 neuron model 
was not reported. The present study focused on the switching 
from regular bursting to chaotic spiking. In contrast, the 
bistability reported in a leech interneuron model was 
between regular bursting and silence [11]. Interestingly, 
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pulse characteristics necessary for the switching differed 
between the two models. The amplitude ranges for the 
switching at an early phase overlapped with those at a late 
phase in the snail model (Figure 3B1) but not in the leach 
model (Figures 2 and 5 in [11]). 

5. Conclusions 
The present study showed that under certain conditions, 

the snail RPa1 neuron model do not switch from regular 
bursting to chaotic spiking. Therefore, it is important to 
regulate appropriately the pulse characteristics such as the 
pulse amplitude, duration, and timing of the current pulse. 
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